Classification of Arabica Coffee Green Beans Using Digital Image Processing Using the K-Nearest Neighbor Method

Nurun Najmi Amanina, Galuh Wilujeng Saraswati

Abstract


Arabica coffee is the largest commodity produced by farmers in Pagergunung Village, Bulu District, Temanggung Regency. Coffee production in recent years has increased rapidly by 80% with the increasing lifestyle of the Indonesian people marked by the number of coffee shop buildings in various regions, and of course the demand for Arabica coffee has also increased, therefore it must improve the quality or quality of the coffee itself. However, in determining and classifying the quality of coffee beans, errors often occur due to the lack of understanding of the farmers in processing coffee. Based on this, the purpose of this research is to classify using the K- Nearest Neighbor method and feature extraction using the average value of Red-Green-Blue (RGB) color in determining the quality and quality of coffee beans according to grade so that they can get a high selling price. In this study using as many as 150 training image data and 150 testing image data, the results of this classification accuracy are 80% using k=1.

Full Text:

PDF

References


Abijono, H., Santoso, P. and Anggreini, N. L. (2021) ‘Algoritma Supervised Learning Dan Unsupervised Learning Dalam Pengolahan Data’, Jurnal Teknologi Terapan: G-Tech, 4(2), pp. 315–318. doi: 10.33379/gtech.v4i2.635.

Adiwijaya, N. O. et al. (2022) ‘The quality of coffee bean classification system based on color by using k-nearest neighbor method’, Journal of Physics: Conference Series, 2157(1). doi: 10.1088/1742-6596/2157/1/012034.

Arboleda, E. R., Fajardo, A. C. and Medina, R. P. (2018) ‘Classification of coffee bean species using image processing, artificial neural network and K nearest neighbors’, in 2018 IEEE International Conference on Innovative Research and Development, ICIRD 2018. Institute of Electrical and Electronics Engineers Inc., pp. 1–5. doi: 10.1109/ICIRD.2018.8376326.

Ginanjar, A. R. (2019) ‘Sistem Deteksi Jenis Cacat Biji Kopi dengan Algoritma K-Nearest Neighbor’.

Ikhsan, D., Utami, E. and Wibowo, F. W. (2020) ‘Metode Klasifikasi Mutu Greenbean Kopi Arabika Lanang Dan Biasa Menggunakan K-Nearest Neighbor Berdasarkan Bentuk’, Jurnal Ilmiah SINUS, 18(2), p. 1. doi: 10.30646/sinus.v18i2.456.

Kohn, T. (2017) ‘Teaching Python Programming to Novices: Addressing Misconceptions and Creating a Development Environment ETH Library’, (24076), p. 166. Available at: https://www.research-collection.ethz.ch/bitstream/handle/20.500.11850/129666/eth-50720-02.pdf.

Linge, S. and Langtangen, H. P. (2020) Programming for Computations - Python, Springer Open. Available at: http://link.springer.com/10.1007/978-3-030-16877-3.

Nugraha, D. A. and Wiguna, A. S. (2018) ‘Klasifikasi Tingkat Roasting Biji Kopi Menggunakan Jaringan Syaraf Tiruan Backpropagation Berbasis Citra Digital’, SMARTICS Journal, 4(1), pp. 1– 4. doi: 10.21067/smartics.v4i1.2165.

Nugroho, M. A. and Sebatubun, M. M. (2020) ‘Klasifikasi Varietas Kopi Berdasarkan Green Bean Coffee Menggunakan Metode Machine Learning’, Journal of Information System Management (JOISM), 1(2), pp. 1–5. doi: 10.24076/joism.2020v1i2.24.

Pamuji, R. (2019) ‘Identifikasi Citra Biji Kopi Arabika dan Robusta Menggunakan Learning Vector Quantization’, Naskah Publikasi Program Studi Teknik Informatika. Universitas Mercu buana Yogyakarta, (November), pp. 1–7. Available at: http://eprints.mercubuana- yogya.ac.id/6648/.

Paramita, C. et al. (2019) ‘Klasifikasi Jeruk Nipis Terhadap Tingkat Kematangan Buah Berdasarkan Fitur Warna Menggunakan K-Nearest Neighbor’, Jurnal Informatika: Jurnal Pengembangan IT, 4(1), pp. 1–6. doi: 10.30591/jpit.v4i1.1267.

Pratama, A. R., Mustajib, M. and Nugroho, A. (2020) ‘Deteksi Citra Uang Kertas dengan Fitur RGB Menggunakan K-Nearest Neighbor’, Jurnal Eksplora Informatika, 9(2), pp. 163–172. doi: 10.30864/eksplora.v9i2.336.

Raysyah, S. R., Veri Arinal and Dadang Iskandar Mulyana (2021) ‘Klasifikasi Tingkat Kematangan Buah Kopi Berdasarkan Deteksi Warna Menggunakan Metode Knn Dan Pca’, JSiI (Jurnal Sistem Informasi), 8(2), pp. 88–95. doi: 10.30656/jsii.v8i2.3638.

Rizal, M. A. (2019) ‘Klasifikasi Mutu Biji Kopi Menggunakan Metode K – Nearest Neighbor Berdasarkan Warna Dan Tekstur’, Universitas Teknologi Yogyakarta, pp. 1–8.

Sulistyaningtyas, A. R. (2017) ‘Pentingnya Pengolahan basah (Wet Processing) Buah kopi Robusta (Coffea var. robusta) untuk menurunkan resiko kecacatan biji hijau saat coffe grading’, Prosiding Seminar Nasional Publikasi Hasil-Hasil Penelitian dan Pengabdian Masyarakat, pp. 90–94.

Temanggung, P. K. (2017) DESA PAGERGUNUNG KECAMATAN BULU. Available at: https://laman.temanggungkab.go.id/info/detail/82/212/desa-pagergunung.html.




DOI: https://doi.org/10.33633/jais.v7i2.6449

Article Metrics

Abstract view : 395 times
PDF - 276 times

Refbacks

  • There are currently no refbacks.


Flag Counter

 

 

 

 

Journal of Applied Intelligent System (e-ISSN : 2502-9401p-ISSN : 2503-0493) is published by Department of Informatics Universitas Dian Nuswantoro Semarang and IndoCEISS.

  

 

Journal of Applied Intelligent System indexed by :


This journal is under licensed of Creative Commons Attribution 4.0 International License.

Visitor Stats