A Covid-19 Sentiment Analysis on Twitter Using K-Nearest Neighbours
DOI:
https://doi.org/10.33633/jais.v7i1.5984Abstract
In December 2019, an outbreak named Corona Virus (SARS-CoV-2) occurred in the city of Wuhan, China which was later known as COVID-19. News of the development of the virus spread through various media, one of which was through the well-known platform Twitter. Twitter is one of the widely used media platforms to communicate about Covid-19. Information related to Covid-19 circulating in the community can be in the form of news or opinions or opinions. Then, the circulating information will be classified into three classes, namely positive, negative or neutral. The method used to calculate the prediction of text classification on Twitter is K-nearest neighbors (KNN). The dataset used in grouping on twitter by using the account name Covid19. Firstly, the dataset by crawling data or information on twitter. Secondly, the text mining stage to determine the class distance value and calculate the Euclidean distance formula based on all the training data to be tested. After the training process is complete, the evaluation model used will be used, the Euclidean results are taken based on the value of the closest distance. The accuracy of the model will be calculated using the previous Euclidean method. The results of this study he obtained with the highest value, one of which was 78% using a 50:50 sample comparison with k-5 and k-9 values.References
Chandra, D. N., Indrawan, G., & Sukajaya, I. N. (2016). Klas ifikasi Berita Lokal Radar Malang Menggunakan Metode Naïve Bayes Dengan Fitur N-Gram. Jurnal Ilmiah Teknologi Dan Informasi ASIA (JITIKA).
Kalokasari, D. H., Shofi, I. M., & Setyaningrum, A. H. (2017). IMPLEMENTASI ALGORITMA MULTINOMIAL NAIVE BAYES CLASSIFIER PADA SISTEM KLASIFIKASI SURAT KELUAR (Studi Kasus : DISKOMINFO Kabupaten Tangerang). JURNAL TEKNIK INFORMATIKA. https://doi.org/10.15408/jti.v10i2.6199
Junianto, E., & Riana, D. (2017). Penerapan PSO Untuk Seleksi Fitur Pada Klasifikasi Dokumen Berita Menggunakan NBC. Jurnal Informatika.
Nurhuda, F., Widya Sihwi, S., & Doewes, A. (2016). Analisis Sentimen Masyarakat terhadap Calon Presiden Indonesia 2014 berdasarkan Opini dari Twitter Menggunakan Metode Naive Bayes Classifier. Jurnal Teknologi & Informasi ITSmart. https://doi.org/10.20961/its.v2i2.630
Zhao, W. X., Jiang, J., Weng, J., He, J., Lim, E. P., Yan, H., & Li, X. (2011). Comparing twitter and traditional media using topic models. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics).
Pratama, B. Y., & Sarno, R. (2016). Personality classification based on Twitter text using Naive Bayes, KNN and SVM. Proceedings of 2015 International Conference on Data and Software Engineering, ICODSE 2015. https://doi.org/10.1109/ICODSE.2015.7436992
Montejo-Ráez, A., Martínez-Cámara, E., Martín-Valdivia, M. T., & Ureña-López, L. A. (2014). Ranked WordNet graph for Sentiment Polarity Classification in Twitter. Computer Speech and Language. https://doi.org/10.1016/j.csl.2013.04.001
Kobayashi, V. B., Mol, S. T., Berkers, H. A., Kismihók, G., & Den Hartog, D. N. (2018). Text Mining in Organizational Research. Organizational Research Methods. https://doi.org/10.1177/1094428117722619
Hashimi, H., Hafez, A., & Mathkour, H. (2015). Selection criteria for text mining approaches. Computers in Human Behavior. https://doi.org/10.1016/j.chb.2014.10.062
Zulfa, I., & Winarko, E. (2017). Sentimen Analisis Tweet Berbahasa Indonesia Dengan Deep Belief Network. IJCCS (Indonesian Journal of Computing and Cybernetics Systems). https://doi.org/10.22146/ijccs.24716
Tong, Z., & Zhang, H. (2016). A Text Mining Research Based on LDA Topic Modelling. https://doi.org/10.5121/csit.2016.60616
Deviyanto, A., & Wahyudi, M. D. R. (2018). Penerapan Analisis Sentimen Pada Pengguna Twitter Menggunakan Metode K-Nearest Neighbor. Jiska. JISKA (Jurnal Informatika Sunan Kalijaga). https://doi.org/10.14421/jiska.2018.31-01
Jiang, S., Pang, G., Wu, M., & Kuang, L. (2012). An improved K-nearest-neighbor algorithm for text categorization. Expert Systems with Applications. https://doi.org/10.1016/j.eswa.2011.08.040
Trishna, T. I., Emon, S. U., Ema, R. R., Sajal, G. I. H., Kundu, S., & Islam, T. (2019). Detection of Hepatitis (A, B, C and E) Viruses Based on Random Forest, K-nearest and Naïve Bayes Classifier. 2019 10th International Conference on Computing, Communication and Networking Technologies, ICCCNT 2019. https://doi.org/10.1109/ICCCNT45670.2019.8944455
Istia, S. S., & Purnomo, H. D. (2018). Sentiment analysis of law enforcement performance using support vector machine and K-nearest neighbor. Proceedings - 2018 3rd International Conference on Information Technology, Information Systems and Electrical Engineering, ICITISEE 2018. https://doi.org/10.1109/ICITISEE.2018.8720969
Sriwanna, K. (2018). Text classification for subjective scoring using K-nearest neighbors. 3rd International Conference on Digital Arts, Media and Technology, ICDAMT 2018.
Vijayan, V. K., Bindu, K. R., & Parameswaran, L. (2017). A comprehensive study of text classification algorithms. 2017 International Conference on Advances in Computing, Communications and Informatics, ICACCI 2017. https://doi.org/10.1109/ICACCI.2017.8125990
Ary, M. (2016). Pengklasifikasian Karakteristik Mahasiswa Baru Dalam Memilih Program Studi Menggunakan Analisis Cluster. Jurnal Informatika. https://doi.org/10.31311/ji.v2i1.58
Downloads
Published
Issue
Section
License
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).