A Classification of Batik Lasem using Texture Feature Ecxtraction Based on K-Nearest Neighbor
DOI:
https://doi.org/10.33633/jais.v3i2.2151Abstract
In this study, batik has been modeled using the GLCM method which will produce features of energy, contrast, correlation, homogenity and entropy. Then these features are used as input for the classification process of training data and data testing using the K-NN method by using ecludean distance search. The next classification uses 5 features that provide information on energy values, contrast, correlation, homogeneity, and entropy. Of the two classifications, which comparison will produce the best accuracy. Training data and data testing were tested using the Recognition Rate calculation for system evaluation. The results of the study produced 66% recognition rate in 50 pieces of test data and 100 pieces of training data.References
D. Pradito, Merak Ngibing, PT Gramedia Pustaka Utama, 2010.
A. Syaefudin, “https://www.detik.com/search/searchall?query=batik+lasem,†2 Oktober 2017. [Online]. Available: https://news.detik.com/berita-jawa-tengah/d-3667571/motif-yang-rumit-membuat-batik-lasem-diburu-kolektor. [Diakses 15 Desember 2017].
A. Malagina, “http://nationalgeographic.co.id/berita/budaya,†8 Desember 2016. [Online]. Available: http://nationalgeographic.co.id/berita/2016/12/menyibak-kisah-dan-filosofi-di-balik-motif-batik-lasem. [Diakses 14 Desember 8].
Redaksi, “http://rembangkab.go.id/topik/berita-pemerintah/,†26 Februari 2015. [Online]. Available: http://rembangkab.go.id/desa-wisata-kampoeng-batik-lasem-dilaunching/. [Diakses 15 Desember 2017].
T. Sutojo, E. Mulyanto, V. Suhartono dan O. D. Nurhayati, Teori Pengolahan Citra Digital, Semarang: Andi Offset Yogyakarta dan UDINUS Semarang, 2009.
O. R. Indriani, E. J. Kusuma, C. A. Sari, E. H. Rachmawanto dan D. Setiadi, “Tomatoes Classification Using K-NN Based on,†dalam Icitech, Indonesia, 2017.
P. S. Tirajani, T. Sutojo, D. Setiadi, E. H. Rachmawanto dan C. A. Sari, “CBIR for Classification of Cow Types using GLCM,†dalam Icitech Conference, Indonesia, 2017.
M. Lestari, “Penerapan Algoritma Klasifikasi Nearest Neighbor (K-NN) untuk Mendeteksi Penyakit Jantung,†Faktor Exacta, pp. 366-371, 2014.
S. Sugiyanto dan F. Wibowo, “Klasifikasi Tingkat Kematangan Buah Pepaya (Carica Papaya L.) California (Callina-IPB9) Dalam Ruang Warna HSV dan Algoritma K-Nearest Neighboor,†dalam Prosiding SENATEK 2015 Fakultas Teknik, Purwokerto, 2015.
E. Budianita, Jasril dan L. Handayani, “Implementasi Pengolahan Citra dan Klasifikasi K-Nearest Neighbour Untuk Membangun Aplikasi Pembeda Daging Sapi dan Babi,†Jurnal Sains, Teknologi dan Industri, vol. 12, no. 2, pp. 242-247, 2015.
U. Sudibyo, D. P. Kusumaningrum, E. H. Rachmawanto dan C. A. Sari, “OPTIMASI ALGORITMA LEARNING VECTOR QUANTIZATION (LVQ) DALAM PENGKLASIFIKASIAN CITRA DAGING SAPI DAN DAGING BABI BERBASIS GLCM DAN HSV,†Jurnal SIMETRIS, vol. 9, no. 1, pp. 1-10, 2018.
Downloads
Published
Issue
Section
License
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).