Translation System from Arabic Text to Arabic Sign Language

Authors

  • Nadia Aouiti Latice Laboratory Tunis
  • Mohamed Jemni Latice LAboratory

DOI:

https://doi.org/10.33633/jais.v3i2.2041

Abstract

This research paper presents our ongoing project aiming at translating in real time an Arabic text to Arabic Sign Language (ArSL). This project is a part of a Web application [1] based on the technology of the avatar (animation in the virtual world). The input of the system is a text in natural language. The output is a real-time and online interpretation in sign language [2]. Our work focuses on the Arabic language as the text in the input, which needs many treatments due to the particularity of this language. Our solution starts from the linguistic treatment of the Arabic sentence, passing through the definition and the generation of Arabic Annotation Gloss system and coming finally to the generation of an animated sentence using the avatar technology.

References

References

A. Almasoud, H. Al-Khalifa, A proposed semantic machine translation system for translating Arabic text to Arabic sign language, Second Kuwait Conf. E-Services E-Systems, April 5-7, 2011. (2011) 79–84.

M. and D. Almohimeed, Abdulaziz, Wald, Arabic Text to Arabic Sign Language Translation System for the Deaf and Hearing-Impaired Community, in: EMNLP Second Work. Speech Lang. Process. Assist. Technol. (SLPAT), Edinburgh, UK, Scotl., 2011: pp. 101–109.

A. Alnafjan, Tawassol Master Project, King Saud University, 2008.

N. Aouiti, Towards an automatic translation from Arabic text to sign language, in: International Conference on information and communication technology and accesibility (Ed.), Fourth Int. Conf. Inf. Commun. Technol. Access., 2013: pp. 1–4.

N. Aouiti, M. Jemni, Classifiers in Arab Gloss Annotation System for Arabic Sign Language, the 15th International Conference on Computers Helping People with Special Needs. University of Linz, Austria, 2016.

N. Aouiti, M. Jemni, For a translating system from Arabic text to sign language, In Proceedings of the Conference Universal Learning Design, Paris 2014. Brno: Masaryk University, 2014. p. 33–38. ISBN 978-80-210-6882-7. (Proceedings of the Conference Universal Learning Design, vol. 4. ISSN 1805-3947.).

N. Aouiti, M. Jemni, S. Semreen, Arab Gloss Annotation System for Arabic Sign Language, The fifth International Conference of Information and Communication Technology and Accessibil-ity. 2015.

J. a Bangham, S.J. Cox, R. Elliott, J.R.W. Glauert, I. Marshall, S. Rankov, M. Wells, Virtual Signing : Capture , Animation , Storage and Transmission – an Overview of the ViSiCAST Project Face-to-Face Transactions, Gesture. (2000) 1–7.

J. Chauché, V. Prince, S. Jaillet, M. Teisseire, Classification automatique de textes à partir de leur analyse syntaxico-sémantique, Proc. TALN. (2003) 11–14.

S. Cox, M. Lincoln, J. Tryggvason, M. Nakisa, M. Wells, M. Tutt, S. Abbott, TESSA, a system to aid communication with deaf people, Fifth Int. ACM Conf. Assist. Technol. (2002) 205–212.

O. El Ghoul, M. Jemni, Multimedia courses generator for deaf children, Int. Arab J. Inf. Technol. 6 (2009) 458–463.

C. Hagège, C. Roux, Entre syntaxe et sémantique : Normalisation de la sortie de l ’ analyse syntaxique en vue de l ’ amélioration de l ’ extraction d ’ information à partir de textes Mots-clefs – Keywords Résumé - Abstract Analyse syntaxique robuste, (2003) 11–14.

M. Jemni, O. Elghoul, An Avatar Based Approach for Automatic Interpretation of Text to Sign Language, Challenges Assist. Technol. 20 (2007) 266–270.

S. Liddell, Grammar, gesture, and meaning in American Sign Language, (2003).

M. Mohandes, S. Arabia, Automatic Translation of Arabic Text to Arabic Sign Language, ICGST Int. J. Artif. Intell. Mach. Learn. AIML. 6 (2006) 15–19.

A. Othman, M. Jemni, A.T. Hussein, B. Menara, Statistical Sign Language Machine Translation : from English written text to American Sign Language Gloss, Int. J. Comput. Sci. Issues. 8 (2011) 65–73.

A. Pasha, M. Al-badrashiny, M. Diab, A. El Kholy, R. Eskander, N. Habash, M. Pooleery, O. Rambow, R.M. Roth, MADAMIRA : A Fast , Comprehensive Tool for Morphological Analysis and Disambiguation of Arabic, Proc. 9th Lang. Resour. Eval. Conf. (2014) 1094–1101.

S. Sameer and M. Albanali, قواعد لغة الإشارة, (2009).

L. Zhao, K. Kipper, W. Schuler, C. Vogler, M. Palmer, N.I. Badler, A Machine Translation System from English to American Sign Language - viewcontent.cgi, 1934 (2000) 54–67.

The Stanford website, Http://nlp.stanford.edu/software/lexparser.shtml.

Downloads

Published

2018-12-27