Estimation of Students’ Graduation Using Multiple Linear Regression Method
DOI:
https://doi.org/10.33633/jais.v2i1.1415Abstract
Utilization of students’ academic data to produce information used by management in monitoring students’ study period on Information System Department. Multiple linier regression method will produce multiple linier regression equation used for estimating students’ graduation equipped with prototype. According to analysis carried out by using nine variable SKS1, SKS2, SKS3, SKS4, IPS1, IPS2, IPS3, IPS4, and the number of repeated courses of 2008 to 2012 the multiple linier regression equation is Y = 13.49 + 0.099 X1 + (-0.068) X2 + 0.025 X3 + (-0.059) X4 + (-0.585) X5 + (-0.443) X6 + (-0.155) X7 + (-0.368) X8 + (-0.082) X9. From the equation there is an error of MSE and RMSE that is equal to 0.1168 and 0.3418. The prototype uses a PHP-based program using sublime text and XAMPP. The prototype monitoring the students’ study time in this research is very helpful if supported by management. Keywords: Data mining, multiple linear regression, estimation, monitoring, study timeReferences
Vira, “Pemodelan data mining untuk prediksi Kelulusan mahasiswa dengan metode Naive bayes classifier,†Tugas Akhir Sistem Informasi Universitas Dian Nuswantoro. Semarang. 2015
K. Hafidh, “Memprediksi Masa Studi Mahasiswa Menggunakan Metode Jaccard Coefficient (Studi Kasus: Mahasiswa Program Studi Teknik Informatika Jurusan Teknik Elektro Fakultas Teknik Universitas Tanjungpura),â€Kalimantan Tengah. 2015
Windarti M, “Prediksi Masa Studi Mahasiswa Menggunakan Kombinasi Algoritma Bayesian Network Dan K- Nearest Neighbors,†Tesis Universitas Adma Jaya Yogyakarta, Program Studi Magister Teknik Informatika. Yogyakarta. 2016
D.H Kamagi dan S. Hansun, “Implementasi Data Mining dengan Algoritma C4.5 untuk Memprediksi Tingkat Kelulusan mahasiswa,†Jurnal ULTIMATICS, Vol. VI, No. 1. 2014
Pramitarini Y. Dkk. Analisa Rekam Medis Untuk Menentukan Status Gizi Anak Balita Menggunakan Naive Bayes Classifier. Prosiding Seminar Nasional Manajemen Teknologi XVII. Program Studi MMT-ITS, Surabaya 2 Februari 2013
Ali Fikri, “Penerapan Data Mining Untuk Mengetahui Tingkat Kekuatan Beton Yang Dihasilkan Dengan Metode Estimasi Menggunakan Linear Regression,†eprints.dinus.ac.id/12789/1/jurnal_12969.pdf. Semarang. 2013
A. A. Ghofur dan U. D. Widianti, “Sistem Peramalan Untuk Pengadaan Material Unit Injection di PT. XYZ,†Jurnal Ilmiah Komputer dan Informatika (KOMPUTA), vol. III, no. 2, pp. 13-18, 2013.
James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An Introduction to Statistical Learning (p. 68). New York: Springer.
Shalahuddin, M. dan Rosa A.S. Rekayasa Perangkat Lunak Terstruktur dan Berorientasi Objek. Bandung : Informatika. 2013
Anisya, “Aplikasi Sistem Database Rumah Sakit Terpusat Pada Rumah SAkit Umum (RSU) 'Aisyiyah Padang Dengan Menerapkan Open Source (PHP - MySQL),†Jurnal Momentum, vol. 15, no. 2, pp. 1-10, 2013.
Downloads
Published
Issue
Section
License
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).