Estimation of Students’ Graduation Using Multiple Linear Regression Method

Authors

  • Bintang Dewi Fajar Kurniatullah Dian Nuswantoro University
  • Yuventius Tyas Catur Pramudi Universitas Dian Nuswantoro

DOI:

https://doi.org/10.33633/jais.v2i1.1415

Abstract

Utilization of students’ academic data to produce information used by management in monitoring students’ study period on Information System Department. Multiple linier regression method will produce multiple linier regression equation used for estimating students’ graduation equipped with prototype. According to analysis carried out by using nine variable SKS1, SKS2, SKS3, SKS4, IPS1, IPS2, IPS3, IPS4, and the number of repeated courses of 2008 to 2012 the multiple linier regression equation is Y = 13.49  +  0.099 X1  + (-0.068) X2 + 0.025 X3 + (-0.059) X4 + (-0.585) X5 + (-0.443) X6 + (-0.155) X7 + (-0.368) X8 + (-0.082) X9. From the equation there is an error of MSE and RMSE that is equal to 0.1168 and 0.3418. The prototype uses a PHP-based program using sublime text and XAMPP. The prototype monitoring the students’ study time in this research is very helpful if supported by management. Keywords: Data mining, multiple linear regression, estimation, monitoring, study time

References

Vira, “Pemodelan data mining untuk prediksi Kelulusan mahasiswa dengan metode Naive bayes classifier,†Tugas Akhir Sistem Informasi Universitas Dian Nuswantoro. Semarang. 2015

K. Hafidh, “Memprediksi Masa Studi Mahasiswa Menggunakan Metode Jaccard Coefficient (Studi Kasus: Mahasiswa Program Studi Teknik Informatika Jurusan Teknik Elektro Fakultas Teknik Universitas Tanjungpura),â€Kalimantan Tengah. 2015

Windarti M, “Prediksi Masa Studi Mahasiswa Menggunakan Kombinasi Algoritma Bayesian Network Dan K- Nearest Neighbors,†Tesis Universitas Adma Jaya Yogyakarta, Program Studi Magister Teknik Informatika. Yogyakarta. 2016

D.H Kamagi dan S. Hansun, “Implementasi Data Mining dengan Algoritma C4.5 untuk Memprediksi Tingkat Kelulusan mahasiswa,†Jurnal ULTIMATICS, Vol. VI, No. 1. 2014

Pramitarini Y. Dkk. Analisa Rekam Medis Untuk Menentukan Status Gizi Anak Balita Menggunakan Naive Bayes Classifier. Prosiding Seminar Nasional Manajemen Teknologi XVII. Program Studi MMT-ITS, Surabaya 2 Februari 2013

Ali Fikri, “Penerapan Data Mining Untuk Mengetahui Tingkat Kekuatan Beton Yang Dihasilkan Dengan Metode Estimasi Menggunakan Linear Regression,†eprints.dinus.ac.id/12789/1/jurnal_12969.pdf. Semarang. 2013

A. A. Ghofur dan U. D. Widianti, “Sistem Peramalan Untuk Pengadaan Material Unit Injection di PT. XYZ,†Jurnal Ilmiah Komputer dan Informatika (KOMPUTA), vol. III, no. 2, pp. 13-18, 2013.

James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An Introduction to Statistical Learning (p. 68). New York: Springer.

Shalahuddin, M. dan Rosa A.S. Rekayasa Perangkat Lunak Terstruktur dan Berorientasi Objek. Bandung : Informatika. 2013

Anisya, “Aplikasi Sistem Database Rumah Sakit Terpusat Pada Rumah SAkit Umum (RSU) 'Aisyiyah Padang Dengan Menerapkan Open Source (PHP - MySQL),†Jurnal Momentum, vol. 15, no. 2, pp. 1-10, 2013.

Downloads

Published

2017-04-21

Issue

Section

Articles