C4.5 Algorithm Based on Forward Selection and Particle Swarm Optimization for Improving Accuracy in Heart Disease Patient Classification
Abstract
Early detection of heart disease is crucial given the high number of cases occurringin advanced stages and affecting individuals in their productive years. Utilizing data mining, the C4.5 Algorithm is one method capable of detecting the onset of heart disease, prompting timely awareness and early prevention. The dataset employed is the Heart Disease Cleveland UCI from Kaggle, featuring 13 input attributes and 1 target attribute. Using the Decision Tree method results in decision-making by constructing a decision tree. The test outcomes revealed an accuracy rate of 77.11% with the C4.5 algorithm, 83.69% with the C4.5 algorithm employing Forward Selection, and 84.73% with the C4.5 algorithm based on Forward Selection and Particle Swarm Optimization.Downloads
Published
2024-08-14
Issue
Section
Articles
License
Copyright (c) 2024 Aji Awang Setiawan
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).