Optimization Of Neural Network Method Using Chi-Square Feature Selection In Poverty Data Classification

Tresi Aprilia Aprilia


Poverty is a fundamental problem that has become the center of attention in several aspects, for example from the government. The government needs poverty data and analyzes it to determine which poverty alleviation programs should be delivered to the right target or the poor. The aim of this study is to determine the accuracy of the classification of poverty in Batang District using the Neural Network method using the chi square feature selection. The dataset used in this study uses poverty data sourced from the Batang district BPS based on the results of the Susenas survey (National Economic Survey) for the 2022 time period. The results of this study indicate that the accuracy obtained for poverty classification using a neural network is 96.38% , with a precision value of 100%, and a recall value of 89.38%. Whereas when using a neural network with feature selection chi square, it gets an accuracy value of 93.68%, with a precision value of 91.07%, and a recall value of 90.26%. The contribution of this research is to develop a neural network method using feature selection chi square to improve the results of the accuracy of the classification is not poor or poor.


Full Text:




N. Su, X. An, C. Yan, and S. Ji, “Incremental attribute reduction method based on chi-square statistics and information entropy,” IEEE Access, vol. 8, pp. 98234–98243, 2020, doi: 10.1109/ACCESS.2020.2997013.

Y. D. Setiyaningrum, A. F. Herdajanti, C. Supriyanto, and Muljono, “Classification of twitter contents using chi-square and K-nearest neighbour algorithm,” Proc. - 2019 Int. Semin. Appl. Technol. Inf. Commun. Ind. 4.0 Retrosp. Prospect. Challenges, iSemantic 2019, pp. 78–81, 2019, doi: 10.1109/ISEMANTIC.2019.8884290.

Euis Saraswati, Yuyun Umaidah, and Apriade Voutama, “Penerapan Algoritma Artificial Neural Network untuk Klasifikasi Opini Publik Terhadap Covid-19,” Gener. J., vol. 5, no. 2, pp. 109–118, 2021, doi: 10.29407/gj.v5i2.16125.

Sarwosri, D. Sunaryono, R. J. Akbar, and R. D. Setiyawan, “Poverty classification using Analytic Hierarchy Process and k-means clustering,” Proc. 2016 Int. Conf. Inf. Commun. Technol. Syst. ICTS 2016, pp. 266–269, 2017, doi: 10.1109/ICTS.2016.7910310.

T. Ernayanti, M. Mustafid, A. Rusgiyono, and A. R. Hakim, “Penggunaan Seleksi Fitur Chi-Square Dan Algoritma Multinomial Naïve Bayes Untuk Analisis Sentimen Pelangggan Tokopedia,” J. Gaussian, vol. 11, no. 4, pp. 562–571, 2023, doi: 10.14710/j.gauss.11.4.562-571.

D. Ispriyanti, A. Prahutama, M. Mustafid, and T. Tarno, “Klasifikasi Penerimaan Beras Miskin Di Kota Semarang Menggunakan Algoritma Chisquare Automatic Interaction Detection (Chaid) Dan Classification and Regression Tree (Cart),” Media Stat., vol. 12, no. 1, p. 63, 2019, doi: 10.14710/medstat.12.1.63-72.

“Katalog/Catalog: 1102001.3325,” Batang Dalam Angka, 2023.

I. Kemiskinan and K. Batang, “Katalog : 3205014.3325,” 2022.

N. Rachburee and W. Punlumjeak, “A comparison of feature selection approach between greedy, IG-ratio, Chi-square, and mRMR in educational mining,” Proc. - 2015 7th Int. Conf. Inf. Technol. Electr. Eng. Envisioning Trend Comput. Inf. Eng. ICITEE 2015, pp. 420–424, 2015, doi: 10.1109/ICITEED.2015.7408983.

E. A. Kusuma, “Model Neural Network Untuk Identifikasi Variabel Kemiskinan Rumah Tangga Kecamatan Aranio,” Jutisi J. Ilm. Tek. Inform. dan …, 2018, [Online]. Available: http://ojs.stmik-banjarbaru.ac.id/index.php/jutisi/article/view/292%0Ahttp://ojs.stmik-banjarbaru.ac.id/index.php/jutisi/article/viewFile/292/276

J. Yao, S. Tridandapani, W. F. Auffermann, C. A. Wick, and P. T. Bhatti, “An adaptive seismocardiography (SCG)-ECG multimodal framework for cardiac gating using artificial neural networks,” IEEE J. Transl. Eng. Heal. Med., vol. 6, no. August, 2018, doi: 10.1109/JTEHM.2018.2869141.

Z. Liu, W. Gao, Y. H. Wan, and E. Muljadi, “Wind power plant prediction by using neural networks,” 2012 IEEE Energy Convers. Congr. Expo. ECCE 2012, no. August, pp. 3154–3160, 2012, doi: 10.1109/ECCE.2012.6342351.

DOI: https://doi.org/10.33633/jais.v9i1.10227

Article Metrics

Abstract view : 0 times
PDF - 0 times


  • There are currently no refbacks.

Flag Counter





Journal of Applied Intelligent System (e-ISSN : 2502-9401p-ISSN : 2503-0493) is published by Department of Informatics Universitas Dian Nuswantoro Semarang and IndoCEISS.



Journal of Applied Intelligent System indexed by :

This journal is under licensed of Creative Commons Attribution 4.0 International License.

Visitor Stats