Mean Absolute Percentage Error untuk Evaluasi Hasil Prediksi Komoditas Laut

Ida Nabillah, Indra Ranggadara

Abstract


Volume ekspor komoditas gurita mengalami kenaikan dan stok di suatu daerah akan tidak merata dan berlebih, serta bahwa permintaan gurita di beberapa negara tujuan di Asia, Eropa dan Amerika telah meningkat secara signifikan. Penelitian ini bertujuan untuk untuk memperkirakan pasokan gurita berdasarkan data historis dari tahun 2014 sampai 2018. Setelah dilakukan prediksi selanjutnya maka diperlukan untuk mengevaluasi model prediksi yang digunakan. Metode penelitian yang digunakan untuk memprediksi hasil komoditas yaitu dengan regresi linier, yang bertujuan untuk mengetahui pengaruh antara satu atau beberapa variabel terhadap satu buah variable. Selanjutnya evaluasi model yang digunakan menggunakan Mean Absolute Percentage Error (MAPE). MAPE memberikan petunjuk seberapa besar kesalahan peramalan dibandingkan dengan nilai sebenarnya dari series tersebut. Selanjutnya hasil produksi dapat diprediksi 70% dan hasil MAPE sebesar 30% maka dapat dikatakan bahwa hasil regresi linier memiliki kemampuan model peramalan yang layak.


Full Text:

PDF

References


BPS (Badan Pusat Statistik), STATISTIK Statistics of Fishing Port. 2017.

P. Katemba and R. K. Djoh, “Prediksi Tingkat Produksi Kopi Menggunakan Regresi Linear,” J. Ilm. FLASH, vol. 3, no. 1, pp. 42–51, 2017, [Online]. Available: http://jurnal.pnk.ac.id/index.php/flash/article/view/136.

P. Jana, “Aplikasi Triple Exponential Smoothing Untuk Forecasting Jumlah Penduduk Miskin,” J. Deriv., vol. 3, no. 2, pp. 76–81, 2016.

M. A. Maricar, “Analisa Perbandingan Nilai Akurasi Moving Average dan Exponential Smoothing untuk Sistem Peramalan Pendapatan pada Perusahaan XYZ,” J. Sist. dan Inform., vol. 13, no. 2, pp. 36–45, 2019.

J. I. Matematika, “MATH unesa,” vol. 6, no. 2, pp. 70–74, 2018.

N. Intan, P. Hati, and S. Nugroho, “Analisis Tingkat Penerimaan Calon Konsumen Terhadap Jenis Mobil Dengan Menggunakan Metode Regresi Linier,” J. Tek. Elektro, vol. 8, no. 2, pp. 50–55, 2016.

Y. A. Jatmiko, R. L. Rahayu, and G. Darmawan, “Perbandingan Keakuratan Hasil Peramalan Produksi Bawang Merah Metode Holt-Winters Dengan Singular Spectrum Analysis (Ssa),” J. Mat. “MANTIK,” vol. 3, no. 1, p. 13, 2017, doi: 10.15642/mantik.2017.3.1.13-24.

B. C. G. S. Worang, H. J. Sinjal, and R. D. Monijung, “Strategi pengembangan budidaya perikanan air tawar di Kecamatan Dimembe Kabupaten Minahasa Utara Provinsi Sulawesi Utara,” e-Journal Budid. Perair., vol. 6, no. 2, pp. 68–76, 2018, doi: 10.35800/bdp.6.2.2018.20635.

M. Syafruddin, “Metode Regresi Linier Untuk Prediksi Kebutuhan Energi Listrik Jangka Panjang (Studi Kasus Provinsi Lampung),” J. Inform., vol. 2, no. 1, pp. 1–9, 2014, doi: http://dx.doi.org/10.1097/DBP.0b013e318165c100.

B. Putro, M. T. Furqon, and S. H. Wijoyo, “Prediksi Jumlah Kebutuhan Pemakaian Air Menggunakan Metode Exponential Smoothing ( Studi Kasus?: PDAM Kota Malang ),” J. Pengemb. Teknol. Inf. dan Ilmu Komput. Univ. Brawijaya, vol. 2, no. 11, pp. 4679–4686, 2018.

R. Tulhawa and R. Fajriah, “Analisa Dan Perancangan Sistem Informasi Penjualan Dan Pengelolaan Barang Berbasis Web (Studi Kasus: Butik Anne Riani),” vol. 2, no. 3, pp. 122–129, 2019.

A. P. Widodo, E. A. Sarwoko, and Z. Firdaus, “Akurasi Model Prediksi Metode Backpropagation Menggunakan Kombinasi Hidden Neuron Dengan Alpha,” Matematika, vol. 20, no. 2, pp. 79–84, 2017.




DOI: https://doi.org/10.33633/joins.v5i2.3900

Article Metrics

Abstract view : 95 times
PDF - 151 times

Refbacks

  • There are currently no refbacks.




Indexed by:

  

JOINS (Journal Of Information System) licensed by Creative Commons Attribution 4.0 International License.

Creative Commons License