Improvement of Data Mining Models using Forward Selection and Backward Elimination with Cryptocurrency Datasets
Abstract
Full Text:
PDFReferences
P. Katsiampa, L. Yarovaya, and D. Zi, “Journal of International Financial Markets , High-frequency connectedness between Bitcoin and other top-traded crypto assets during the COVID-19 crisis,” vol. 79, no. November 2021, 2022, doi: 10.1016/j.intfin.2022.101578.
F. Xu, E. Bouri, and O. Cepni, “Blockchain and crypto-exposed US companies and major cryptocurrencies : The role of jumps and co-jumps,” Financ. Res. Lett., vol. 50, no. April, p. 103201, 2022, doi: 10.1016/j.frl.2022.103201.
K. Vikram, N. Sivaraman, and D. P. Balamurugan, “Crypto Currency Market Price Prediction Using Data Science Process,” Int. J. Res. Appl. Sci. Eng. Technol., vol. 10, no. 2, pp. 1451–1454, 2022, doi: 10.22214/ijraset.2022.40521.
Y. Wei, Y. Wang, B. M. Lucey, and S. A. Vigne, “Cryptocurrency Uncertainty and Volatility Forecasting of Precious Metal Futures Markets,” J. ofCommodityMarkets J., vol. 29, pp. 1–16, 2023.
P. Solana, F. Orte, and M. J. S, “A Random Forest-Based Model for Crypto Asset Forecasts in Futures Markets with out-of-Sample Prediction,” Res. Int. Bus. Financ., vol. 64, no. November 2022, pp. 1–29, 2023, doi: 10.1016/j.ribaf.2022.101829.
I. T. Julianto, D. Kurniadi, M. R. Nashrulloh, and A. Mulyani, “Comparison Of Data Mining Algorithm For Forecasting Bitcoin Crypto Currency Trends,” JUTIF, vol. 3, no. 2, pp. 245–248, 2022.
D. T. Larose and C. D. Larose, Discovering Knowledge in Data. 2014.
C. C. Aggarwal, Data Mining : The Textbook. New York: Springer, 2015.
A. S. Yudistira and A. Nugroho, “Prediction Of The English Premier League Champion Team For The 2021 / 2022 Season Using The Naïve Bayes Method,” JUTIF, vol. 3, no. 5, pp. 1239–1243, 2022.
Z. R. S. Elsi et al., “Utilization of Data Mining Techniques in National Food Security during the Covid-19 Pandemic in Indonesia,” J. Phys. Conf. Ser., pp. 1–7, 2020, doi: 10.1088/1742-6596/1594/1/012007.
A. A. Argasah and D. Gustian, “Data Mining Analysis To Determine Employee Salaries According To Needs Based On The K-Medoids Clustering Algorithm Analisis Data Mining Untuk Menentukan Gaji Karyawan Sesuai Penilaian Kemampuan Menggunakan Algoritma K-Medoids,” JUTIF, vol. 3, no. 1, pp. 29–35, 2022.
A. R. Muhajir, E. Sutoyo, and I. Darmawan, “Forecasting Model Penyakit Demam Berdarah Dengue Di Provinsi DKI Jakarta Menggunakan Algoritma Regresi Linier Untuk Mengetahui Kecenderungan Nilai Variabel Prediktor Terhadap Peningkatan Kasus,” Fountain Informatics J., vol. 4, no. 2, pp. 33–40, 2019.
I. Ubaedi and Y. M. Djaksana, “Optimasi Algoritma C4.5 Menggunakan Metode Forward Selection Dan Stratified Sampling Untuk Prediksi Kelayakan Kredit,” JSiI (Jurnal Sist. Informasi), vol. 9, no. 1, pp. 17–26, 2022, doi: 10.30656/jsii.v9i1.3505.
W. Nugroho, “Optimasi Metode K-Nearest Neighbours dengan Backward Elimination Menggunakan Dataset Software Effort Estimation,” Bianglala Inform., vol. 8, no. 2, pp. 129–133, 2020.
I. R. Amilia, H. Oktavianto, and G. Abdurrahman, “Penerapan Backward Elimination Untuk Seleksi Fitur Pada Algoritma K-Nearest Neighbor Untuk Klasifikasi Penyakit Gagal Jantung,” J. Smart Teknol., vol. 1, no. 1, pp. 1–9, 2021.
Yunitasari, H. S. Hopipah, and R. Mayasari, “Optimasi Backward Elimination untuk Klasifikasi Kepuasan Pelanggan Menggunakan Algoritme k-nearest neighbor (k-NN) and Naive Bayes,” Technomedia J., vol. 6, no. 1, pp. 99–110, 2021, doi: 10.33050/tmj.v6i1.1531.
M. A. Wiratama and W. M. Pradnya, “Optimasi Algoritma Data Mining Menggunakan Backward Elimination untuk Klasifikasi Penyakit Diabetes,” J. Nas. Pendidik. Tek. Inform., vol. 11, no. 1, pp. 1–12, 2022, doi: 10.23887/janapati.v11i1.45282.
I. T. Julianto, “Design And Build Virtual Reality Photography Web-Based To Support Tourism,” J. Electr. Electron. Information, Commun. Technol., vol. 3, no. 2, p. 58, Oct. 2021, doi: 10.20961/jeeict.3.2.54833.
I. T. Julianto, D. Kurniadi, M. R. Nashrulloh, and A. Mulyani, “Comparison Of Classification Algorithm And Feature Selection In Perbandingan Algoritma Klasifikasi Dan Feature Selection,” JUTIF, vol. 3, no. 3, pp. 739–744, 2022.
I. T. Julianto, D. Kurniadi, M. R. Nashrulloh, and A. Mulyani, “Data Mining Algorithm Testing For SAND Metaverse Forecasting,” J. Appl. Intell. Syst., vol. 7, no. 3, pp. 259–267, 2022.
yahoo finance, “BNB USD (BNB-USD),” yahoo.finance.com, 2023. https://finance.yahoo.com/quote/BNB-USD/history?period1=1500940800&period2=1674086400&interval=1mo&filter=history&frequency=1mo&includeAdjustedClose=true.
Mikhael, F. Andreas, and U. Enri, “Perbandingan Algoritma Linear Regression, Neural Network, Deep Learning, Dan K-Nearest Neighbor (K-Nn) Untuk Prediksi Harga Bitcoin,” JSI J. Sist. Inf., vol. 14, no. 1, pp. 2450–2464, 2022, [Online]. Available: http://ejournal.unsri.ac.id/index.php/jsi/index.
Han and Kamber, Data Mining Concepts and Technique. San Francisco: Diane Cerra, 2006.
D. Kurniadi, F. Nuraeni, and S. M. Lestari, “Implementasi Algoritma Naïve Bayes Menggunakan Feature Forward Selection dan SMOTE Untuk Memprediksi Ketepatan Masa Studi Mahasiswa Sarjana,” J. Sist. Cerdas, vol. 05, no. 02, pp. 63–82, 2022.
F. I. Sanjaya and D. Heksaputra, “Prediksi Rerata Harga Beras Tingkat Grosir Indonesia dengan Long Short Term Memory,” JATISI (Jurnal Tek. Inform. dan Sist. Informasi), vol. 7, no. 2, pp. 163–174, 2020, doi: 10.35957/jatisi.v7i2.388.
T. Sellar and A. A. Arulrajah, “The Role of Social Support on Job Burnout in the Apparel Firm,” Int. Bus. Res., vol. 12, no. 1, p. 110, 2018, doi: 10.5539/ibr.v12n1p110.
DOI: https://doi.org/10.33633/jais.v8i1.7568
Article Metrics
Abstract view : 199 timesPDF - 94 times
Refbacks
- There are currently no refbacks.
Journal of Applied Intelligent System (e-ISSN : 2502-9401, p-ISSN : 2503-0493) is published by Department of Informatics Universitas Dian Nuswantoro Semarang and IndoCEISS.
Journal of Applied Intelligent System indexed by :
This journal is under licensed of Creative Commons Attribution 4.0 International License.