Optimization of Region of Interest (ROI) Image of Malaria Parasites

Rika Rosnelly, Linda Wahyuni, Jani Kusanti

Abstract


The stage of region of interest (ROI) is the determining part to the next stage in image processing. ROI is a process of taking certain parts or regions in an image. ROI can be done by manual and automatic cropping. Some previous studies still use cropping manually for detection of malaria parasites. This study uses cropping automatically for detection of malaria parasites. The types of malaria parasites used were falciparum, vivax and malariae with ring stages, tropozoite, schizon and gametocytes. Data from malaria parasites were obtained at the North Sumatra Provincial Health Laboratory. The results show that the ROI image can crop the malaria parasite region.

 

Keyword - malaria parasite, ROI.


Full Text:

PDF

References


http://www.mag.co.id/world-malaria-day-2018/, 2018, World Malaria Day 2018, Tanggal akses 18 Juni 2018

Mediani, M., 2018, Kemenkes: Papua, Papua Barat, dan NTT Endemis Tinggi Malaria, CNN Indonesia, https://www.cnnindonesia.com/nasional/20180423203417-20-292975/kemenkes -papua-papua-barat-dan-ntt-endemis-tinggi-malaria, Tanggal akses 18 Juni 2018

Sulistyawati, Rr., L., 2018, 90 Persen Malaria Terjadi di Tempat ini, https://www.republika.co.id/berita/nasional/umum/18/04/23/p7nb3l384-90-persen-malaria-terjadi-di-tempat-ini, Tanggal akses 20 Juni 2018

Gitonga, L., Memeu, D.M., Kaduki, K.A., Mjomba, A.C.K. and Muriuki, N.S., 2014, Determination of Plasmodium Parasite Life Stages and Species in Images of Thin Blood Smears Using Artificial Neural Network, Open Journal of Clinic Diagnostics, Scientific Research Publishing Inc

Savkare, S.S. and Narote, S.P., 2015, Automated System for Malaria Parasite Identification, International Conference on Communication, Information & Computing Technology (ICCICT), India

Anggraini, D., Nugroho, A.S., Pratama, C., Rozi, I.E., Iskandar, A.A. and Hartono, R.N., 2011, Automated Status Identification of Microscopic Images Obtained from Malaria Thin Blood Smears, International Conference on Electrical Engineering and Informatics, Bandung, 17-19 July 2011.

Makkapati, V.V. and Rao, R.M., 2011, Ontology-based Malaria Parasite Stage and Species Identification from Peripheral Blood Smear Images, International Conference of the IEEE, Boston, 30 Agustus – 3 September 2011

Suwalka, I., Sanadhya, A., Mathur, A. and Chouhan, M.S., 2012, Identify Malaria Parasite Using Pattern Recognition Technique, ICCCA, Dindigul, 22-24 Februari 2012

Soni, J., 2011, Advanced Image Analysis based system for automatic detection of malarial Parasite in Blood Images Using Susan Approach, International Journal of Engineering Science and Technology (IJEST), Volume 3 No. 6, Juni 2011

Thung, F. and Suwardi, I. S., 2011, Blood Parasite Identification using Feature Based Recognition, International Conference on Electrical Engineering and Informatics, Bandung

Kareem, S., Kale, I., Morling, R.C.S., 2012, Automated Malaria Parasite Detection in Thin Blood Films: A Hybrid Illumination and Color Constancy Insensitive, Morphological Approach, IEEE Asia Pasific Conference On, Kaohsiung, 2-5 Desember 2012

Suryawanshi, S. and Dixit V.V., 2013, Comparative Study of Malaria Parasite Detection using Euclidean Distance Classifier & SVM, International Journal of Advanced Research in Computer Engineering & Technology (IJARCET), Volume 2 Issue 11, November 2013

Annaldas, S. and Shirgan S.S., 2015, Automatic Diagnosis of Malaria Parasites Using Neural Network and Support Vector Machine, International Journal of Advance Foundation and Research in Computer (IJAFRC), Volume 2, Januari 2015

Komagal, E., Kumar, K.S., Vigneswaran, A., 2013, Recognition And Classification Of Malaria Plasmodium Diagnosis, International Journal of Engineering Research & Technology (IJERT), Vol. 2 Issue 1

Chavan, S., and Nagmode, M., 2014, Malaria Disease Identification and Analysis Using Image Processing. International Journal of Computing and Technology (IJCAT). Volume 1, Issue 6, July 2014

Banyal, N.A., Surianti, 2016, Dayat A.R, Klasifikasi Citra Plasmodium Penyebab Penyakit Malaria Dalam Sel Darah Merah Manusia Dengan Menggunakan Metode Multi Class Support Vector Machine (SVM), Jurnal Ilmiah Ilkom Volume 8 No. 2 ISSN : 2087-1716

Inayaturrahman, Sunarya, I.M.G., Darmawiguna, I.G.M., 2016, Pengembangan Sistem Klasifikasi Stadium Malaria Plasmodium falciparum pada Citra Mikroskopis Sel, Kumpulan artikel Mahasiswa pendidikan teknik informatika, ISSN : 2252-9063

May, Z., Aziz, S.S.A.M. and Salamat, R., 2013, Automated Quantification and Classification of Malaria Parasites in Thin Blood Smears, IEEE, International Conference on Signal and Irnage Processing Applications (ICSIPA).

Linder, N., Turkki, R., Walliander, M., Martensson, A., Diwan, V., Pietikainen., M., Lundin, M., Lundin, J., Rahtu, E., 2014, A Malaria Diagnostic Tool Based on Computer Vision Screening and Visualization of Plasmodium falciparum Candidate Areas in Digitized Blood Smears, Plos One

Loddo, A., Roberto, C.D., Kocher, M., 2018, Review Recent Advances of Malaria Parasites Detection Systems Based on Mathematical Morphology, Sensors, DOI : 10.3390/s18020513.

Dave, I., Upla, K., 2017, Computer Aided Diagnosis of Malaria Disease for Thin and Thick Blood Smear Microscopic Images. In Proceedings of the 2017 4th International Conference on Signal Processing and Integrated Networks (SPIN), Noida, India, 2–3 February 2017; p. 561

Devi, S., Singha, J., Sharma, M., Laskar, R., 2017, Erythrocyte segmentation for quantification in microscopic images of thin blood smears. J. Intell. Fuzzy Syst., 32, 2847–2856

Rosado, L., da Costa, J.M.C., Elias, D., Cardoso, J.S., 2016, A review of automatic malaria parasites detection and segmentation in microscopic images. Anti-Infect. Agents 2016, 14, 11–22

Gonzalez, R.C. and Woods, R.E., 2008, Digital Image Processing, Third Edition, Prentice-Hall, Inc., USA

Hartley, R. and Zisserman, A., 2003, Multiple View Geometry in Computer Vision, Second Edition, UK: Cambridge University Press.

Das, D., Ghosh, M., Chakraborty, C., Maiti, A.K. and Pal, M., 2011, Probabilistic Prediction of Malaria using Morphological and Textural Information, International Conference on Image Information Processing (ICIIP), IEEE

Jahne, B., 2005, Digital Image Processing, 6th revised and extended edition, Springer-Verlag Berlin Heidelberg, New York.




DOI: https://doi.org/10.33633/jais.v3i2.2060

Refbacks

  • There are currently no refbacks.


Flag Counter

Journal of Applied Intelligent System (e-ISSN : 2502-9401p-ISSN : 2503-0493) is published by LPPM Universitas Dian Nuswantoro Semarang in collaboration with CORIS and IndoCEISS.

Journal of Applied Intelligent System indexed by :


This journal is under licensed of Creative Commons Attribution 4.0 International License.