Feature Fusion with Albumentation for Enhancing Monkeypox Detection Using Deep Learning Models

Authors

  • Nizar Rafi Pratama Univesitas Dian Nuswantoro
  • De Rosal Ignatius Moses Setiadi Univesitas Dian Nuswantoro https://orcid.org/0000-0001-6615-4457
  • Imanuel Harkespan Univesitas Dian Nuswantoro
  • Arnold Adimabua Ojugo Federal University of Petroleum Resources Effurun

DOI:

https://doi.org/10.62411/jcta.12255

Keywords:

Albumentation, Feature fusion, InceptionV3, Medical image classification, Monkeypox classification, Xception

Abstract

Monkeypox is a zoonotic disease caused by Orthopoxvirus, presenting clinical challenges due to its visual similarity to other dermatological conditions. Early and accurate detection is crucial to prevent further transmission, yet conventional diagnostic methods are often resource-intensive and time-consuming. This study proposes a deep learning-based classification model by integrating Xception and InceptionV3 using feature fusion to enhance performance in classifying Monkeypox skin lesions. Given the limited availability of annotated medical images, data augmentation was applied using Albumentation to improve model generalization. The proposed model was trained and evaluated on the Monkeypox Skin Lesion Dataset (MSLD), achieving 85.96% accuracy, 86.47% precision, 85.25% recall, 78.43% specificity, and an AUC score of 0.8931, outperforming existing methods. Notably, data augmentation significantly improved recall from 81.23% to 85.25%, demonstrating its effectiveness in enhancing sensitivity to positive cases. Ablation studies further validated that augmentation increased overall accuracy from 82.02% to 85.96%, emphasizing its role in improving model robustness. Comparative analysis with other models confirmed the superiority of our approach. This research enhances automated Monkeypox detection, offering a robust and efficient tool for low-resource clinical settings. The findings reinforce the potential of feature fusion and augmentation in improving deep learn-ing-based medical image classification, facilitating more reliable and accessible disease identification.

Author Biographies

Nizar Rafi Pratama, Univesitas Dian Nuswantoro

Faculty of Computer Science, Univesitas Dian Nuswantoro, Semarang 50131, Indonesia

De Rosal Ignatius Moses Setiadi, Univesitas Dian Nuswantoro

Faculty of Computer Science, Univesitas Dian Nuswantoro, Semarang 50131, Indonesia Research Center for Quantum Computing and Materials Informatics, Faculty of Computer Science, Dian Nuswantoro University, Semarang 50131, Indonesia

Imanuel Harkespan, Univesitas Dian Nuswantoro

Faculty of Computer Science, Univesitas Dian Nuswantoro, Semarang 50131, Indonesia

Arnold Adimabua Ojugo, Federal University of Petroleum Resources Effurun

Department of Computer Science, Federal University of Petroleum Resources Effurun, Nigeria

References

I. D. Ladnyj, P. Ziegler, and E. Kima, “A human infection caused by monkeypox virus in Basankusu Territory, Democratic Republic of the Congo.,” Bull. World Health Organ., vol. 46, no. 5, pp. 593–7, 1972, [Online]. Available: http://www.ncbi.nlm.nih.gov/pubmed/4340218

World Health Organization (WHO), “Mpox - WHO Fact Sheet,” World Health Organization (WHO). 2024. Accessed: Jan. 22, 2025. [Online]. Available: https://www.who.int/news-room/fact-sheets/detail/mpox

E. Pérez‐Barragán, S. Pérez‐Cavazos, J. C. Rodríguez‐Aldama, and R. A. Cruz‐Flores, “Mimicking measles and syphilis: Mpox in PLHIV,” HIV Med., vol. 24, no. 7, pp. 851–853, Jul. 2023, doi: 10.1111/hiv.13462.

D. S. Stamoulis and C. Papachristopoulou, “Artificial Intelligence in Radiology, Emergency, and Remote Healthcare: A Snapshot of Present and Future Applications,” J. Futur. Artif. Intell. Technol., vol. 1, no. 3, pp. 228–234, Oct. 2024, doi: 10.62411/faith.3048-3719-38.

O. Jaiyeoba, O. Jaiyeoba, E. Ogbuju, and F. Oladipo, “AI-Based Detection Techniques for Skin Diseases: A Review of Recent Methods, Datasets, Metrics, and Challenges,” J. Futur. Artif. Intell. Technol., vol. 1, no. 3, pp. 318–336, Dec. 2024, doi: 10.62411/faith.3048-3719-46.

T. R. Noviandy, G. M. Idroes, and I. Hardi, “An Interpretable Machine Learning Strategy for Antimalarial Drug Discovery with LightGBM and SHAP,” J. Futur. Artif. Intell. Technol., vol. 1, no. 2, pp. 84–95, Aug. 2024, doi: 10.62411/faith.2024-16.

S. Fanijo, “AI4CRC: A Deep Learning Approach Towards Preventing Colorectal Cancer,” J. Futur. Artif. Intell. Technol., vol. 1, no. 2, pp. 143–159, Sep. 2024, doi: 10.62411/faith.2024-28.

K. Pyar, “Segmentation Performance Analysis of Transfer Learning Models on X-Ray Pneumonia Images,” J. Futur. Artif. Intell. Technol., vol. 1, no. 1, pp. 64–74, Jun. 2024, doi: 10.62411/faith.2024-10.

A. Pathirana et al., “A Reinforcement Learning-Based Approach for Promoting Mental Health Using Multimodal Emotion Recog-nition,” J. Futur. Artif. Intell. Technol., vol. 1, no. 2, pp. 124–142, Sep. 2024, doi: 10.62411/faith.2024-22.

F. S. Gomiasti, W. Warto, E. Kartikadarma, J. Gondohanindijo, and D. R. I. M. Setiadi, “Enhancing Lung Cancer Classification Effectiveness Through Hyperparameter-Tuned Support Vector Machine,” J. Comput. Theor. Appl., vol. 1, no. 4, pp. 396–406, Mar. 2024, doi: 10.62411/jcta.10106.

M. B. Teferi and L. A. Akinyemi, “Deep Learning-Based Cross-Cancer Morphological Analysis: Identifying Histopathological Pat-terns in Breast and Lung Cancer,” J. Futur. Artif. Intell. Technol., vol. 1, no. 3, pp. 235–248, Oct. 2024, doi: 10.62411/faith.3048-3719-36.

X. Jiang, Z. Hu, S. Wang, and Y. Zhang, “Deep Learning for Medical Image-Based Cancer Diagnosis,” Cancers (Basel)., vol. 15, no. 14, p. 3608, Jul. 2023, doi: 10.3390/cancers15143608.

M. S. Iqbal, L. Kotthoff, and P. Jamshidi, “Transfer Learning for Performance Modeling of Deep Neural Network Systems,” Proc. 2019 USENIX Conf. Oper. Mach. Learn. OpML 2019, Apr. 2019, [Online]. Available: http://arxiv.org/abs/1904.02838

F. Mazhar, N. Aslam, A. Naeem, H. Ahmad, M. Fuzail, and M. Imran, “Enhanced Diagnosis of Skin Cancer from Dermoscopic Images Using Alignment Optimized Convolutional Neural Networks and Grey Wolf Optimization,” J. Comput. Theor. Appl., vol. 2, no. 3, pp. 368–382, Jan. 2025, doi: 10.62411/jcta.11954.

S. M. Anwar, M. Majid, A. Qayyum, M. Awais, M. Alnowami, and M. K. Khan, “Medical Image Analysis using Convolutional Neural Networks: A Review,” J. Med. Syst., vol. 42, no. 11, p. 226, Nov. 2018, doi: 10.1007/s10916-018-1088-1.

W. Gouda, N. U. Sama, G. Al-Waakid, M. Humayun, and N. Z. Jhanjhi, “Detection of Skin Cancer Based on Skin Lesion Images Using Deep Learning,” Healthcare, vol. 10, no. 7, p. 1183, Jun. 2022, doi: 10.3390/healthcare10071183.

E. Erdem and T. Aydin, “Artificial Neural Network-Based Approaches to Improve Classification of Skin Lesions,” in 2023 Medical Technologies Congress (TIPTEKNO), Nov. 2023, pp. 1–4. doi: 10.1109/TIPTEKNO59875.2023.10359238.

G. Cheng and J. Han, “A survey on object detection in optical remote sensing images,” ISPRS J. Photogramm. Remote Sens., vol. 117, pp. 11–28, Jul. 2016, doi: 10.1016/j.isprsjprs.2016.03.014.

L. R. Zuama, D. R. I. M. Setiadi, A. Susanto, S. Santosa, H.-S. Gan, and A. A. Ojugo, “High-Performance Face Spoofing Detection using Feature Fusion of FaceNet and Tuned DenseNet201,” J. Futur. Artif. Intell. Technol., vol. 1, no. 4, pp. 385–400, Feb. 2025, doi: 10.62411/faith.3048-3719-62.

R. O. Ogundokun et al., “Enhancing Skin Cancer Detection and Classification in Dermoscopic Images through Concatenated Mo-bileNetV2 and Xception Models,” Bioengineering, vol. 10, no. 8, p. 979, Aug. 2023, doi: 10.3390/bioengineering10080979.

F. Chollet, “Xception: Deep Learning with Depthwise Separable Convolutions,” in 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Jul. 2017, vol. 2017-Janua, no. 3, pp. 1800–1807. doi: 10.1109/CVPR.2017.195.

T. Hidayat, I. A. Astuti, A. Yaqin, A. P. Tjilen, and T. Arifianto, “Grouping of Image Patterns Using Inceptionv3 For Face Shape Classification,” JOIV Int. J. Informatics Vis., vol. 7, no. 4, Dec. 2023, doi: 10.30630/joiv.7.4.1743.

C. Shorten and T. M. Khoshgoftaar, “A survey on Image Data Augmentation for Deep Learning,” J. Big Data, vol. 6, no. 60, 2019, doi: 10.1186/s40537-019-0197-0.

K. P. Zaw and A. Mon, “Enhanced Multi-Class Skin Lesion Classification of Dermoscopic Images Using an Ensemble of Deep Learning Models,” J. Comput. Theor. Appl., vol. 2, no. 2, pp. 256–267, Nov. 2024, doi: 10.62411/jcta.11530.

M. A. Hambali and P. A. Agwu, “Adversarial Convolutional Neural Network for Predicting Blood Clot Ischemic Stroke,” J. Comput. Theor. Appl., vol. 2, no. 1, pp. 51–64, Jun. 2024, doi: 10.62411/jcta.10516.

A. Buslaev, V. I. Iglovikov, E. Khvedchenya, A. Parinov, M. Druzhinin, and A. A. Kalinin, “Albumentations: Fast and Flexible Image Augmentations,” Information, vol. 11, no. 2, p. 125, Feb. 2020, doi: 10.3390/info11020125.

N. Buławka, H. A. Orengo, and I. Berganzo-Besga, “Deep learning-based detection of qanat underground water distribution systems using HEXAGON spy satellite imagery,” J. Archaeol. Sci., vol. 171, p. 106053, Nov. 2024, doi: 10.1016/j.jas.2024.106053.

B. J. Filia et al., “Improving Batik Pattern Classification using CNN with Advanced Augmentation and Oversampling on Imbalanced Dataset,” Procedia Comput. Sci., vol. 227, pp. 508–517, 2023, doi: 10.1016/j.procs.2023.10.552.

A. Tatar, M. Haghighi, and A. Zeinijahromi, “Experiments on image data augmentation techniques for geological rock type classi-fication with convolutional neural networks,” J. Rock Mech. Geotech. Eng., vol. 17, no. 1, pp. 106–125, Jan. 2025, doi: 10.1016/j.jrmge.2024.02.015.

C. Szegedy et al., “Rethinking the Inception Architecture for Computer Vision,” in 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Jun. 2016, pp. 2818–2826. doi: 10.1109/CVPR.2016.308.

H. T. Adityawan, O. Farroq, S. Santosa, H. M. M. Islam, M. K. Sarker, and D. R. I. M. Setiadi, “Butterflies Recognition using En-hanced Transfer Learning and Data Augmentation,” J. Comput. Theor. Appl., vol. 1, no. 2, pp. 115–128, Nov. 2023, doi: 10.33633/jcta.v1i2.9443.

F. M. Firnando, D. R. I. M. Setiadi, A. R. Muslikh, and S. W. Iriananda, “Analyzing InceptionV3 and InceptionResNetV2 with Data Augmentation for Rice Leaf Disease Classification,” J. Futur. Artif. Intell. Technol., vol. 1, no. 1, pp. 1–11, May 2024, doi: 10.62411/faith.2024-4.

W. Song, S. Li, L. Fang, and T. Lu, “Hyperspectral Image Classification With Deep Feature Fusion Network,” IEEE Trans. Geosci. Remote Sens., vol. 56, no. 6, pp. 3173–3184, Jun. 2018, doi: 10.1109/TGRS.2018.2794326.

P. Xu, F. Li, and H. Wang, “A novel concatenate feature fusion RCNN architecture for sEMG-based hand gesture recognition,” PLoS One, vol. 17, no. 1, p. e0262810, Jan. 2022, doi: 10.1371/journal.pone.0262810.

Y. Zhang, Y. Chen, C. Huang, and M. Gao, “Object Detection Network Based on Feature Fusion and Attention Mechanism,” Futur. Internet, vol. 11, no. 1, p. 9, Jan. 2019, doi: 10.3390/fi11010009.

D. Duarte, F. Nex, N. Kerle, and G. Vosselman, “Multi-Resolution Feature Fusion for Image Classification of Building Damages with Convolutional Neural Networks,” Remote Sens., vol. 10, no. 10, p. 1636, Oct. 2018, doi: 10.3390/rs10101636.

X. Lu, X. Duan, X. Mao, Y. Li, and X. Zhang, “Feature Extraction and Fusion Using Deep Convolutional Neural Networks for Face Detection,” Math. Probl. Eng., vol. 2017, no. 1, Jan. 2017, doi: 10.1155/2017/1376726.

S. N. Ali et al., “Monkeypox Skin Lesion Detection Using Deep Learning Models: A Feasibility Study,” ArXiv. pp. 2–5, Jul. 06, 2022. [Online]. Available: http://arxiv.org/abs/2207.03342

V. H. Sahin, I. Oztel, and G. Yolcu Oztel, “Human Monkeypox Classification from Skin Lesion Images with Deep Pre-trained Network using Mobile Application,” J. Med. Syst., vol. 46, no. 11, p. 79, Oct. 2022, doi: 10.1007/s10916-022-01863-7.

D. R. I. M. Setiadi, K. Nugroho, A. R. Muslikh, S. W. Iriananda, and A. A. Ojugo, “Integrating SMOTE-Tomek and Fusion Learning with XGBoost Meta-Learner for Robust Diabetes Recognition,” J. Futur. Artif. Intell. Technol., vol. 1, no. 1, pp. 23–38, May 2024, doi: 10.62411/faith.2024-11.

D. R. I. M. Setiadi, H. M. M. Islam, G. A. Trisnapradika, and W. Herowati, “Analyzing Preprocessing Impact on Machine Learning Classifiers for Cryotherapy and Immunotherapy Dataset,” J. Futur. Artif. Intell. Technol., vol. 1, no. 1, pp. 39–50, Jun. 2024, doi: 10.62411/faith.2024-2.

R. Trevethan, “Sensitivity, Specificity, and Predictive Values: Foundations, Pliabilities, and Pitfalls in Research and Practice,” Front. Public Heal., vol. 5, Nov. 2017, doi: 10.3389/fpubh.2017.00307.

K. Hajian-Tilaki, “Receiver Operating Characteristic (ROC) Curve Analysis for Medical Diagnostic Test Evaluation.,” Casp. J. Intern. Med., vol. 4, no. 2, pp. 627–35, 2013, [Online]. Available: http://www.ncbi.nlm.nih.gov/pubmed/24009950

P. Singh, N. Singh, K. K. Singh, and A. Singh, “Diagnosing of disease using machine learning,” in Machine Learning and the Internet of Medical Things in Healthcare, Elsevier, 2021, pp. 89–111. doi: 10.1016/B978-0-12-821229-5.00003-3.

Downloads

Published

2025-02-21

How to Cite

Pratama, N. R., Setiadi, D. R. I. M., Harkespan, I., & Ojugo, A. A. (2025). Feature Fusion with Albumentation for Enhancing Monkeypox Detection Using Deep Learning Models. Journal of Computing Theories and Applications, 2(3), 427–440. https://doi.org/10.62411/jcta.12255