Enhanced Diagnosis of Skin Cancer from Dermoscopic Images Using Alignment Optimized Convolutional Neural Networks and Grey Wolf Optimization
DOI:
https://doi.org/10.62411/jcta.11954Keywords:
CNN, Deep Learning, Grey Wolf Optimization, Skin Cancer, HAM10KAbstract
Skin cancer (SC) is a highly serious kind of cancer that, if not addressed swiftly, might result in the patient’s demise. Early detection of this condition allows for more effective therapy and prevents disease development. Deep Learning (DL) approaches may be used as an effective and efficient tool for SC detection (SCD). Several DL-based algorithms for automated SCD have been reported. However, more efficient models are needed to improve accuracy. As a result, this paper introduces a new strategy for SCD based on Grey Wolf optimization (GWO) methodologies and CNN. The proposed methodology has four stages: preprocessing, segmentation, feature extraction, and classification. The proposed method utilizes a Convolutional Neural Network (CNN) to extract features from Regions of Interest (ROIs). CNN is employed for feature categorization, whereas the GWO approach enhances accuracy by refining edge detection and segmentation. This technique utilizes a probabilistic model to accelerate the convergence of the GWO algorithm. Employing the GWO model to optimize the structure and weight vectors of CNNs can enhance diagnostic accuracy by a minimum of 5%, based on evaluation outcomes. The application of the proposed strategy and its performance comparison with other methods indicate that the proposed method with GWO predicted SC with an average accuracy of 95.11% and without GWO an Accuracy of 92.66%, respectively, enhancing accuracy by a minimum of 2.5% when we train our model with GWO.References
M. Sajid, A. H. Khan, T. S. Malik, A. Bilal, Z. Ahmad, and R. Sarwar, “Enhancing Melanoma Diagnostic: Harnessing the Synergy of AI and CNNs for Groundbreaking Advances in Early Melanoma Detection and Treatment Strategies,” Int. J. Imaging Syst. Technol., vol. 35, no. 1, Jan. 2025, doi: 10.1002/ima.70016.
F. Piccialli, V. Di Somma, F. Giampaolo, S. Cuomo, and G. Fortino, “A survey on deep learning in medicine: Why, how and when?,” Inf. Fusion, vol. 66, pp. 111–137, 2021.
N. Razmjooy et al., “Computer-aided Diagnosis of Skin Cancer: A Review,” Curr. Med. Imaging Former. Curr. Med. Imaging Rev., vol. 16, no. 7, pp. 781–793, Sep. 2020, doi: 10.2174/1573405616666200129095242.
A. Esteva et al., “Dermatologist-level classification of skin cancer with deep neural networks,” Nature, vol. 542, no. 7639, pp. 115–118, Feb. 2017, doi: 10.1038/nature21056.
D. E. O’Sullivan, D. R. Brenner, P. A. Demers, P. J. Villeneuve, C. M. Friedenreich, and W. D. King, “Indoor tanning and skin cancer in Canada: A meta-analysis and attributable burden estimation,” Cancer Epidemiol., vol. 59, pp. 1–7, Apr. 2019, doi: 10.1016/j.canep.2019.01.004.
E. Chatzilakou, Y. Hu, N. Jiang, and A. K. Yetisen, “Biosensors for melanoma skin cancer diagnostics,” Biosens. Bioelectron., vol. 250, p. 116045, Apr. 2024, doi: 10.1016/j.bios.2024.116045.
N. Nordmann, M. Hubbard, T. Nordmann, P. W. Sperduto, H. B. Clark, and M. A. Hunt, “Effect of Gamma Knife Radiosurgery and Programmed Cell Death 1 Receptor Antagonists on Metastatic Melanoma,” Cureus, vol. 9, no. 12, Dec. 2017, doi: 10.7759/cureus.1943.
A. Naeem, T. Anees, R. A. Naqvi, and W.-K. Loh, “A Comprehensive Analysis of Recent Deep and Federated-Learning-Based Methodologies for Brain Tumor Diagnosis,” J. Pers. Med., vol. 12, no. 2, p. 275, Feb. 2022, doi: 10.3390/jpm12020275.
H. W. Rogers, M. A. Weinstock, S. R. Feldman, and B. M. Coldiron, “Incidence Estimate of Nonmelanoma Skin Cancer (Keratinocyte Carcinomas) in the US Population, 2012,” JAMA Dermatology, vol. 151, no. 10, p. 1081, Oct. 2015, doi: 10.1001/jamadermatol.2015.1187.
L. Bomm, M. D. V. Benez, J. M. P. Maceira, I. C. B. Succi, and M. de F. G. Scotelaro, “Biopsy guided by dermoscopy in cutaneous pigmented lesion - Case report,” An. Bras. Dermatol., vol. 88, no. 1, pp. 125–127, Feb. 2013, doi: 10.1590/S0365-05962013000100020.
J. Kato, K. Horimoto, S. Sato, T. Minowa, and H. Uhara, “Dermoscopy of Melanoma and Non-melanoma Skin Cancers,” Front. Med., vol. 6, p. 180, Aug. 2019, doi: 10.3389/fmed.2019.00180.
H. A. Haenssle et al., “Man against machine: diagnostic performance of a deep learning convolutional neural network for dermoscopic melanoma recognition in comparison to 58 dermatologists,” Ann. Oncol., vol. 29, no. 8, pp. 1836–1842, Aug. 2018, doi: 10.1093/annonc/mdy166.
H. Ibrahim, M. El-Taieb, A. Ahmed, R. Hamada, and E. Nada, “Dermoscopy versus skin biopsy in diagnosis of suspicious skin lesions,” Al-Azhar Assiut Med. J., vol. 15, no. 4, p. 203, 2017, doi: 10.4103/AZMJ.AZMJ_67_17.
K. Duggani and M. K. Nath, “A Technical Review Report on Deep Learning Approach for Skin Cancer Detection and Segmentation,” in Data Analytics and Management: Proceedings of ICDAM, Springer, 2021, pp. 87–99. doi: 10.1007/978-981-15-8335-3_9.
P. Carli et al., “Pattern analysis, not simplified algorithms, is the most reliable method for teaching dermoscopy for melanoma diagnosis to residents in dermatology,” Br. J. Dermatol., vol. 148, no. 5, pp. 981–984, May 2003, doi: 10.1046/j.1365-2133.2003.05023.x.
C. Carrera et al., “Validity and Reliability of Dermoscopic Criteria Used to Differentiate Nevi From Melanoma,” JAMA Dermatology, vol. 152, no. 7, p. 798, Jul. 2016, doi: 10.1001/jamadermatol.2016.0624.
S. Lu, Z. Lu, and Y.-D. Zhang, “Pathological brain detection based on AlexNet and transfer learning,” J. Comput. Sci., vol. 30, pp. 41–47, Jan. 2019, doi: 10.1016/j.jocs.2018.11.008.
K. Polat and K. Onur Koc, “Detection of Skin Diseases from Dermoscopy Image Using the combination of Convolutional Neural Network and One-versus-All,” J. Artif. Intell. Syst., vol. 2, no. 1, pp. 80–97, 2020, doi: 10.33969/AIS.2020.21006.
M. Z. Alom, T. Aspiras, T. M. Taha, and V. K. Asari, “Skin cancer segmentation and classification with improved deep convolutional neural network,” in Medical Imaging 2020: Imaging Informatics for Healthcare, Research, and Applications, Mar. 2020, vol. 11318, p. 36. doi: 10.1117/12.2550146.
T. J. Brinker et al., “Deep neural networks are superior to dermatologists in melanoma image classification,” Eur. J. Cancer, vol. 119, pp. 11–17, Sep. 2019, doi: 10.1016/j.ejca.2019.05.023.
I. Abunadi, “Deep and hybrid learning of MRI diagnosis for early detection of the progression stages in Alzheimer’s disease,” Conn. Sci., vol. 34, no. 1, pp. 2395–2430, Dec. 2022, doi: 10.1080/09540091.2022.2123450.
J. Kawahara, S. Daneshvar, G. Argenziano, and G. Hamarneh, “Seven-Point Checklist and Skin Lesion Classification Using Multitask Multimodal Neural Nets,” IEEE J. Biomed. Heal. Informatics, vol. 23, no. 2, pp. 538–546, Mar. 2019, doi: 10.1109/JBHI.2018.2824327.
H. Nahata and S. P. Singh, “Deep Learning Solutions for Skin Cancer Detection and Diagnosis,” in Machine learning with health care perspective: machine learning and healthcare, Springer, 2020, pp. 159–182. doi: 10.1007/978-3-030-40850-3_8.
P. Bansal, R. Garg, and P. Soni, “Detection of melanoma in dermoscopic images by integrating features extracted using handcrafted and deep learning models,” Comput. Ind. Eng., vol. 168, p. 108060, Jun. 2022, doi: 10.1016/j.cie.2022.108060.
B. Shetty, R. Fernandes, A. P. Rodrigues, R. Chengoden, S. Bhattacharya, and K. Lakshmanna, “Skin lesion classification of dermoscopic images using machine learning and convolutional neural network,” Sci. Rep., vol. 12, no. 1, p. 18134, Oct. 2022, doi: 10.1038/s41598-022-22644-9.
R. Kaur, H. Gholamhosseini, and R. Sinha, “Melanoma Classification Using a Novel Deep Convolutional Neural Network with Dermoscopic Images,” pp. 1–15, 2022.
A. N. Omeroglu, H. M. A. Mohammed, E. A. Oral, and S. Aydin, “A novel soft attention-based multi-modal deep learning framework for multi-label skin lesion classification,” Eng. Appl. Artif. Intell., vol. 120, p. 105897, Apr. 2023, doi: 10.1016/j.engappai.2023.105897.
H. Ding, Q. Huang, and A. Alkhayyat, “A computer aided system for skin cancer detection based on Developed version of the Archimedes Optimization algorithm,” Biomed. Signal Process. Control, vol. 90, p. 105870, Apr. 2024, doi: 10.1016/j.bspc.2023.105870.
A. Dahou, A. O. Aseeri, A. Mabrouk, R. A. Ibrahim, M. A. Al-Betar, and M. A. Elaziz, “Optimal Skin Cancer Detection Model Using Transfer Learning and Dynamic-Opposite Hunger Games Search,” Diagnostics, vol. 13, no. 9, p. 1579, Apr. 2023, doi: 10.3390/diagnostics13091579.
D. Moldovan, “Transfer Learning Based Method for Two-Step Skin Cancer Images Classification,” in 2019 E-Health and Bioengineering Conference (EHB), Nov. 2019, pp. 1–4. doi: 10.1109/EHB47216.2019.8970067.
T. Mendonça et al., “PH 2-A dermoscopic image database for research and benchmarking,” in 2013 35th annual international conference of the IEEE engineering in medicine and biology society (EMBC), 2013, pp. 5437–5440. doi: 10.1109/EMBC.2013.6610779.
S. Keele, others, B. Kitchenham, S. M. Charters, and S. Keele, “Guidelines for performing systematic literature reviews in software engineering,” 2007.
O. Jaiyeoba, E. Ogbuju, O. T. Yomi, and F. Oladipo, “Development of a model to classify skin diseases using stacking ensemble machine learning techniques,” J. Comput. Theor. Appl., vol. 2, no. 1, pp. 22–38, May 2024, doi: 10.62411/jcta.10488.
K. P. Zaw and A. Mon, “Enhanced Multi-Class Skin Lesion Classification of Dermoscopic Images Using an Ensemble of Deep Learning Models,” J. Comput. Theor. Appl., vol. 2, no. 2, pp. 256–267, Nov. 2024, doi: 10.62411/jcta.11530.
E. H. Houssein, D. A. Abdelkareem, G. Hu, M. A. Hameed, I. A. Ibrahim, and M. Younan, “An effective multiclass skin cancer classification approach based on deep convolutional neural network,” Cluster Comput., vol. 27, no. 9, pp. 12799–12819, Dec. 2024, doi: 10.1007/s10586-024-04540-1.
J. Yogapriya, V. Chandran, M. G. Sumithra, P. Anitha, P. Jenopaul, and C. Suresh Gnana Dhas, “Gastrointestinal Tract Disease Classification from Wireless Endoscopy Images Using Pretrained Deep Learning Model,” Comput. Math. Methods Med., vol. 2021, no. 1, pp. 1–12, Sep. 2021, doi: 10.1155/2021/5940433.
L. Alzubaidi et al., “Towards a Better Understanding of Transfer Learning for Medical Imaging: A Case Study,” Appl. Sci., vol. 10, no. 13, p. 4523, Jun. 2020, doi: 10.3390/app10134523.
Y. Yuan, B. Li, and M. Q.-H. Meng, “Bleeding Frame and Region Detection in the Wireless Capsule Endoscopy Video,” IEEE J. Biomed. Heal. Informatics, vol. 20, no. 2, pp. 624–630, Mar. 2016, doi: 10.1109/JBHI.2015.2399502.
N. Shamsudhin et al., “Magnetically guided capsule endoscopy,” Med. Phys., vol. 44, no. 8, pp. e91--e111, Aug. 2017, doi: 10.1002/mp.12299.
B. J. Stewart, J. R. Ferdinand, and M. R. Clatworthy, “Using single-cell technologies to map the human immune system — implications for nephrology,” Nat. Rev. Nephrol., vol. 16, no. 2, pp. 112–128, Feb. 2020, doi: 10.1038/s41581-019-0227-3.
H. Han, W.-Y. Wang, and B.-H. Mao, “Borderline-SMOTE: A New Over-Sampling Method in Imbalanced Data Sets Learning,” in International conference on intelligent computing, 2005, pp. 878–887. doi: 10.1007/11538059_91.
V. Charisis, A. Tsiligiri, L. J. Hadjileontiadis, C. N. Liatsos, C. C. Mavrogiannis, and G. D. Sergiadis, “Ulcer Detection in Wireless Capsule Endoscopy Images Using Bidimensional Nonlinear Analysis,” in XII Mediterranean Conference on Medical and Biological Engineering and Computing 2010: May 27--30, 2010 Chalkidiki, Greece, 2010, pp. 236–239. doi: 10.1007/978-3-642-13039-7_59.
M. Abra Ayidzoe, Y. Yu, P. K. Mensah, J. Cai, K. Adu, and Y. Tang, “Gabor capsule network with preprocessing blocks for the recognition of complex images,” Mach. Vis. Appl., vol. 32, no. 4, p. 91, Jul. 2021, doi: 10.1007/s00138-021-01221-6.
S. Mohapatra, J. Nayak, M. Mishra, G. K. Pati, B. Naik, and T. Swarnkar, “Wavelet Transform and Deep Convolutional Neural Network-Based Smart Healthcare System for Gastrointestinal Disease Detection,” Interdiscip. Sci. Comput. Life Sci., vol. 13, no. 2, pp. 212–228, Jun. 2021, doi: 10.1007/s12539-021-00417-8.
S. Wang, Y. Xing, L. Zhang, H. Gao, and H. Zhang, “Deep Convolutional Neural Network for Ulcer Recognition in Wireless Capsule Endoscopy: Experimental Feasibility and Optimization,” Comput. Math. Methods Med., vol. 2019, no. 1, pp. 1–14, Sep. 2019, doi: 10.1155/2019/7546215.
T. Yoshitake et al., “Rapid histopathological imaging of skin and breast cancer surgical specimens using immersion microscopy with ultraviolet surface excitation,” Sci. Rep., vol. 8, no. 1, p. 4476, Mar. 2018, doi: 10.1038/s41598-018-22264-2.
F. Wen and A. K. David, “A genetic algorithm based method for bidding strategy coordination in energy and spinning reserve markets,” Artif. Intell. Eng., vol. 15, no. 1, pp. 71–79, Jan. 2001, doi: 10.1016/S0954-1810(01)00002-4.
H. Malik, M. S. Farooq, A. Khelifi, A. Abid, J. Nasir Qureshi, and M. Hussain, “A Comparison of Transfer Learning Performance Versus Health Experts in Disease Diagnosis From Medical Imaging,” IEEE Access, vol. 8, pp. 139367–139386, 2020, doi: 10.1109/ACCESS.2020.3004766.
O. Jaiyeoba, O. Jaiyeoba, E. Ogbuju, and F. Oladipo, “AI-Based Detection Techniques for Skin Diseases: A Review of Recent Methods, Datasets, Metrics, and Challenges,” J. Futur. Artif. Intell. Technol., vol. 1, no. 3, pp. 318–336, Dec. 2024, doi: 10.62411/faith.3048-3719-46.
K. Thurnhofer-Hemsi and E. Domínguez, “A Convolutional Neural Network Framework for Accurate Skin Cancer Detection,” Neural Process. Lett., vol. 53, no. 5, pp. 3073–3093, Oct. 2021, doi: 10.1007/s11063-020-10364-y.
J. Höhn et al., “Combining CNN-based histologic whole slide image analysis and patient data to improve skin cancer classification,” Eur. J. Cancer, vol. 149, pp. 94–101, May 2021, doi: 10.1016/j.ejca.2021.02.032.
V. Anand, S. Gupta, D. Koundal, S. R. Nayak, J. Shafi, and A. K. Bhoi, “Segmentation and Classification of Skin Cancer Using K-means Clustering and EfficientNetB0 Model,” in Advances in Communication, Devices and Networking: Proceedings of ICCDN 2021, Springer, 2023, pp. 471–481. doi: 10.1007/978-981-19-2004-2_42.
M. Toğaçar, Z. Cömert, and B. Ergen, “Intelligent skin cancer detection applying autoencoder, MobileNetV2 and spiking neural networks,” Chaos, Solitons & Fractals, vol. 144, p. 110714, Mar. 2021, doi: 10.1016/j.chaos.2021.110714.
S. Jain and K. Agrawal, “An Efficient Diagnosis of Melanoma Skin Disease Using DenseNet-121,” in 2023 3rd International Conference on Technological Advancements in Computational Sciences (ICTACS), Nov. 2023, pp. 908–912. doi: 10.1109/ICTACS59847.2023.10390147.
A. Demir, F. Yilmaz, and O. Kose, “Early detection of skin cancer using deep learning architectures: resnet-101 and inception-v3,” in 2019 Medical Technologies Congress (TIPTEKNO), Oct. 2019, pp. 1–4. doi: 10.1109/TIPTEKNO47231.2019.8972045.
W. Lai, M. Kuang, X. Wang, P. Ghafariasl, M. H. Sabzalian, and S. Lee, “Skin cancer diagnosis (SCD) using Artificial Neural Network (ANN) and Improved Gray Wolf Optimization (IGWO),” Sci. Rep., vol. 13, no. 1, p. 19377, Nov. 2023, doi: 10.1038/s41598-023-45039-w.
M. S. Sivakumar, L. M. Leo, T. Gurumekala, V. Sindhu, and A. S. Priyadharshini, “Deep learning in skin lesion analysis for malignant melanoma cancer identification,” Multimed. Tools Appl., vol. 83, no. 6, pp. 17833–17853, Jul. 2023, doi: 10.1007/s11042-023-16273-1.
M. Goyal, T. Knackstedt, S. Yan, and S. Hassanpour, “Artificial intelligence-based image classification methods for diagnosis of skin cancer: Challenges and opportunities,” Comput. Biol. Med., vol. 127, p. 104065, Dec. 2020, doi: 10.1016/j.compbiomed.2020.104065.
Z. Xu, X. Zhang, and L. Liu, “M‐Net: A Skin Cancer Classification With Improved Convolutional Neural Network Based on the Enhanced Gray Wolf Optimization Algorithm,” Int. J. Imaging Syst. Technol., vol. 34, no. 6, p. e23202, Nov. 2024, doi: 10.1002/ima.23202.
R. Mousa, S. Chamani, M. Morsali, M. Kazzazi, P. Hatami, and S. Sarabi, “Enhancing Skin Cancer Diagnosis (SCD) Using Late Discrete Wavelet Transform (DWT) and New Swarm-Based Optimizers,” ArXiv. Nov. 30, 2024. [Online]. Available: http://arxiv.org/abs/2412.00472
L. I. Mampitiya, N. Rathnayake, and S. De Silva, “Efficient and Low-Cost Skin Cancer Detection System Implementation with a Comparative Study Between Traditional and CNN-Based Models,” J. Comput. Cogn. Eng., vol. 2, no. 3, pp. 226–235, Dec. 2022, doi: 10.47852/bonviewJCCE2202482.
E. Farea, R. A. A. Saleh, H. AbuAlkebash, A. A. R. Farea, and M. A. Al-antari, “A hybrid deep learning skin cancer prediction framework,” Eng. Sci. Technol. an Int. J., vol. 57, p. 101818, Sep. 2024, doi: 10.1016/j.jestch.2024.101818.
M. S. Ali, M. S. Miah, J. Haque, M. M. Rahman, and M. K. Islam, “An enhanced technique of skin cancer classification using deep convolutional neural network with transfer learning models,” Mach. Learn. with Appl., vol. 5, p. 100036, Sep. 2021, doi: 10.1016/j.mlwa.2021.100036.
A. Ameri, “A Deep Learning Approach to Skin Cancer Detection in Dermoscopy Images,” J. Biomed. Phys. Eng., vol. 10, no. 6, Dec. 2020, doi: 10.31661/jbpe.v0i0.2004-1107.
Z. Rahman and A. M. Ami, “A Transfer Learning Based Approach for Skin Lesion Classification from Imbalanced Data,” in 2020 11th International Conference on Electrical and Computer Engineering (ICECE), Dec. 2020, pp. 65–68. doi: 10.1109/ICECE51571.2020.9393155.
K. Lenc and A. Vedaldi, “Understanding image representations by measuring their equivariance and equivalence,” in 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Jun. 2015, pp. 991–999. doi: 10.1109/CVPR.2015.7298701.
H. Wang, Q. Qi, W. Sun, X. Li, B. Dong, and C. Yao, “Classification of skin lesions with generative adversarial networks and improved MobileNetV2,” Int. J. Imaging Syst. Technol., vol. 33, no. 5, pp. 1561–1576, Sep. 2023, doi: 10.1002/ima.22880.
K. S. Mader, “Skin Cancer MNIST: HAM10000,” Kaggle.com, 2019. https://www.kaggle.com/datasets/kmader/skin-cancer-mnist-ham10000 (accessed Dec. 06, 2024).
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Faheem Mazhar, Naeem Aslam, Ahmad Naeem, Haroon Ahmad, Muhammad Fuzail, Muhammad Imran

This work is licensed under a Creative Commons Attribution 4.0 International License.