A Quantum Circuit Learning-based Investigation: A Case Study in Iris Benchmark Dataset Binary Classification

Authors

  • Muhamad Akrom Universitas Dian Nuswantoro
  • Wise Herowati Universitas Dian Nuswantoro
  • De Rosal Ignatius Moses Setiadi Universitas Dian Nuswantoro

DOI:

https://doi.org/10.62411/jcta.11779

Keywords:

Iris Dataset, Quantum Classification, Quantum Machine Learning, Quantum Neural Network, Quantum Support Vector Machine, Variational Quantum Circuit

Abstract

This study presents a Quantum Machine Learning (QML) architecture for perfectly classifying the Iris flower dataset. The research addresses improving classification accuracy using quantum models in machine-learning tasks. The objective is to demonstrate the effectiveness of QML approaches, specifically the Variational Quantum Circuit (VQC), Quantum Neural Network (QNN), and Quantum Support Vector Machine (QSVM), in achieving high performance on the Iris dataset. The proposed methods result in perfect classification, with all models attaining accuracy, precision, recall, and an F1-score of 1.00. The main finding is that the QML architecture successfully achieves flawless classification, contributing significantly to the field. These results underscore the potential of QML in solving complex classification problems and highlight its promise for future applications across various domains. The study concludes that QML techniques can offer transformative solutions in machine learning tasks, particularly those leveraging VQC, QNN, and QSVM.

Author Biographies

Muhamad Akrom, Universitas Dian Nuswantoro

Research Center for Quantum Computing and Materials Informatics, Faculty of Computer Science, Dian Nuswantoro University, Semarang 50131, Indonesia

Wise Herowati, Universitas Dian Nuswantoro

Research Center for Quantum Computing and Materials Informatics, Faculty of Computer Science, Dian Nuswantoro University, Semarang 50131, Indonesia

De Rosal Ignatius Moses Setiadi, Universitas Dian Nuswantoro

Research Center for Quantum Computing and Materials Informatics, Faculty of Computer Science, Universitas Dian Nuswantoro, Semarang 50131, Indonesia

References

R. D. M. Simoes, P. Huber, N. Meier, N. Smailov, R. M. Fuchslin, and K. Stockinger, “Experimental Evaluation of Quantum Machine Learning Algorithms,” IEEE Access, vol. 11, pp. 6197–6208, 2023, doi: 10.1109/ACCESS.2023.3236409.

N. Nguyen and K.-C. Chen, “Quantum Embedding Search for Quantum Machine Learning,” IEEE Access, vol. 10, pp. 41444–41456, 2022, doi: 10.1109/ACCESS.2022.3167398.

A. Zeguendry, Z. Jarir, and M. Quafafou, “Quantum Machine Learning: A Review and Case Studies,” Entropy, vol. 25, no. 2, p. 287, Feb. 2023, doi: 10.3390/e25020287.

E. Grant et al., “Hierarchical quantum classifiers,” npj Quantum Inf., vol. 4, no. 1, p. 65, Dec. 2018, doi: 10.1038/s41534-018-0116-9.

A. Chalumuri, R. Kune, and B. S. Manoj, “A hybrid classical-quantum approach for multi-class classification,” Quantum Inf. Process., vol. 20, no. 3, p. 119, Mar. 2021, doi: 10.1007/s11128-021-03029-9.

S. Adhikary, S. Dangwal, and D. Bhowmik, “Supervised learning with a quantum classifier using multi-level systems,” Quantum Inf. Process., vol. 19, no. 3, p. 89, Mar. 2020, doi: 10.1007/s11128-020-2587-9.

L. K. Grover, “A fast quantum mechanical algorithm for database search,” in Proceedings of the twenty-eighth annual ACM symposium on Theory of computing - STOC ’96, 1996, pp. 212–219. doi: 10.1145/237814.237866.

A. K. Ekert, “Quantum cryptography based on Bell’s theorem,” Phys. Rev. Lett., vol. 67, no. 6, pp. 661–663, Aug. 1991, doi: 10.1103/PhysRevLett.67.661.

M. Akrom, S. Rustad, and H. K. Dipojono, “Variational quantum circuit-based quantum machine learning approach for predicting corrosion inhibition efficiency of pyridine-quinoline compounds,” Mater. Today Quantum, vol. 2, p. 100007, Jun. 2024, doi: 10.1016/j.mtquan.2024.100007.

H. Ma, J. Liu, H. Shang, Y. Fan, Z. Li, and J. Yang, “Multiscale quantum algorithms for quantum chemistry,” Chem. Sci., vol. 14, no. 12, pp. 3190–3205, 2023, doi: 10.1039/D2SC06875C.

B. A. Alhayani, O. A. AlKawak, H. B. Mahajan, H. Ilhan, and R. M. Qasem, “Design of Quantum Communication Protocols in Quantum Cryptography,” Wirel. Pers. Commun., Jul. 2023, doi: 10.1007/s11277-023-10587-x.

Z. Deng, X. Wang, and B. Dong, “Quantum computing for future real-time building HVAC controls,” Appl. Energy, vol. 334, p. 120621, Mar. 2023, doi: 10.1016/j.apenergy.2022.120621.

A. Pyrkov et al., “Quantum computing for near-term applications in generative chemistry and drug discovery,” Drug Discov. Today, vol. 28, no. 8, p. 103675, Aug. 2023, doi: 10.1016/j.drudis.2023.103675.

P. Brown and H. Zhuang, “Quantum machine-learning phase prediction of high-entropy alloys,” Mater. Today, vol. 63, pp. 18–31, Mar. 2023, doi: 10.1016/j.mattod.2023.02.014.

J. Biamonte, P. Wittek, N. Pancotti, P. Rebentrost, N. Wiebe, and S. Lloyd, “Quantum machine learning,” Nature, vol. 549, no. 7671, pp. 195–202, Sep. 2017, doi: 10.1038/nature23474.

M. Akrom, S. Rustad, and H. K. Dipojono, “Development of quantum machine learning to evaluate the corrosion inhibition capability of pyrimidine compounds,” Mater. Today Commun., vol. 39, p. 108758, Jun. 2024, doi: 10.1016/j.mtcomm.2024.108758.

H. Gupta, H. Varshney, T. K. Sharma, N. Pachauri, and O. P. Verma, “Comparative performance analysis of quantum machine learning with deep learning for diabetes prediction,” Complex Intell. Syst., vol. 8, no. 4, pp. 3073–3087, Aug. 2022, doi: 10.1007/s40747-021-00398-7.

T. Suzuki and M. Katouda, “Predicting toxicity by quantum machine learning,” J. Phys. Commun., vol. 4, no. 12, p. 125012, Dec. 2020, doi: 10.1088/2399-6528/abd3d8.

Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521, no. 7553, pp. 436–444, May 2015, doi: 10.1038/nature14539.

M. Akrom, S. Rustad, and H. Kresno Dipojono, “Prediction of Anti-Corrosion performance of new triazole derivatives via Machine learning,” Comput. Theor. Chem., vol. 1236, p. 114599, Jun. 2024, doi: 10.1016/j.comptc.2024.114599.

M. Akrom, S. Rustad, and H. K. Dipojono, “SMILES-based machine learning enables the prediction of corrosion inhibition capacity,” MRS Commun., vol. 14, no. 3, pp. 379–387, Apr. 2024, doi: 10.1557/s43579-024-00551-6.

M. Akrom, S. Rustad, and H. K. Dipojono, “A machine learning approach to predict the efficiency of corrosion inhibition by natural product-based organic inhibitors,” Phys. Scr., vol. 99, no. 3, p. 036006, Mar. 2024, doi: 10.1088/1402-4896/ad28a9.

J. A. Ingio, A. S. Nsang, and A. Iorliam, “Optimizing Rice Production Forecasting Through Integrating Multiple Linear Regression with Recursive Feature Elimination,” J. Futur. Artif. Intell. Technol., vol. 1, no. 2, pp. 96–108, Aug. 2024, doi: 10.62411/faith.2024-17.

D. R. I. M. Setiadi, H. M. M. Islam, G. A. Trisnapradika, and W. Herowati, “Analyzing Preprocessing Impact on Machine Learning Classifiers for Cryotherapy and Immunotherapy Dataset,” J. Futur. Artif. Intell. Technol., vol. 1, no. 1, pp. 39–50, Jun. 2024, doi: 10.62411/faith.2024-2.

I. Daniel, L. Akinyemi, and O. Udekwu, “Identifying Landslide Hotspots Using Unsupervised Clustering: A Case Study,” J. Futur. Artif. Intell. Technol., vol. 1, no. 3, pp. 249–268, Nov. 2024, doi: 10.62411/faith.3048-3719-37.

P. Rebentrost, M. Mohseni, and S. Lloyd, “Quantum Support Vector Machine for Big Data Classification,” Phys. Rev. Lett., vol. 113, no. 13, p. 130503, Sep. 2014, doi: 10.1103/PhysRevLett.113.130503.

M. Schuld, I. Sinayskiy, and F. Petruccione, “An introduction to quantum machine learning,” Contemp. Phys., vol. 56, no. 2, pp. 172–185, Apr. 2015, doi: 10.1080/00107514.2014.964942.

V. Havlíček et al., “Supervised learning with quantum-enhanced feature spaces,” Nature, vol. 567, no. 7747, pp. 209–212, Mar. 2019, doi: 10.1038/s41586-019-0980-2.

M. Schuld and N. Killoran, “Quantum Machine Learning in Feature Hilbert Spaces,” Phys. Rev. Lett., vol. 122, no. 4, p. 040504, Feb. 2019, doi: 10.1103/PhysRevLett.122.040504.

M. Akrom et al., “Quantum machine learning for corrosion resistance in stainless steel,” Mater. Today Quantum, vol. 3, no. August, p. 100013, Sep. 2024, doi: 10.1016/j.mtquan.2024.100013.

T. Sutojo, D. R. Ignatius, M. Setiadi, S. Rustad, W. Herowati, and M. Akrom, “Hybrid Quantum-Deep Learning Approach: Optimizing Land Cover Classification with GMM Outlier and Fusion Key Feature Selection,” Int. J. Intell. Eng. Syst., vol. 18, no. 1, pp. 638–648, Feb. 2025, doi: 10.22266/ijies2025.0229.45.

P. O. Adebayo, F. Basaky, and E. Osaghae, “Leveraging Variational Quantum-Classical Algorithms for Enhanced Lung Cancer Prediction,” J. Comput. Theor. Appl., vol. 2, no. 3, pp. 307–323, Dec. 2024, doi: 10.62411/jcta.10424.

S. M. Y. I. Tomal, A. Al Shafin, A. Afaf, and D. Bhattacharjee, “Quantum Convolutional Neural Network: A Hybrid Quantum-Classical Approach for Iris Dataset Classification,” J. Futur. Artif. Intell. Technol., vol. 1, no. 3, pp. 284–295, Dec. 2024, doi: 10.62411/faith.3048-3719-48.

A. N. Safriandono, D. R. I. M. Setiadi, A. Dahlan, F. Z. Rahmanti, I. S. Wibisono, and A. A. Ojugo, “Analyzing Quantum Feature Engineering and Balancing Strategies Effect on Liver Disease Classification,” J. Futur. Artif. Intell. Technol., vol. 1, no. 1, pp. 51–63, Jun. 2024, doi: 10.62411/faith.2024-12.

H.-Y. Huang et al., “Power of data in quantum machine learning,” Nat. Commun., vol. 12, no. 1, p. 2631, May 2021, doi: 10.1038/s41467-021-22539-9.

K. Mitarai, M. Negoro, M. Kitagawa, and K. Fujii, “Quantum circuit learning,” Phys. Rev. A, vol. 98, no. 3, p. 032309, Sep. 2018, doi: 10.1103/PhysRevA.98.032309.

M. Ahsan, M. Mahmud, P. Saha, K. Gupta, and Z. Siddique, “Effect of Data Scaling Methods on Machine Learning Algorithms and Model Performance,” Technologies, vol. 9, no. 3, p. 52, Jul. 2021, doi: 10.3390/technologies9030052.

M. Akrom, S. Rustad, A. G. Saputro, and H. K. Dipojono, “Data-driven investigation to model the corrosion inhibition efficiency of Pyrimidine-Pyrazole hybrid corrosion inhibitors,” Comput. Theor. Chem., vol. 1229, p. 114307, Nov. 2023, doi: 10.1016/j.comptc.2023.114307.

M. Akrom, S. Rustad, and H. Kresno Dipojono, “Machine learning investigation to predict corrosion inhibition capacity of new amino acid compounds as corrosion inhibitors,” Results Chem., vol. 6, p. 101126, Dec. 2023, doi: 10.1016/j.rechem.2023.101126.

C. C. Odiakaose et al., “Hypertension Detection via Tree-Based Stack Ensemble with SMOTE-Tomek Data Balance and XGBoost Meta-Learner,” J. Futur. Artif. Intell. Technol., vol. 1, no. 3, pp. 269–283, Dec. 2024, doi: 10.62411/faith.3048-3719-43.

M. Akrom, T. Sutojo, A. Pertiwi, S. Rustad, and H. Kresno Dipojono, “Investigation of Best QSPR-Based Machine Learning Model to Predict Corrosion Inhibition Performance of Pyridine-Quinoline Compounds,” J. Phys. Conf. Ser., vol. 2673, no. 1, p. 012014, Dec. 2023, doi: 10.1088/1742-6596/2673/1/012014.

A. Botchkarev, “A New Typology Design of Performance Metrics to Measure Errors in Machine Learning Regression Algorithms,” Interdiscip. J. Information, Knowledge, Manag., vol. 14, pp. 045–076, 2019, doi: 10.28945/4184.

M. Akrom, S. Rustad, A. G. Saputro, A. Ramelan, F. Fathurrahman, and H. K. Dipojono, “A combination of machine learning model and density functional theory method to predict corrosion inhibition performance of new diazine derivative compounds,” Mater. Today Commun., vol. 35, p. 106402, Jun. 2023, doi: 10.1016/j.mtcomm.2023.106402.

E. I. Elsedimy, S. M. M. AboHashish, and F. Algarni, “New cardiovascular disease prediction approach using support vector machine and quantum-behaved particle swarm optimization,” Multimed. Tools Appl., vol. 83, no. 8, pp. 23901–23928, Aug. 2023, doi: 10.1007/s11042-023-16194-z.

G. Abdulsalam, S. Meshoul, and H. Shaiba, “Explainable Heart Disease Prediction Using Ensemble-Quantum Machine Learning Approach,” Intell. Autom. Soft Comput., vol. 36, no. 1, pp. 761–779, 2023, doi: 10.32604/iasc.2023.032262.

S. Jerbi, L. J. Fiderer, H. Poulsen Nautrup, J. M. Kübler, H. J. Briegel, and V. Dunjko, “Quantum machine learning beyond kernel methods,” Nat. Commun., vol. 14, no. 1, p. 517, Jan. 2023, doi: 10.1038/s41467-023-36159-y.

X. Vasques, H. Paik, and L. Cif, “Application of quantum machine learning using quantum kernel algorithms on multiclass neuron M-type classification,” Sci. Rep., vol. 13, no. 1, p. 11541, Jul. 2023, doi: 10.1038/s41598-023-38558-z.

D. Grimmer, I. Melgarejo-Lermas, J. Polo-Gómez, and E. Martín-Martínez, “Decoding quantum field theory with machine learning,” J. High Energy Phys., vol. 2023, no. 8, p. 31, Aug. 2023, doi: 10.1007/JHEP08(2023)031.

J. D. Martín-Guerrero and L. Lamata, “Quantum Machine Learning: A tutorial,” Neurocomputing, vol. 470, pp. 457–461, Jan. 2022, doi: 10.1016/j.neucom.2021.02.102.

R. Narain, S. Saxena, and A. Goyal, “Cardiovascular risk prediction: a comparative study of Framingham and quantum neural network based approach,” Patient Prefer. Adherence, vol. Volume 10, pp. 1259–1270, Jul. 2016, doi: 10.2147/PPA.S108203.

O. Jaiyeoba, O. Jaiyeoba, E. Ogbuju, and F. Oladipo, “AI-Based Detection Techniques for Skin Diseases: A Review of Recent Methods, Datasets, Metrics, and Challenges,” J. Futur. Artif. Intell. Technol., vol. 1, no. 3, pp. 318–336, Dec. 2024, doi: 10.62411/faith.3048-3719-46.

Downloads

Published

2025-01-05

How to Cite

Akrom, M., Herowati, W., & Setiadi, D. R. I. M. (2025). A Quantum Circuit Learning-based Investigation: A Case Study in Iris Benchmark Dataset Binary Classification. Journal of Computing Theories and Applications, 2(3), 355–367. https://doi.org/10.62411/jcta.11779