Application of Tiny Machine Learning in Predicative Maintenance in Industries

Authors

  • Samson O. Ooko Adventist University of Africa
  • Simon M. Karume Kabarak University

DOI:

https://doi.org/10.62411/jcta.10929

Keywords:

Edge AI, Industrial Applications, Machine Learning, TinyML, Predictive Maintenance

Abstract

The continued advancements in Internet of Things (IoT) and Machine Learning (ML) technologies have led to their adoption in various domains including in industries for predictive maintenance among other applications. Given the resource constraints of IoT devices, they cannot process the resource-intensive ML algorithms hence data collected by the devices are first sent to the cloud where the algorithms are hosted for processing and inference with the results being sent back to the devices for action and/or notifications. The need to transmit data to the cloud for processing leads to increased costs, energy consumption, and high latencies affecting the implementation of the solution. Interestingly with Tiny Machine Learning (TinyML), it is possible to develop algorithms enabling edge inference on resource-constrained devices. From existing review papers, the researchers were not able to find, a comprehensive review with a focus on this area showing the need for a targeted review that can shed light on how TinyML can be tailored for predictive maintenance tasks in industries. This study therefore presents a systematic literature review of the application of TinyML in predictive maintenance in industrial settings. TinyML overview and its benefits are presented, a TinyML process flow is proposed and various use cases and their classifications have been presented. Through this exploration, the study shows the critical need for TinyML-driven solutions in predictive maintenance, identifies the existing challenges, and proposes a roadmap for future research.

References

S. Li, L. Da Xu, and S. Zhao, “The internet of things: a survey,” Inf. Syst. Front., vol. 17, no. 2, pp. 243–259, Apr. 2015, doi: 10.1007/s10796-014-9492-7.

C. Zhang and Y. Lu, “Study on artificial intelligence: The state of the art and future prospects,” J. Ind. Inf. Integr., vol. 23, p. 100224, Sep. 2021, doi: 10.1016/j.jii.2021.100224.

W. J. Lee, H. Wu, H. Yun, H. Kim, M. B. G. Jun, and J. W. Sutherland, “Predictive Maintenance of Machine Tool Systems Using Artificial Intelligence Techniques Applied to Machine Condition Data,” Procedia CIRP, vol. 80, pp. 506–511, 2019, doi: 10.1016/j.procir.2018.12.019.

Z. Jan et al., “Artificial intelligence for industry 4.0: Systematic review of applications, challenges, and opportunities,” Expert Syst. Appl., vol. 216, p. 119456, Apr. 2023, doi: 10.1016/j.eswa.2022.119456.

D. L. Dutta and S. Bharali, “TinyML Meets IoT: A Comprehensive Survey,” Internet of Things, vol. 16, p. 100461, Dec. 2021, doi: 10.1016/j.iot.2021.100461.

D. Cardoso and L. Ferreira, “Application of Predictive Maintenance Concepts Using Artificial Intelligence Tools,” Appl. Sci., vol. 11, no. 1, p. 18, Dec. 2020, doi: 10.3390/app11010018.

K. Liulys, “Machine Learning Application in Predictive Maintenance,” in 2019 Open Conference of Electrical, Electronic and Information Sciences (eStream), Apr. 2019, pp. 1–4. doi: 10.1109/eStream.2019.8732146.

Y. Abadade, A. Temouden, H. Bamoumen, N. Benamar, Y. Chtouki, and A. S. Hafid, “A Comprehensive Survey on TinyML,” IEEE Access, vol. 11, pp. 96892–96922, 2023, doi: 10.1109/ACCESS.2023.3294111.

R. Immonen and T. Hämäläinen, “Tiny Machine Learning for Resource-Constrained Microcontrollers,” J. Sensors, vol. 2022, pp. 1–11, Nov. 2022, doi: 10.1155/2022/7437023.

C. R. Banbury et al., “Benchmarking TinyML Systems: Challenges and Direction,” ArXiv. Mar. 10, 2020. [Online]. Available: http://arxiv.org/abs/2003.04821

C. Krupitzer et al., “A Survey on Predictive Maintenance for Industry 4.0,” ArXiv. Feb. 05, 2020. [Online]. Available: http://arxiv.org/abs/2002.08224

T. Zonta, C. A. da Costa, R. da Rosa Righi, M. J. de Lima, E. S. da Trindade, and G. P. Li, “Predictive maintenance in the Industry 4.0: A systematic literature review,” Comput. Ind. Eng., vol. 150, p. 106889, Dec. 2020, doi: 10.1016/j.cie.2020.106889.

G. M. Sang, L. Xu, P. de Vrieze, Y. Bai, and F. Pan, “Predictive Maintenance in Industry 4.0,” in Proceedings of the 10th International Conference on Information Systems and Technologies, Jun. 2020, pp. 1–11. doi: 10.1145/3447568.3448537.

M. Paolanti, L. Romeo, A. Felicetti, A. Mancini, E. Frontoni, and J. Loncarski, “Machine Learning approach for Predictive Maintenance in Industry 4.0,” in 2018 14th IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications (MESA), Jul. 2018, pp. 1–6. doi: 10.1109/MESA.2018.8449150.

D. Kusumaningrum, N. Kurniati, and B. Santosa, “Machine Learning for Predictive Maintenance,” in Proceedings of the International Conference on Industrial Engineering and Operations Management, Apr. 2021, pp. 2348–2356. doi: 10.46254/SA02.20210717.

Y. Lei, B. Yang, X. Jiang, F. Jia, N. Li, and A. K. Nandi, “Applications of machine learning to machine fault diagnosis: A review and roadmap,” Mech. Syst. Signal Process., vol. 138, p. 106587, Apr. 2020, doi: 10.1016/j.ymssp.2019.106587.

M. Achouch et al., “On Predictive Maintenance in Industry 4.0: Overview, Models, and Challenges,” Appl. Sci., vol. 12, no. 16, p. 8081, Aug. 2022, doi: 10.3390/app12168081.

M. Compare, P. Baraldi, and E. Zio, “Challenges to IoT-Enabled Predictive Maintenance for Industry 4.0,” IEEE Internet Things J., vol. 7, no. 5, pp. 4585–4597, May 2020, doi: 10.1109/JIOT.2019.2957029.

S. O. Ooko, M. Muyonga Ogore, J. Nsenga, and M. Zennaro, “TinyML in Africa: Opportunities and Challenges,” in 2021 IEEE Globecom Workshops (GC Wkshps), Dec. 2021, pp. 1–6. doi: 10.1109/GCWkshps52748.2021.9682107.

C. Carpenter, “Predictive-Maintenance Approach Uses Machine Learning To Increase Efficiency,” J. Pet. Technol., vol. 70, no. 12, pp. 55–56, Dec. 2018, doi: 10.2118/1218-0055-JPT.

E. Florian, F. Sgarbossa, and I. Zennaro, “Machine learning-based predictive maintenance: A cost-oriented model for implementation,” Int. J. Prod. Econ., vol. 236, p. 108114, Jun. 2021, doi: 10.1016/j.ijpe.2021.108114.

G. Athanasakis, G. Filios, I. Katsidimas, S. Nikoletseas, and S. H. Panagiotou, “TinyML-based approach for Remaining Useful Life Prediction of Turbofan Engines,” in 2022 IEEE 27th International Conference on Emerging Technologies and Factory Automation (ETFA), Sep. 2022, pp. 1–8. doi: 10.1109/ETFA52439.2022.9921629.

T. Zhu, Y. Ran, X. Zhou, and Y. Wen, “A Survey of Predictive Maintenance: Systems, Purposes and Approaches,” ArXiv. Dec. 12, 2019. [Online]. Available: http://arxiv.org/abs/1912.07383

S. Schwendemann, Z. Amjad, and A. Sikora, “A survey of machine-learning techniques for condition monitoring and predictive maintenance of bearings in grinding machines,” Comput. Ind., vol. 125, p. 103380, Feb. 2021, doi: 10.1016/j.compind.2020.103380.

G. G. Samatas, S. S. Moumgiakmas, and G. A. Papakostas, “Predictive Maintenance - Bridging Artificial Intelligence and IoT,” in 2021 IEEE World AI IoT Congress (AIIoT), May 2021, pp. 0413–0419. doi: 10.1109/AIIoT52608.2021.9454173.

W. Zhang, D. Yang, and H. Wang, “Data-Driven Methods for Predictive Maintenance of Industrial Equipment: A Survey,” IEEE Syst. J., vol. 13, no. 3, pp. 2213–2227, Sep. 2019, doi: 10.1109/JSYST.2019.2905565.

E. Pricop, J. Fattahi, N. Dutta, and M. Ibrahim, Eds., Recent Developments on Industrial Control Systems Resilience, vol. 255. Cham: Springer International Publishing, 2020. doi: 10.1007/978-3-030-31328-9.

T. Polonelli, A. Bentivogli, G. Comai, and M. Magno, “Self-sustainable IoT Wireless Sensor Node for Predictive Maintenance on Electric Motors,” in 2022 IEEE Sensors Applications Symposium (SAS), Aug. 2022, pp. 1–6. doi: 10.1109/SAS54819.2022.9881349.

L. P. Silvestrin, M. Hoogendoorn, and G. Koole, “A Comparative Study of State-of-the-Art Machine Learning Algorithms for Predictive Maintenance,” in 2019 IEEE Symposium Series on Computational Intelligence (SSCI), Dec. 2019, pp. 760–767. doi: 10.1109/SSCI44817.2019.9003044.

T. P. Carvalho, F. A. A. M. N. Soares, R. Vita, R. da P. Francisco, J. P. Basto, and S. G. S. Alcalá, “A systematic literature review of machine learning methods applied to predictive maintenance,” Comput. Ind. Eng., vol. 137, p. 106024, Nov. 2019, doi: 10.1016/j.cie.2019.106024.

J. Leukel, J. González, and M. Riekert, “Adoption of machine learning technology for failure prediction in industrial maintenance: A systematic review,” J. Manuf. Syst., vol. 61, pp. 87–96, Oct. 2021, doi: 10.1016/j.jmsy.2021.08.012.

J. Hegde and B. Rokseth, “Applications of machine learning methods for engineering risk assessment – A review,” Saf. Sci., vol. 122, p. 104492, Feb. 2020, doi: 10.1016/j.ssci.2019.09.015.

M. Y. Arafat, M. J. Hossain, and M. M. Alam, “Machine learning scopes on microgrid predictive maintenance: Potential frameworks, challenges, and prospects,” Renew. Sustain. Energy Rev., vol. 190, p. 114088, Feb. 2024, doi: 10.1016/j.rser.2023.114088.

M. Drakaki, Y. L. Karnavas, I. A. Tziafettas, V. Linardos, and P. Tzionas, “Machine learning and deep learning based methods toward industry 4.0 predictive maintenance in induction motors: State of the art survey,” J. Ind. Eng. Manag., vol. 15, no. 1, p. 31, Feb. 2022, doi: 10.3926/jiem.3597.

L. Cui, S. Yang, F. Chen, Z. Ming, N. Lu, and J. Qin, “A survey on application of machine learning for Internet of Things,” Int. J. Mach. Learn. Cybern., vol. 9, no. 8, pp. 1399–1417, Aug. 2018, doi: 10.1007/s13042-018-0834-5.

K. P, “Machine Learning Approach to Predictive Maintenance in Manufacturing Industry - A Comparative Study,” J. Soft Comput. Paradig., vol. 2, no. 4, pp. 246–255, Jan. 2021, doi: 10.36548/jscp.2020.4.006.

S. Voronov, Machine Learning Models for Predictive Maintenance, vol. 2040. Linköping: Linköping University Electronic Press, 2020. doi: 10.3384/diss.diva-162649.

J. Dalzochio et al., “Machine learning and reasoning for predictive maintenance in Industry 4.0: Current status and challenges,” Comput. Ind., vol. 123, p. 103298, Dec. 2020, doi: 10.1016/j.compind.2020.103298.

H. Han and J. Siebert, “TinyML: A Systematic Review and Synthesis of Existing Research,” in 2022 International Conference on Artificial Intelligence in Information and Communication (ICAIIC), Feb. 2022, pp. 269–274. doi: 10.1109/ICAIIC54071.2022.9722636.

B. Kitchenham, S. M. Charters, and S. Keele, “Guidelines for performing Systematic Literature Reviews in Software Engineering,” 2007.

Zotero, “start [Zotero Documentation].” https://www.zotero.org/support/ (accessed Feb. 22, 2024).

A. R. de A. Vallim Filho, D. Farina Moraes, M. V. Bhering de Aguiar Vallim, L. Santos da Silva, and L. A. da Silva, “A Machine Learning Modeling Framework for Predictive Maintenance Based on Equipment Load Cycle: An Application in a Real World Case,” Energies, vol. 15, no. 10, p. 3724, May 2022, doi: 10.3390/en15103724.

K. P. Bahar, G. B. Yıldız, and B. Soylu, “Predictive Maintenance System Integrated with Periodic Maintenance: Machine Learning and Classical Approaches,” EasyChair Preprint. p. 5806, 2021. [Online]. Available: https://easychair.org/publications/preprint/GsVf

M. Becherer, M. Zipperle, and A. Karduck, “Intelligent Choice of Machine Learning Methods for Predictive Maintenance of Intelligent Machines,” Comput. Syst. Sci. Eng., vol. 35, no. 2, pp. 81–89, 2020, doi: 10.32604/csse.2020.35.081.

L. I. Alvarez Quiñones, C. A. Lozano-Moncada, and D. A. Bravo Montenegro, “Machine learning for predictive maintenance scheduling of distribution transformers,” J. Qual. Maint. Eng., vol. 29, no. 1, pp. 188–202, Mar. 2023, doi: 10.1108/JQME-06-2021-0052.

M. H. Abidi, M. K. Mohammed, and H. Alkhalefah, “Predictive Maintenance Planning for Industry 4.0 Using Machine Learning for Sustainable Manufacturing,” Sustainability, vol. 14, no. 6, p. 3387, Mar. 2022, doi: 10.3390/su14063387.

E. T. Bekar, P. Nyqvist, and A. Skoogh, “An intelligent approach for data pre-processing and analysis in predictive maintenance with an industrial case study,” Adv. Mech. Eng., vol. 12, no. 5, p. 168781402091920, May 2020, doi: 10.1177/1687814020919207.

E. Njor, J. Madsen, and X. Fafoutis, “A Primer for tinyML Predictive Maintenance: Input and Model Optimisation,” 2022, pp. 67–78. doi: 10.1007/978-3-031-08337-2_6.

A. Bemani and N. Björsell, “Aggregation Strategy on Federated Machine Learning Algorithm for Collaborative Predictive Maintenance,” Sensors, vol. 22, no. 16, p. 6252, Aug. 2022, doi: 10.3390/s22166252.

M. Sepe et al., “A physics-informed machine learning framework for predictive maintenance applied to turbomachinery assets,” J. Glob. Power Propuls. Soc., no. May, pp. 1–15, May 2021, doi: 10.33737/jgpps/134845.

F. Alves et al., “Deployment of a Smart and Predictive Maintenance System in an Industrial Case Study,” in 2020 IEEE 29th International Symposium on Industrial Electronics (ISIE), Jun. 2020, pp. 493–498. doi: 10.1109/ISIE45063.2020.9152441.

S. Butte, A. R. Prashanth, and S. Patil, “Machine Learning Based Predictive Maintenance Strategy: A Super Learning Approach with Deep Neural Networks,” in 2018 IEEE Workshop on Microelectronics and Electron Devices (WMED), Apr. 2018, pp. 1–5. doi: 10.1109/WMED.2018.8360836.

A. Cachada et al., “Maintenance 4.0: Intelligent and Predictive Maintenance System Architecture,” in 2018 IEEE 23rd International Conference on Emerging Technologies and Factory Automation (ETFA), Sep. 2018, pp. 139–146. doi: 10.1109/ETFA.2018.8502489.

B. Steurtewagen and D. Van den Poel, “Adding interpretability to predictive maintenance by machine learning on sensor data,” Comput. Chem. Eng., vol. 152, p. 107381, Sep. 2021, doi: 10.1016/j.compchemeng.2021.107381.

S. Arena, E. Florian, I. Zennaro, P. F. Orrù, and F. Sgarbossa, “A novel decision support system for managing predictive maintenance strategies based on machine learning approaches,” Saf. Sci., vol. 146, p. 105529, Feb. 2022, doi: 10.1016/j.ssci.2021.105529.

Z. M. Çınar, A. Abdussalam Nuhu, Q. Zeeshan, O. Korhan, M. Asmael, and B. Safaei, “Machine Learning in Predictive Maintenance towards Sustainable Smart Manufacturing in Industry 4.0,” Sustainability, vol. 12, no. 19, p. 8211, Oct. 2020, doi: 10.3390/su12198211.

C. Chen, H. Fu, Y. Zheng, F. Tao, and Y. Liu, “The advance of digital twin for predictive maintenance: The role and function of machine learning,” J. Manuf. Syst., vol. 71, pp. 581–594, Dec. 2023, doi: 10.1016/j.jmsy.2023.10.010.

V. Poosapati, V. Katneni, V. K. Manda, and T. L. V. Ramesh, “Enabling Cognitive Predictive Maintenance Using Machine Learning: Approaches and Design Methodologies,” 2019, pp. 37–45. doi: 10.1007/978-981-13-3393-4_5.

M. Cakir, M. A. Guvenc, and S. Mistikoglu, “The experimental application of popular machine learning algorithms on predictive maintenance and the design of IIoT based condition monitoring system,” Comput. Ind. Eng., vol. 151, p. 106948, Jan. 2021, doi: 10.1016/j.cie.2020.106948.

S. Keartland and T. L. Van Zyl, “Automating predictive maintenance using oil analysis and machine learning,” in 2020 International SAUPEC/RobMech/PRASA Conference, Jan. 2020, pp. 1–6. doi: 10.1109/SAUPEC/RobMech/PRASA48453.2020.9041003.

N. Amruthnath and T. Gupta, “A research study on unsupervised machine learning algorithms for early fault detection in predictive maintenance,” in 2018 5th International Conference on Industrial Engineering and Applications (ICIEA), Apr. 2018, pp. 355–361. doi: 10.1109/IEA.2018.8387124.

A. Z. Andriani, N. Kurniati, and B. Santosa, “Enabling Predictive Maintenance Using Machine Learning in Industrial Machines With Sensor Data,” in Proceedings of the International Conference on Industrial Engineering and Operations Management, Apr. 2021, pp. 2357–2366. doi: 10.46254/SA02.20210719.

A. Chazhoor, Y. Mounika, M. Vergin Raja Sarobin, M. V Sanjana, and R. Yasashvini, “Predictive Maintenance using Machine Learning Based Classification Models,” IOP Conf. Ser. Mater. Sci. Eng., vol. 954, no. 1, p. 012001, Oct. 2020, doi: 10.1088/1757-899X/954/1/012001.

J.-Y. Hsu, Y.-F. Wang, K.-C. Lin, M.-Y. Chen, and J. H.-Y. Hsu, “Wind Turbine Fault Diagnosis and Predictive Maintenance Through Statistical Process Control and Machine Learning,” IEEE Access, vol. 8, pp. 23427–23439, 2020, doi: 10.1109/ACCESS.2020.2968615.

S. Kaparthi and D. Bumblauskas, “Designing predictive maintenance systems using decision tree-based machine learning techniques,” Int. J. Qual. Reliab. Manag., vol. 37, no. 4, pp. 659–686, Feb. 2020, doi: 10.1108/IJQRM-04-2019-0131.

V. Kavana and M. Neethi, “Fault Analysis and Predictive Maintenance of Induction Motor Using Machine Learning,” in 2018 International Conference on Electrical, Electronics, Communication, Computer, and Optimization Techniques (ICEECCOT), Dec. 2018, pp. 963–966. doi: 10.1109/ICEECCOT43722.2018.9001543.

R. M. Khorsheed and O. F. Beyca, “An integrated machine learning: Utility theory framework for real-time predictive maintenance in pumping systems,” Proc. Inst. Mech. Eng. Part B J. Eng. Manuf., vol. 235, no. 5, pp. 887–901, Apr. 2021, doi: 10.1177/0954405420970517.

M. Zufle, J. Agne, J. Grohmann, I. Dortoluk, and S. Kounev, “A Predictive Maintenance Methodology: Predicting the Time-to-Failure of Machines in Industry 4.0,” in 2021 IEEE 19th International Conference on Industrial Informatics (INDIN), Jul. 2021, pp. 1–8. doi: 10.1109/INDIN45523.2021.9557387.

B. Kroll, D. Schaffranek, S. Schriegel, and O. Niggemann, “System modeling based on machine learning for anomaly detection and predictive maintenance in industrial plants,” in Proceedings of the 2014 IEEE Emerging Technology and Factory Automation (ETFA), Sep. 2014, pp. 1–7. doi: 10.1109/ETFA.2014.7005202.

G. Makridis, D. Kyriazis, and S. Plitsos, “Predictive maintenance leveraging machine learning for time-series forecasting in the maritime industry,” in 2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC), Sep. 2020, pp. 1–8. doi: 10.1109/ITSC45102.2020.9294450.

R. Abdalla, H. Samara, N. Perozo, C. P. Carvajal, and P. Jaeger, “Machine Learning Approach for Predictive Maintenance of the Electrical Submersible Pumps (ESPs),” ACS Omega, vol. 7, no. 21, pp. 17641–17651, May 2022, doi: 10.1021/acsomega.1c05881.

P. Adhikari, H. G. Rao, and D.-I. M. Buderath, “Machine Learning based Data Driven Diagnostics & Prognostics Framework for Aircraft Predictive Maintenance,” in 10th International Symposium on NDT in Aerospace, Dresden, Germany 2018 Oct 24 (pp. 24-26)., 2018, no. Ml, pp. 24–26.

E. Azab, M. Nafea, L. A. Shihata, and M. Mashaly, “A Machine-Learning-Assisted Simulation Approach for Incorporating Predictive Maintenance in Dynamic Flow-Shop Scheduling,” Appl. Sci., vol. 11, no. 24, p. 11725, Dec. 2021, doi: 10.3390/app112411725.

Y. Bouabdallaoui, Z. Lafhaj, P. Yim, L. Ducoulombier, and B. Bennadji, “Predictive Maintenance in Building Facilities: A Machine Learning-Based Approach,” Sensors, vol. 21, no. 4, p. 1044, Feb. 2021, doi: 10.3390/s21041044.

M. Calabrese et al., “An Event Based Machine Learning Framework for Predictive Maintenance in Industry 4.0,” in Volume 9: 15th IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications, Aug. 2019. doi: 10.1115/DETC2019-97917.

M. Calabrese et al., “SOPHIA: An Event-Based IoT and Machine Learning Architecture for Predictive Maintenance in Industry 4.0,” Information, vol. 11, no. 4, p. 202, Apr. 2020, doi: 10.3390/info11040202.

J. C. P. Cheng, W. Chen, K. Chen, and Q. Wang, “Data-driven predictive maintenance planning framework for MEP components based on BIM and IoT using machine learning algorithms,” Autom. Constr., vol. 112, p. 103087, Apr. 2020, doi: 10.1016/j.autcon.2020.103087.

B. Cline, R. S. Niculescu, D. Huffman, and B. Deckel, “Predictive maintenance applications for machine learning,” in 2017 Annual Reliability and Maintainability Symposium (RAMS), 2017, pp. 1–7. doi: 10.1109/RAM.2017.7889679.

H. A. Gohel, H. Upadhyay, L. Lagos, K. Cooper, and A. Sanzetenea, “Predictive maintenance architecture development for nuclear infrastructure using machine learning,” Nucl. Eng. Technol., vol. 52, no. 7, pp. 1436–1442, Jul. 2020, doi: 10.1016/j.net.2019.12.029.

V. J. Jimenez, N. Bouhmala, and A. H. Gausdal, “Developing a predictive maintenance model for vessel machinery,” J. Ocean Eng. Sci., vol. 5, no. 4, pp. 358–386, Dec. 2020, doi: 10.1016/j.joes.2020.03.003.

A. Jimenez-Cortadi, I. Irigoien, F. Boto, B. Sierra, and G. Rodriguez, “Predictive Maintenance on the Machining Process and Machine Tool,” Appl. Sci., vol. 10, no. 1, p. 224, Dec. 2019, doi: 10.3390/app10010224.

I. Kalathas and M. Papoutsidakis, “Predictive Maintenance Using Machine Learning and Data Mining: A Pioneer Method Implemented to Greek Railways,” Designs, vol. 5, no. 1, p. 5, Jan. 2021, doi: 10.3390/designs5010005.

C. Kammerer, M. Gaust, M. Küstner, P. Starke, R. Radtke, and A. Jesser, “Motor Classification with Machine Learning Methods for Predictive Maintenance,” IFAC-PapersOnLine, vol. 54, no. 1, pp. 1059–1064, 2021, doi: 10.1016/j.ifacol.2021.08.126.

A. Kanawaday and A. Sane, “Machine learning for predictive maintenance of industrial machines using IoT sensor data,” in 2017 8th IEEE International Conference on Software Engineering and Service Science (ICSESS), Nov. 2017, pp. 87–90. doi: 10.1109/ICSESS.2017.8342870.

D. Kimera and F. N. Nangolo, “Predictive maintenance for ballast pumps on ship repair yards via machine learning,” Transp. Eng., vol. 2, p. 100020, Dec. 2020, doi: 10.1016/j.treng.2020.100020.

O. KOCA, O. T. Kaymakci, and M. Mercimek, “Advanced Predictive Maintenance with Machine Learning Failure Estimation in Industrial Packaging Robots,” in 2020 International Conference on Development and Application Systems (DAS), May 2020, pp. 1–6. doi: 10.1109/DAS49615.2020.9108913.

K. I. Masani, P. Oza, and S. Agrawal, “Predictive Maintenance and Monitoring of Industrial Machine using Machine Learning,” Scalable Comput. Pract. Exp., vol. 20, no. 4, pp. 663–668, Dec. 2019, doi: 10.12694/scpe.v20i4.1585.

N. A. Mohammed, O. F. Abdulateef, and A. H. Hamad, “An IoT and Machine Learning-Based Predictive Maintenance System for Electrical Motors,” J. Eur. des Systèmes Autom., vol. 56, no. 4, pp. 651–656, Aug. 2023, doi: 10.18280/jesa.560414.

J. Zenisek, F. Holzinger, and M. Affenzeller, “Machine learning based concept drift detection for predictive maintenance,” Comput. Ind. Eng., vol. 137, p. 106031, Nov. 2019, doi: 10.1016/j.cie.2019.106031.

A. Albanese, M. Nardello, G. Fiacco, and D. Brunelli, “Tiny Machine Learning for High Accuracy Product Quality Inspection,” IEEE Sens. J., vol. 23, no. 2, pp. 1575–1583, Jan. 2023, doi: 10.1109/JSEN.2022.3225227.

M. Casiroli and D. Pietro Pau, “Tiny Machine Learning Business Intelligence in the Semiconductor Industry: A Case Study,” in 2023 IEEE Global Conference on Artificial Intelligence and Internet of Things (GCAIoT), Dec. 2023, pp. 9–16. doi: 10.1109/GCAIoT61060.2023.10385110.

I. Katsidimas, T. Kotzakolios, S. Nikoletseas, S. H. Panagiotou, and C. Tsakonas, “Smart Objects,” in Proceedings of the 20th ACM Conference on Embedded Networked Sensor Systems, Nov. 2022, pp. 947–953. doi: 10.1145/3560905.3568298.

A. Moin, M. Challenger, A. Badii, and S. Gunnemann, “Supporting AI Engineering on the IoT Edge through Model-Driven TinyML,” in 2022 IEEE 46th Annual Computers, Software, and Applications Conference (COMPSAC), Jun. 2022, pp. 884–893. doi: 10.1109/COMPSAC54236.2022.00140.

M. Antonini, M. Pincheira, M. Vecchio, and F. Antonelli, “Tiny-MLOps: a framework for orchestrating ML applications at the far edge of IoT systems,” in 2022 IEEE International Conference on Evolving and Adaptive Intelligent Systems (EAIS), May 2022, pp. 1–8. doi: 10.1109/EAIS51927.2022.9787703.

A. Mostafavi and A. Sadighi, “A Novel Online Machine Learning Approach for Real-Time Condition Monitoring of Rotating Machines,” in 2021 9th RSI International Conference on Robotics and Mechatronics (ICRoM), Nov. 2021, pp. 267–273. doi: 10.1109/ICRoM54204.2021.9663495.

M. Antonini, M. Pincheira, M. Vecchio, and F. Antonelli, “A TinyML approach to non-repudiable anomaly detection in extreme industrial environments,” in 2022 IEEE International Workshop on Metrology for Industry 4.0 & IoT (MetroInd4.0&IoT), Jun. 2022, pp. 397–402. doi: 10.1109/MetroInd4.0IoT54413.2022.9831517.

V. M. Oliveira and A. H. J. Moreira, “Edge AI System Using a Thermal Camera for Industrial Anomaly Detection,” in Science and Technologies for Smart Cities, 2022, pp. 172–187. doi: 10.1007/978-3-031-06371-8_12.

M. Antonini, M. Pincheira, M. Vecchio, and F. Antonelli, “An Adaptable and Unsupervised TinyML Anomaly Detection System for Extreme Industrial Environments,” Sensors, vol. 23, no. 4, p. 2344, Feb. 2023, doi: 10.3390/s23042344.

S. Elkateb, A. Métwalli, A. Shendy, and A. E. B. Abu-Elanien, “Machine learning and IoT – Based predictive maintenance approach for industrial applications,” Alexandria Eng. J., vol. 88, pp. 298–309, Feb. 2024, doi: 10.1016/j.aej.2023.12.065.

M. W. Hoffmann et al., “Integration of Novel Sensors and Machine Learning for Predictive Maintenance in Medium Voltage Switchgear to Enable the Energy and Mobility Revolutions,” Sensors, vol. 20, no. 7, p. 2099, Apr. 2020, doi: 10.3390/s20072099.

M. Giordano, N. Baumann, M. Crabolu, R. Fischer, G. Bellusci, and M. Magno, “Design and Performance Evaluation of an Ultralow-Power Smart IoT Device With Embedded TinyML for Asset Activity Monitoring,” IEEE Trans. Instrum. Meas., vol. 71, pp. 1–11, 2022, doi: 10.1109/TIM.2022.3165816.

M. Lord and A. Kaplan, “Mechanical Anomaly Detection on an Embedded Microcontroller,” in 2021 International Conference on Computational Science and Computational Intelligence (CSCI), Dec. 2021, pp. 562–568. doi: 10.1109/CSCI54926.2021.00159.

Z. Chen, Y. Gao, and J. Liang, “LOPdM: A Low-Power On-Device Predictive Maintenance System Based on Self-Powered Sensing and TinyML,” IEEE Trans. Instrum. Meas., vol. 72, pp. 1–13, 2023, doi: 10.1109/TIM.2023.3308251.

Z. Chen, Y. Gao, and J. Liang, “A Self-Powered Sensing System with Embedded TinyML for Anomaly Detection,” in 2023 IEEE 3rd International Conference on Industrial Electronics for Sustainable Energy Systems (IESES), Jul. 2023, pp. 1–6. doi: 10.1109/IESES53571.2023.10253705.

Z. Chen, Y. Gao, and J. Liang, “A Self-Powered Predictive Maintenance System Based on Piezoelectric Energy Harvesting and TinyML,” in 2023 IEEE/ACM International Symposium on Low Power Electronics and Design (ISLPED), Aug. 2023, pp. 1–6. doi: 10.1109/ISLPED58423.2023.10244321.

L. Giommi et al., “Towards Predictive Maintenance with Machine Learning at the INFN-CNAF computing centre,” in Proceedings of International Symposium on Grids & Clouds 2019 — PoS(ISGC2019), Nov. 2019, p. 003. doi: 10.22323/1.351.0003.

D. Pau, A. Khiari, and D. Denaro, “Online learning on tiny micro-controllers for anomaly detection in water distribution systems,” in 2021 IEEE 11th International Conference on Consumer Electronics (ICCE-Berlin), Nov. 2021, pp. 1–6. doi: 10.1109/ICCE-Berlin53567.2021.9720009.

L. Saputelli and C. Palacios, Carlos Bravo, “Case Studies Involving Machine Learning for Predictive Maintenance in Oil and Gas Production Operations,” in Machine Learning Applications in Subsurface Energy Resource Management, Boca Raton: CRC Press, 2022, pp. 337–352.

S. Ayvaz and K. Alpay, “Predictive maintenance system for production lines in manufacturing: A machine learning approach using IoT data in real-time,” Expert Syst. Appl., vol. 173, p. 114598, Jul. 2021, doi: 10.1016/j.eswa.2021.114598.

M. Garan, K. Tidriri, and I. Kovalenko, “A Data-Centric Machine Learning Methodology: Application on Predictive Maintenance of Wind Turbines,” Energies, vol. 15, no. 3, p. 826, Jan. 2022, doi: 10.3390/en15030826.

H. Liu, P. Song, Y. Qie, and Y. Li, “Real-time Prediction Method of Remaining Useful Life Based on TinyML,” in 2022 IEEE International Conference on Real-time Computing and Robotics (RCAR), Jul. 2022, pp. 693–698. doi: 10.1109/RCAR54675.2022.9872225.

I. N. Mihigo, M. Zennaro, A. Uwitonze, J. Rwigema, and M. Rovai, “On-Device IoT-Based Predictive Maintenance Analytics Model: Comparing TinyLSTM and TinyModel from Edge Impulse,” Sensors, vol. 22, no. 14, p. 5174, Jul. 2022, doi: 10.3390/s22145174.

E. S. Pereira, L. S. Marcondes, and J. M. Silva, “On-Device Tiny Machine Learning for Anomaly Detection Based on the Extreme Values Theory,” IEEE Micro, vol. 43, no. 6, pp. 58–65, Nov. 2023, doi: 10.1109/MM.2023.3316918.

Downloads

Published

2024-08-02

How to Cite

Ooko, S. O., & Karume, S. M. . . (2024). Application of Tiny Machine Learning in Predicative Maintenance in Industries. Journal of Computing Theories and Applications, 2(1), 131–150. https://doi.org/10.62411/jcta.10929