Effects of Data Resampling on Predicting Customer Churn via a Comparative Tree-based Random Forest and XGBoost

Authors

  • Rita Erhovwo Ako Federal University of Petroleum Resources https://orcid.org/0009-0004-0987-1088
  • Fidelis Obukohwo Aghware University of Delta Agbor
  • Margaret Dumebi Okpor Delta State University of Science and Technology Ozoro
  • Maureen Ifeanyi Akazue Delta State University Abraka
  • Rume Elizabeth Yoro Dennis Osadebay University Asaba
  • Arnold Adimabua Ojugo Federal University of Petroleum Resources Effurun
  • De Rosal Ignatius Moses Setiadi Dian Nuswantoro University https://orcid.org/0000-0001-6615-4457
  • Chris Chukwufunaya Odiakaose Dennis Osadebay University Anwai-Asaba
  • Reuben Akporube Abere Federal University of Petroleum Resources Effurun
  • Frances Uche Emordi Dennis Osadebay University Asaba
  • Victor Ochuko Geteloma Federal University of Petroleum Resources Effurun
  • Patrick Ogholuwarami Ejeh Dennis Osadebay University Anwai-Asaba

DOI:

https://doi.org/10.62411/jcta.10562

Keywords:

Customer attrition, Churn, Imbalanced dataset, Random Forest, XGBoost, SMOTE, Random-Under-Sampling, SMOTEEN

Abstract

Customer attrition has become the focus of many businesses today – since the online market space has continued to proffer customers, various choices and alternatives to goods, services, and products for their monies. Businesses must seek to improve value, meet customers' teething demands/needs, enhance their strategies toward customer retention, and better monetize. The study compares the effects of data resampling schemes on predicting customer churn for both Random Forest (RF) and XGBoost ensembles. Data resampling schemes used include: (a) default mode, (b) random-under-sampling RUS, (c) synthetic minority oversampling technique (SMOTE), and (d) SMOTE-edited nearest neighbor (SMOTEEN). Both tree-based ensembles were constructed and trained to assess how well they performed with the chi-square feature selection mode. The result shows that RF achieved F1 0.9898, Accuracy 0.9973, Precision 0.9457, and Recall 0.9698 for the default, RUS, SMOTE, and SMOTEEN resampling, respectively. Xgboost outperformed Random Forest with F1 0.9945, Accuracy 0.9984, Precision 0.9616, and Recall 0.9890 for the default, RUS, SMOTE, and SMOTEEN, respectively. Studies support that the use of SMOTEEN resampling outperforms other schemes; while, it attributed XGBoost enhanced performance to hyper-parameter tuning of its decision trees. Retention strategies of recency-frequency-monetization were used and have been found to curb churn and improve monetization policies that will place business managers ahead of the curve of churning by customers.

Author Biographies

Rita Erhovwo Ako, Federal University of Petroleum Resources

Department of Computer Science, Federal University of Petroleum Resources Effurun, Nigeria

Fidelis Obukohwo Aghware, University of Delta Agbor

Department of Computer Science, University of Delta Agbor, Niger

Margaret Dumebi Okpor, Delta State University of Science and Technology Ozoro

Department of Cybersecurity, Delta State University of Science and Technology Ozoro, Nigeria

Maureen Ifeanyi Akazue, Delta State University Abraka

Department of Computer Science, Delta State University Abraka, Nigeria

Rume Elizabeth Yoro, Dennis Osadebay University Asaba

Department of Cybersecurity, Dennis Osadebay University Asaba, Nigeria

Arnold Adimabua Ojugo, Federal University of Petroleum Resources Effurun

Department of Computer Science, Federal University of Petroleum Resources Effurun, Nigeria

De Rosal Ignatius Moses Setiadi, Dian Nuswantoro University

Department of Informatics Engineering, Dian Nuswantoro University, Semarang, Indonesia

Chris Chukwufunaya Odiakaose, Dennis Osadebay University Anwai-Asaba

Department of Computer Science, Dennis Osadebay University Anwai-Asaba, Nigeria

Reuben Akporube Abere, Federal University of Petroleum Resources Effurun

Department of Computer Science, Federal University of Petroleum Resources Effurun, Nigeria

Frances Uche Emordi, Dennis Osadebay University Asaba

Department of Cybersecurity, Dennis Osadebay University Asaba, Nigeria

Victor Ochuko Geteloma, Federal University of Petroleum Resources Effurun

Department of Computer Science, Federal University of Petroleum Resources Effurun, Nigeria

Patrick Ogholuwarami Ejeh, Dennis Osadebay University Anwai-Asaba

Department of Computer Science, Dennis Osadebay University Anwai-Asaba, Nigeria

References

M. Jameaba, “Digitization, FinTech Disruption, and Financial Stability: The Case of the Indonesian Banking Sector,” SSRN Electron. J., vol. 34, pp. 1–44, 2020, doi: 10.2139/ssrn.3529924.

G. Habib, S. Sharma, S. Ibrahim, I. Ahmad, S. Qureshi, and M. Ishfaq, “Blockchain Technology: Benefits, Challenges, Applications, and Integration of Blockchain Technology with Cloud Computing,” Futur. Internet, vol. 14, no. 11, p. 341, Nov. 2022, doi: 10.3390/fi14110341.

A. A. Ojugo and E. Ekurume, “Deep Learning Network Anomaly-Based Intrusion Detection Ensemble For Predictive Intelligence To Curb Malicious Connections: An Empirical Evidence,” Int. J. Adv. Trends Comput. Sci. Eng., vol. 10, no. 3, pp. 2090–2102, Jun. 2021, doi: 10.30534/ijatcse/2021/851032021.

A. Abdullah and R. Mohd Nor, “A Framework for the Development of a National Crypto-Currency,” Int. J. Econ. Financ., vol. 10, no. 9, p. 14, Aug. 2018, doi: 10.5539/ijef.v10n9p14.

N. C. Ashioba et al., “Empirical Evidence for Rainfall Runoff in Southern Nigeria Using a Hybrid Ensemble Machine Learning Approach,” J. Adv. Math. Comput. Sci., vol. 12, no. 1, pp. 73–86, 2024, doi: 10.22624/AIMS/MATHS/V12N1P6.

D. A. Obasuyi et al., “NiCuSBlockIoT: Sensor-based Cargo Assets Management and Traceability Blockchain Support for Nigerian Custom Services,” Comput. Inf. Syst. Dev. Informatics Allied Res. J., vol. 15, no. 2, pp. 45–64, 2024, doi: 10.22624/AIMS/CISDI/V15N2P4.

E. Kokoris-Kogias, P. Jovanovic, L. Gasser, N. Gailly, E. Syta, and B. Ford, “OmniLedger: A Secure, Scale-Out, Decentralized Ledger via Sharding,” in 2018 IEEE Symposium on Security and Privacy (SP), IEEE, May 2018, pp. 583–598. doi: 10.1109/SP.2018.000-5.

A. A. Ojugo, P. O. Ejeh, C. C. Odiakaose, A. O. Eboka, and F. U. Emordi, “Predicting rainfall runoff in Southern Nigeria using a fused hybrid deep learning ensemble,” Int. J. Informatics Commun. Technol., vol. 13, no. 1, pp. 108–115, Apr. 2024, doi: 10.11591/ijict.v13i1.pp108-115.

P. Brunt, “Consumer behaviour in tourism,” Tour. Manag., vol. 22, no. 5, pp. 579–580, 2001, doi: 10.1016/S0261-5177(01)00017-6.

S. A. Worku, “An Investigation of the Relationship among Perceived Organizational Support , Perceived Supervisor Support , Job Satisfaction and Turnover Intention,” J. Mark. Consum. Res., vol. 13, no. 1, pp. 1–9, 2015.

R. Shanthi and D. Kannaiah, “Consumers’ Perception on Online Shopping,” J. Mark. Consum. Res., vol. 27, pp. 30–34, 2015, [Online]. Available: www.iiste.org

N. M. Jahromi, S. A. Darabi, and M. Bahremand, “Study of Relationship Between Behavioural Characteristics and Demographic of Customers and Their Expected Advantages in Smart Cellphone Market,” Int. J. Manag. Stud. ISSN, vol. 2, no. 1, pp. 48–59, 2015, [Online]. Available: http://www.researchersworld.com/ijms/

C. O. Obruche, R. A. Abere, and R. E. Ako, “Deployment of a virtual key-card smart-lock system: the quest for improved security, eased user mobility and privacy,” FUPRE J. Sci. Ind. Res., vol. 8, no. 1, pp. 80–94, 2024.

A. A. Ojugo and A. O. Eboka, “Comparative Evaluation for High Intelligent Performance Adaptive Model for Spam Phishing Detection,” Digit. Technol. Vol. 3, 2018, Pages 9-15, vol. 3, no. 1, pp. 9–15, Nov. 2018, doi: 10.12691/DT-3-1-2.

E. . Ihama, M. I. Akazue, E. U. Omede, and D. V. Ojie, “A Framework for Smart City Model Enabled by Internet of Things (IoT),” Int. J. Comput. Appl., vol. 185, no. 6, pp. 6–11, 2023, doi: 10.5120/ijca2023922685.

D. M. Dhanalakshmi., M. M. Sakthivel., and M. M. Nandhini., “A study on Customer Perception Towards Online Shopping, Salem.,” Int. J. Adv. Res., vol. 5, no. 1, pp. 2468–2470, 2017, doi: 10.21474/ijar01/3033.

D. S. Peel, C. C. Craige, M. D. Buser, and B. D. Adam, “The value of traceability in the beef industry markets,” Natl. Whole Chain Traceability Inst., vol. 19, pp. 1–2, 2018, [Online]. Available: www.businessinsider.com

S. S. Jacob and S. Monachan, “A study on consumer perception towards online shopping,” Int. J. Res., vol. 8, no. 6, pp. 37–47, 2021.

B. O. Malasowe, M. I. Akazue, E. A. Okpako, F. O. Aghware, D. V. Ojie, and A. A. Ojugo, “Adaptive Learner-CBT with Secured Fault-Tolerant and Resumption Capability for Nigerian Universities,” Int. J. Adv. Comput. Sci. Appl., vol. 14, no. 8, pp. 135–142, 2023, doi: 10.14569/IJACSA.2023.0140816.

A. A. Ojugo and A. O. Eboka, “Memetic algorithm for short messaging service spam filter using text normalization and semantic approach,” Int. J. Informatics Commun. Technol., vol. 9, no. 1, p. 9, 2020, doi: 10.11591/ijict.v9i1.pp9-18.

N. A. Ananda, M. N. Fietroh, M. Mikhratunnisa, and R. M. Rizqi, “Theory Acceptance Model and Purchase Intention in Online Shopping,” Proc. 1st Annu. Conf. Educ. Soc. Sci. (ACCESS 2019), vol. 465, no. Access 2019, pp. 165–169, 2020, doi: 10.2991/assehr.k.200827.042.

F. Casino, V. Kanakaris, T. K. Dasaklis, S. Moschuris, and N. P. Rachaniotis, “Modeling food supply chain traceability based on blockchain technology,” IFAC-PapersOnLine, vol. 52, no. 13, pp. 2728–2733, 2019, doi: 10.1016/j.ifacol.2019.11.620.

C. Panwar, “Consumer perceived risk in online shopping environment via Facebook as medium,” Int. J. Eng. Technol., vol. 7, no. 4, pp. 2485–2490, 2018, doi: 10.14419/ijet.v7i4.11017.

A. A. Ojugo and R. E. Yoro, “Computational Intelligence in Stochastic Solution for Toroidal N-Queen,” Prog. Intell. Comput. Appl., vol. 1, no. 2, pp. 46–56, 2013, doi: 10.4156/pica.vol2.issue1.4.

H. Hasan, A. H. Harun, and Z. S. M. Rashid, “Factors That Influence Online Purchase Intention Of Online Brand,” Conf. Pap., vol. 16, no. 10, pp. 1–10, 2018.

F. U. Emordi et al., “TiSPHiMME: Time Series Profile Hidden Markov Ensemble in Resolving Item Location on Shelf Placement in Basket Analysis,” Digit. Innov. Contemp. Res. Sci., vol. 12, no. 1, pp. 33–48, 2024, doi: 10.22624/AIMS/DIGITAL/v11N4P3.

A. A. Ojugo and O. D. Otakore, “Computational solution of networks versus cluster grouping for social network contact recom-mender system,” Int. J. Informatics Commun. Technol., vol. 9, no. 3, p. 185, 2020, doi: 10.11591/ijict.v9i3.pp185-194.

I. P. Okobah and A. A. Ojugo, “Evolutionary Memetic Models for Malware Intrusion Detection: A Comparative Quest for Com-putational Solution and Convergence,” Int. J. Comput. Appl., vol. 179, no. 39, pp. 34–43, May 2018, doi: 10.5120/ijca2018916586.

Y. Ma, D. Sun, Q. Meng, Z. Ding, and C. Li, “Learning Multiscale Deep Features and SVM Regressors for Adaptive RGB-T Saliency Detection,” in 2017 10th International Symposium on Computational Intelligence and Design (ISCID), IEEE, Dec. 2017, pp. 389–392. doi: 10.1109/ISCID.2017.92.

A. A. Ojugo et al., “Forging a User-Trust Memetic Modular Neural Network Card Fraud Detection Ensemble: A Pilot Study,” J. Comput. Theor. Appl., vol. 1, no. 2, pp. 1–11, Oct. 2023, doi: 10.33633/jcta.v1i2.9259.

Z. Yu, Z. Niu, W. Tang, and Q. Wu, “Deep Learning for Daily Peak Load Forecasting-A Novel Gated Recurrent Neural Network Combining Dynamic Time Warping,” IEEE Access, vol. 7, pp. 17184–17194, 2019, doi: 10.1109/ACCESS.2019.2895604.

E. B. Wijayanti, D. R. I. M. Setiadi, and B. H. Setyoko, “Dataset Analysis and Feature Characteristics to Predict Rice Production based on eXtreme Gradient Boosting,” J. Comput. Theor. Appl., vol. 2, no. 1, pp. 79–90, 2024, doi: 10.62411/jcta.10057.

A. Suruliandi, G. Mariammal, and S. P. Raja, “Crop prediction based on soil and environmental characteristics using feature selection techniques,” Math. Comput. Model. Dyn. Syst., vol. 27, no. 1, pp. 117–140, 2021, doi: 10.1080/13873954.2021.1882505.

F. O. Aghware, R. E. Yoro, P. O. Ejeh, C. C. Odiakaose, F. U. Emordi, and A. A. Ojugo, “Sentiment analysis in detecting sophis-tication and degradation cues in malicious web contents,” Kongzhi yu Juece/Control Decis., vol. 38, no. 01, p. 653, 2023.

D. O. Oyewola, E. G. Dada, N. J. Ngozi, A. U. Terang, and S. A. Akinwumi, “COVID-19 Risk Factors, Economic Factors, and Epidemiological Factors nexus on Economic Impact: Machine Learning and Structural Equation Modelling Approaches,” J. Niger. Soc. Phys. Sci., vol. 3, no. 4, pp. 395–405, 2021, doi: 10.46481/jnsps.2021.173.

G. Cho, J. Yim, Y. Choi, J. Ko, and S. H. Lee, “Review of machine learning algorithms for diagnosing mental illness,” Psychiatry Investig., vol. 16, no. 4, pp. 262–269, 2019, doi: 10.30773/pi.2018.12.21.2.

F. Omoruwou, A. A. Ojugo, and S. E. Ilodigwe, “Strategic Feature Selection for Enhanced Scorch Prediction in Flexible Polyure-thane Form Manufacturing,” J. Comput. Theor. Appl., vol. 1, no. 3, pp. 346–357, Feb. 2024, doi: 10.62411/jcta.9539.

D. H. Zala and M. B. Chaudhari, “Review on use of ‘BAGGING’ technique in agriculture crop yield prediction,” IJSRD - Int. J. Sci. Res. Dev., vol. 6, no. 8, pp. 675–676, 2018.

M. Zareapoor and P. Shamsolmoali, “Application of Credit Card Fraud Detection: Based on Bagging Ensemble Classifier,” Procedia Comput. Sci., vol. 48, pp. 679–685, 2015, doi: 10.1016/j.procs.2015.04.201.

A. Maureen, O. Oghenefego, A. E. Edje, and C. O. Ogeh, “An Enhanced Model for the Prediction of Cataract Using Bagging Techniques,” vol. 8, no. 2, 2023.

B. Ghaffari and Y. Osman, “Customer churn prediction using machine learning: A study in the B2B subscription based service context,” Faculty of Computing, Blekinge Institute of Technology, Sweden, 2021. [Online]. Available: www.bth.se

C. C. Odiakaose, F. U. Emordi, P. O. Ejeh, O. Attoh, and N. C. Ashioba, “A pilot study to enhance semi-urban tele-penetration and services provision for undergraduates via the effective design and extension of campus telephony,” FUPRE J. Sci. Ind. Res., vol. 7, no. 3, pp. 35–48, 2023.

B. Gaye and A. Wulamu, “Sentimental Analysis for Online Reviews using Machine learning Algorithms,” pp. 1270–1275, 2019.

A. A. Ojugo and O. D. Otakore, “Intelligent cluster connectionist recommender system using implicit graph friendship algorithm for social networks,” IAES Int. J. Artif. Intell., vol. 9, no. 3, p. 497~506, 2020, doi: 10.11591/ijai.v9.i3.pp497-506.

F. U. Emordi, C. C. Odiakaose, P. O. Ejeh, O. Attoh, and N. C. Ashioba, “Student’s Perception and Assessment of the Dennis Osadebay University Asaba Website for Academic Information Retrieval, Improved Web Presence, Footprints and Usability,” FUPRE J. Sci. Ind. Res., vol. 7, no. 3, pp. 49–60, 2023.

A. Izang, S. Kuyoro, O. Alao, R. Okoro, and O. Adesegun, “Comparative Analysis of Association Rule Mining Algorithms in Market Basket Analysis Using Transactional Data,” J. Comput. Sci. Its Appl., vol. 27, no. 1, Aug. 2020, doi: 10.4314/jcsia.v27i1.8.

A. A. Ojugo and A. O. Eboka, “Inventory prediction and management in Nigeria using market basket analysis associative rule mining: memetic algorithm based approach,” Int. J. Informatics Commun. Technol., vol. 8, no. 3, p. 128, 2019, doi: 10.11591/ijict.v8i3.pp128-138.

A. A. Ojugo and O. D. Otakore, “Intelligent Peer-To-Peer Banking Framework: Advancing The Frontiers of Agent Banking For Financial Inclusion In Nigeria Via Smartphones,” Quant. Econ. Manag. Stud., vol. 1, no. 5, pp. 300–311, 2020, doi: 10.35877/454ri.qems140.

J. R. Saura, B. R. Herraez, and A. Reyes-Menendez, “Comparing a traditional approach for financial brand communication analysis with a big data analytics technique,” IEEE Access, vol. 7, pp. 37100–37108, 2019, doi: 10.1109/ACCESS.2019.2905301.

X. Zhang, Y. Han, W. Xu, and Q. Wang, “HOBA: A novel feature engineering methodology for credit card fraud detection with a deep learning architecture,” Inf. Sci. (Ny)., vol. 557, pp. 302–316, May 2021, doi: 10.1016/j.ins.2019.05.023.

A. A. Ojugo and O. Nwankwo, “Spectral-Cluster Solution For Credit-Card Fraud Detection Using A Genetic Algorithm Trained Modular Deep Learning Neural Network,” JINAV J. Inf. Vis., vol. 2, no. 1, pp. 15–24, Jan. 2021, doi: 10.35877/454RI.jinav274.

A. A. Ojugo et al., “Dependable Community-Cloud Framework for Smartphones,” Am. J. Networks Commun., vol. 4, no. 4, p. 95, 2015, doi: 10.11648/j.ajnc.20150404.13.

K. A. K. Saputra, M. Mu’ah, J. Jurana, C. W. M. Korompis, and D. T. H. Manurung, “Fraud Prevention Determinants: A Balinese Cultural Overview,” Australas. Business, Account. Financ. J., vol. 16, no. 3, pp. 167–181, 2022, doi: 10.14453/aabfj.v16i3.11.

M. I. Akazue, I. A. Debekeme, A. E. Edje, C. Asuai, and U. J. Osame, “UNMASKING FRAUDSTERS : Ensemble Features Se-lection to Enhance Random Forest Fraud Detection,” J. Comput. Theor. Appl., vol. 1, no. 2, pp. 201–212, 2023, doi: 10.33633/jcta.v1i2.9462.

M. K. Daoud and I. T. Trigui, “Smart Packaging: Consumer’s Perception and Diagnostic of Traceability Information,” 2019, pp. 352–370. doi: 10.1007/978-3-030-30874-2_28.

D. M. Bhuvaneswari, D. S. Kamalasaravanan, V. Kanimozhi, and M. V. Joghee, “A study on consumer perception towards online advertising,” Int. J. Appl. Res., vol. 8, no. 2, pp. 43–48, 2022, doi: 10.22271/allresearch.2022.v8.i2a.9386.

A. A. Ojugo and R. E. Yoro, “An Intelligent Lightweight Market Basket Associative Rule Mining for Smartphone Cloud-Based Application To Ease Banking Transaction,” Adv. Multidiscip. Sci. Res. J. Publ., vol. 4, no. 3, pp. 23–34, 2018, doi: 10.22624/aims/v4n3p4.

J. Zhao, Y.-W. Zhou, Z.-H. Cao, and J. Min, “The shelf space and pricing strategies for a retailer-dominated supply chain with consignment based revenue sharing contracts,” Eur. J. Oper. Res., vol. 280, no. 3, pp. 926–939, Feb. 2020, doi: 10.1016/j.ejor.2019.07.074.

O. Sinayobye, R. Musabe, A. Uwitonze, and A. Ngenzi, “A Credit Card Fraud Detection Model Using Machine Learning Methods with a Hybrid of Undersampling and Oversampling for Handling Imbalanced Datasets for High Scores,” 2023, pp. 142–155. doi: 10.1007/978-3-031-34222-6_12.

N. Rtayli and N. Enneya, “Enhanced credit card fraud detection based on SVM-recursive feature elimination and hyper-parameters optimization,” J. Inf. Secur. Appl., vol. 55, p. 102596, Dec. 2020, doi: 10.1016/j.jisa.2020.102596.

B. N. Supriya and C. B. Akki, “Sentiment prediction using enhanced xgboost and tailored random forest,” Int. J. Comput. Digit. Syst., vol. 10, no. 1, pp. 191–199, 2021, doi: 10.12785/ijcds/100119.

S. Meghana, B. . Charitha, S. Shashank, V. S. Sulakhe, and V. B. Gowda, “Developing An Application for Identification of Missing Children and Criminal Using Face Recognition.,” Int. J. Adv. Res. Comput. Commun. Eng., vol. 12, no. 6, pp. 272–279, 2023, doi: 10.17148/ijarcce.2023.12648.

Sharmila, R. Sharma, D. Kumar, V. Puranik, and K. Gautham, “Performance Analysis of Human Face Recognition Techniques,” Proc. - 2019 4th Int. Conf. Internet Things Smart Innov. Usages, IoT-SIU 2019, no. May 2020, pp. 1–4, 2019, doi: 10.1109/IoT-SIU.2019.8777610.

A. Maureen, O. Anthonia, E. Omede, and J. P. A. . Hampo, “Use of Adaptive Boosting Algorithm to Estimate User ’ s Trust in the Utilization o f Virtual Assistant Systems,” Int. J. Innov. Sci. Res. Technol., vol. 8, no. 1, pp. 502–507, 2023.

M. K. G. Roshan, “Multiclass Medical X-ray Image Classification using Deep Learning with Explainable AI,” Int. J. Res. Appl. Sci. Eng. Technol., vol. 10, no. 6, pp. 4518–4526, Jun. 2022, doi: 10.22214/ijraset.2022.44541.

B. O. Malasowe, F. O. Aghware, and B. E. Edim, “Pilot Study on Web Server HoneyPot Integration Using Injection Approach for Malware Intrusion Detection,” Comput. Inf. Syst. Dev. Informatics ALlied Res. J., vol. 15, no. 1, pp. 13–28, 2024, doi: 10.22624/AIMS/CISDI/V15N1P2.

A. A. Ojugo and A. O. Eboka, “Empirical Bayesian network to improve service delivery and performance dependability on a campus network,” IAES Int. J. Artif. Intell., vol. 10, no. 3, p. 623, Sep. 2021, doi: 10.11591/ijai.v10.i3.pp623-635.

E. A. Otorokpo et al., “DaBO-BoostE: Enhanced Data Balancing via Oversampling Technique for a Boosting Ensemble in Card-Fraud Detection,” Adv. Multidiscip. Sci. Res. J., vol. 12, no. 2, pp. 45–66, 2024, doi: 10.22624/AIMS/MATHS/V12N2P4.

L. De Kimpe, M. Walrave, W. Hardyns, L. Pauwels, and K. Ponnet, “You’ve got mail! Explaining individual differences in becoming a phishing target,” Telemat. Informatics, vol. 35, no. 5, pp. 1277–1287, Aug. 2018, doi: 10.1016/j.tele.2018.02.009.

K. Deepika, M. P. S. Nagenddra, M. V. Ganesh, and N. Naresh, “Implementation of Credit Card Fraud Detection Using Random Forest Algorithm,” Int. J. Res. Appl. Sci. Eng. Technol., vol. 10, no. 3, pp. 797–804, Mar. 2022, doi: 10.22214/ijraset.2022.40702.

J. R. Amalraj and R. Lourdusamy, “A Novel distributed token-based algorithm using secret sharing scheme for secure data access control,” Int. J. Comput. Networks Appl., vol. 9, no. 4, p. 374, Aug. 2022, doi: 10.22247/ijcna/2022/214501.

P. Boulieris, J. Pavlopoulos, A. Xenos, and V. Vassalos, “Fraud detection with natural language processing,” Mach. Learn., Jul. 2023, doi: 10.1007/s10994-023-06354-5.

I. A. Anderson and W. Wood, “Habits and the electronic herd: The psychology behind social media’s successes and failures,” Consum. Psychol. Rev., vol. 4, no. 1, pp. 83–99, Jan. 2021, doi: 10.1002/arcp.1063.

Y. Kang, M. Ozdogan, X. Zhu, Z. Ye, C. Hain, and M. Anderson, “Comparative assessment of environmental variables and machine learning algorithms for maize yield prediction in the US Midwest,” Environ. Res. Lett., vol. 15, no. 6, p. 064005, Jun. 2020, doi: 10.1088/1748-9326/ab7df9.

B. O. Malasowe, A. E. Okpako, M. D. Okpor, P. O. Ejeh, A. A. Ojugo, and R. E. Ako, “FePARM: The Frequency-Patterned As-sociative Rule Mining Framework on Consumer Purchasing-Pattern for Online Shops,” Adv. Multidiscip. Sci. Res. J., vol. 15, no. 2, pp. 15–28, 2024, doi: 10.22624/AIMS/CISDI/V15N2P2-1.

B. O. Malasowe, D. V. Ojie, A. A. Ojugo, and M. D. Okpor, “Co-Infection Prevalence of Covid-19 Underlying Tuberculosis Disease Using a Susceptible Infect Clustering Bayes Network,” DUTSE J. Pure Appl. Sci., vol. 10, no. 2, pp. 80–94, 2024, doi: 10.4314/dujopas.v10i2a.8.

J. M. Kapadia and P. Vaghela, “An application of Technology Acceptance Model in understanding students’ behavioural intention for use of internet banking in Surat City,” Int. Conf. Gov. E-commerce Contemp. Issues Challenges, no. 1, pp. 1–11, 2016, [Online]. Available: https://www.researchgate.net/publication/307639141

R. Nalini, R. Amudha, R. Alamelu, L. C. S. Motha, and V. Raja, “Consumer Perception towards Online Shopping.,” Asian Res. J. Bus. Manag., vol. 4, no. 3, pp. 335–342, 2017, doi: 10.24214/arjbm/4/3/113129.

P. O. Ejeh et al., “Counterfeit Drugs Detection in the Nigeria Pharma-Chain via Enhanced Blockchain-based Mobile Authentication Service,” Adv. Multidiscip. Sci. Res. J., vol. 12, no. 2, pp. 25–44, 2024, doi: 10.22624/AIMS/MATHS/V12N2P3.

R. Joshi and P. S. Vaghela, “Online buying habit: an empirical study of Surat City,” Int. J. Mark. Trends, vol. 21, no. 2, pp. 1–15, 2018.

M. Armstrong and J. Vickers, “Patterns of Price Competition and the Structure of Consumer Choice,” MPRA Pap., vol. 1, no. 98346, pp. 1–40, 2020.

R. G. Bhati, “A Survey on Sentiment Analysis Algorithms and Datasets,” Rev. Comput. Eng. Res., vol. 6, no. 2, pp. 84–91, 2019, doi: 10.18488/journal.76.2019.62.84.91.

D. Ng et al., “De’hubert: Disentangling Noise in a Self-Supervised Model for Robust Speech Recognition,” ICASSP, IEEE Int. Conf. Acoust. Speech Signal Process. - Proc., 2023, doi: 10.1109/ICASSP49357.2023.10096603.

B. Pavlyshenko and M. Stasiuk, “Data augmentation in text classification with multiple categories,” Electron. Inf. Technol., vol. 25, p. 749, 2024, doi: 10.30970/eli.25.6.

M. N. Al-Mhiqani, S. N. Isnin, R. Ahmed, and Z. Z. Abidi, “An Integrated Imbalanced Learning and Deep Neural Network Model for Insider Threat Detection,” Int. J. Adv. Comput. Sci. Appl., vol. 12, no. 1, pp. 1–5, 2021.

H. Lu and C. Rakovski, “The Effect of Text Data Augmentation Methods and Strategies in Classification Tasks of Unstructured Medical Notes,” Res. Sq., vol. 1, no. 1, pp. 1–29, 2022, [Online]. Available: https://doi.org/10.21203/rs.3.rs-2039417/v1

A. A. Ojugo et al., “CoSoGMIR: A Social Graph Contagion Diffusion Framework using the Movement-Interaction-Return Tech-nique,” J. Comput. Theor. Appl., vol. 1, no. 2, pp. 37–47, 2023, doi: 10.33633/jcta.v1i2.9355.

M. Bayer, M. A. Kaufhold, B. Buchhold, M. Keller, J. Dallmeyer, and C. Reuter, “Data augmentation in natural language processing: a novel text generation approach for long and short text classifiers,” Int. J. Mach. Learn. Cybern., vol. 14, no. 1, pp. 135–150, 2023, doi: 10.1007/s13042-022-01553-3.

H. Zardi and H. Alrajhi, “Anomaly Discover: A New Community-based Approach for Detecting Anomalies in Social Networks,” Int. J. Adv. Comput. Sci. Appl., vol. 14, no. 4, pp. 912–920, 2023, doi: 10.14569/IJACSA.2023.01404101.

R. Sheik, K. P. Siva Sundara, and S. J. Nirmala, “Neural Data Augmentation for Legal Overruling Task: Small Deep Learning Models vs. Large Language Models,” Neural Process. Lett., vol. 56, no. 2, 2024, doi: 10.1007/s11063-024-11574-4.

M. Barlaud, A. Chambolle, and J.-B. Caillau, “Robust supervised classification and feature selection using a primal-dual method,” Feb. 2019.

J. Wei, Q. Chen, P. Peng, B. Guedj, and L. Li, “A Randomized Extrapolation Based on Principal Components for Data Augmenta-tion,” SSRN Electron. J., no. May, 2022, doi: 10.2139/ssrn.4149531.

K. Ding, R. Li, Y. Xu, X. Du, and B. Deng, “Adaptive data augmentation for mandarin automatic speech recognition,” Appl. Intell., Apr. 2024, doi: 10.1007/s10489-024-05381-6.

C. Wright and A. Serguieva, “Sustainable blockchain-enabled services: Smart contracts,” in 2017 IEEE International Conference on Big Data (Big Data), IEEE, Dec. 2017, pp. 4255–4264. doi: 10.1109/BigData.2017.8258452.

M. I. Akazue et al., “Handling Transactional Data Features via Associative Rule Mining for Mobile Online Shopping Platforms,” Int. J. Adv. Comput. Sci. Appl., vol. 15, no. 3, pp. 530–538, 2024, doi: 10.14569/IJACSA.2024.0150354.

D. R. I. M. Setiadi, K. Nugroho, A. R. Muslikh, S. Wahyu, and A. A. Ojugo, “Integrating SMOTE-Tomek and Fusion Learning with XGBoost Meta-Learner for Robust Diabetes Recognition,” J. Futur. Artif. Intell. Technol., vol. 1, no. 1, pp. 23–38, 2024, doi: 10.62411/faith.2024-11.

F. O. Aghware et al., “Enhancing the Random Forest Model via Synthetic Minority Oversampling Technique for Credit-Card Fraud Detection,” J. Comput. Theor. Appl., vol. 1, no. 4, pp. 407–420, Mar. 2024, doi: 10.62411/jcta.10323.

A. A. Ojugo and R. E. Yoro, “Extending the three-tier constructivist learning model for alternative delivery: ahead the COVID-19 pandemic in Nigeria,” Indones. J. Electr. Eng. Comput. Sci., vol. 21, no. 3, p. 1673, Mar. 2021, doi: 10.11591/ijeecs.v21.i3.pp1673-1682.

A. A. Ojugo and O. D. Otakore, “Improved Early Detection of Gestational Diabetes via Intelligent Classification Models: A Case of the Niger Delta Region in Nigeria,” J. Comput. Sci. Appl., vol. 6, no. 2, pp. 82–90, 2018, doi: 10.12691/jcsa-6-2-5.

A. S. Pillai, “Multi-Label Chest X-Ray Classification via Deep Learning,” J. Intell. Learn. Syst. Appl., vol. 14, pp. 43–56, 2022, doi: 10.4236/jilsa.2022.144004.

D. S. Charan, H. Nadipineni, S. Sahayam, and U. Jayaraman, “Method to Classify Skin Lesions using Dermoscopic images,” Aug. 2020.

A. Ibor, E. Edim, and A. Ojugo, “Secure Health Information System with Blockchain Technology,” J. Niger. Soc. Phys. Sci., vol. 5, no. 992, p. 992, Apr. 2023, doi: 10.46481/jnsps.2023.992.

O. V. Lee et al., “A malicious URLs detection system using optimization and machine learning classifiers,” Indones. J. Electr. Eng. Comput. Sci., vol. 17, no. 3, p. 1210, Mar. 2020, doi: 10.11591/ijeecs.v17.i3.pp1210-1214.

M. Rathi and V. Pareek, “Spam Mail Detection through Data Mining – A Comparative Performance Analysis,” Int. J. Mod. Educ. Comput. Sci., vol. 5, no. 12, pp. 31–39, 2013, doi: 10.5815/ijmecs.2013.12.05.

X. Ying, “An Overview of Overfitting and its Solutions,” J. Phys. Conf. Ser., vol. 1168, no. 2, 2019, doi: 10.1088/1742-6596/1168/2/022022.

A. A. Ojugo et al., “Forging a learner-centric blended-learning framework via an adaptive content-based architecture,” Sci. Inf. Technol. Lett., vol. 4, no. 1, pp. 40–53, May 2023, doi: 10.31763/sitech.v4i1.1186.

A. A. Ojugo and R. E. Yoro, “Predicting Futures Price And Contract Portfolios Using The ARIMA Model: A Case of Nigeria’s Bonny Light and Forcados,” Quant. Econ. Manag. Stud., vol. 1, no. 4, pp. 237–248, 2020, doi: 10.35877/454ri.qems139.

R. Nasir, M. Afzal, R. Latif, and W. Iqbal, “Behavioral Based Insider Threat Detection Using Deep Learning,” IEEE Access, vol. 9, pp. 143266–143274, 2021, doi: 10.1109/ACCESS.2021.3118297.

A. A. Ojugo and A. O. Eboka, “Modeling the Computational Solution of Market Basket Associative Rule Mining Approaches Using Deep Neural Network,” Digit. Technol., vol. 3, no. 1, pp. 1–8, 2018, doi: 10.12691/dt-3-1-1.

A. A. Ojugo and D. O. Otakore, “Redesigning Academic Website for Better Visibility and Footprint: A Case of the Federal Uni-versity of Petroleum Resources Effurun Website,” Netw. Commun. Technol., vol. 3, no. 1, p. 33, Jul. 2018, doi: 10.5539/nct.v3n1p33.

W. W. Guo and H. Xue, “Crop Yield Forecasting Using Artificial Neural Networks: A Comparison between Spatial and Temporal Models,” Math. Probl. Eng., vol. 20, no. 4, pp. 1–7, 2014, doi: 10.1155/2014/857865.

V. N. Dornadula and S. Geetha, “Credit Card Fraud Detection using Machine Learning Algorithms,” Procedia Comput. Sci., vol. 165, pp. 631–641, 2019, doi: 10.1016/j.procs.2020.01.057.

K. Kakhi, R. Alizadehsani, H. M. D. Kabir, A. Khosravi, S. Nahavandi, and U. R. Acharya, “The internet of medical things and artificial intelligence: trends, challenges, and opportunities,” Biocybern. Biomed. Eng., vol. 42, no. 3, pp. 749–771, 2022, doi: 10.1016/j.bbe.2022.05.008.

H. Said, B. B. S. Tawfik, and M. A. Makhlouf, “A Deep Learning Approach for Sentiment Classification of COVID-19 Vaccination Tweets,” Int. J. Adv. Comput. Sci. Appl., vol. 14, no. 4, pp. 530–538, 2023, doi: 10.14569/IJACSA.2023.0140458.

G. Behboud, “Reasoning using Modular Neural Network,” Towar. Data Sci., vol. 34, no. 2, pp. 12–34, 2020.

A. A. Ojugo and A. O. Eboka, “Assessing Users Satisfaction and Experience on Academic Websites: A Case of Selected Nigerian Universities Websites,” Int. J. Inf. Technol. Comput. Sci., vol. 10, no. 10, pp. 53–61, Oct. 2018, doi: 10.5815/ijitcs.2018.10.07.

A. Taravat and F. Del Frate, “Weibull Multiplicative Model and Machine Learning Models for Full-Automatic Dark-Spot Detection From Sar Images,” Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci., vol. XL-1/W3, no. September 2013, pp. 421–424, 2013, doi: 10.5194/isprsarchives-xl-1-w3-421-2013.

A. A. Ojugo, P. O. Ejeh, C. C. Odiakaose, A. O. Eboka, and F. U. Emordi, “Improved distribution and food safety for beef pro-cessing and management using a blockchain-tracer support framework,” Int. J. Informatics Commun. Technol., vol. 12, no. 3, p. 205, Dec. 2023, doi: 10.11591/ijict.v12i3.pp205-213.

A. A. Ojugo, M. I. Akazue, P. O. Ejeh, C. C. Odiakaose, and F. U. Emordi, “DeGATraMoNN: Deep Learning Memetic Ensemble to Detect Spam Threats via a Content-Based Processing,” Kongzhi yu Juece/Control Decis., vol. 38, no. 1, pp. 667–678, 2023.

M. Gratian, S. Bandi, M. Cukier, J. Dykstra, and A. Ginther, “Correlating human traits and cyber security behavior intentions,” Comput. Secur., vol. 73, pp. 345–358, Mar. 2018, doi: 10.1016/j.cose.2017.11.015.

C. Bentéjac, A. Csörgő, and G. Martínez-Muñoz, “A Comparative Analysis of XGBoost,” no. February, 2019, doi: 10.1007/s10462-020-09896-5.

V. Umarani, A. Julian, and J. Deepa, “Sentiment Analysis using various Machine Learning and Deep Learning Techniques,” J. Niger. Soc. Phys. Sci., vol. 3, no. 4, pp. 385–394, 2021, doi: 10.46481/jnsps.2021.308.

P. . Maya Gopal and Bhargavi R, “Feature Selection for Yield Prediction Using BORUTA Algorithm,” Int. J. Pure Appl. Math., vol. 118, no. 22, pp. 139–144, 2018.

S. Paliwal, A. K. Mishra, R. K. Mishra, N. Nawaz, and M. Senthilkumar, “XGBRS Framework Integrated with Word2Vec Sentiment Analysis for Augmented Drug Recommendation,” Comput. Mater. Contin., vol. 72, no. 3, pp. 5345–5362, 2022, doi: 10.32604/cmc.2022.025858.

D. A. Al-Qudah, A. M. Al-Zoubi, P. A. Castillo-Valdivieso, and H. Faris, “Sentiment analysis for e-payment service providers using evolutionary extreme gradient boosting,” IEEE Access, vol. 8, pp. 189930–189944, 2020, doi: 10.1109/ACCESS.2020.3032216.

A. M. Ifioko et al., “CoDuBoTeSS: A Pilot Study to Eradicate Counterfeit Drugs via a Blockchain Tracer Support System on the Nigerian Frontier,” J. Behav. Informatics, Digit. Humanit. Dev. Res., vol. 10, no. 2, pp. 53–74, 2024, doi: 10.22624/AIMS/BHI/V10N2P6.

S. E. Brizimor et al., “WiSeCart: Sensor-based Smart-Cart with Self-Payment Mode to Improve Shopping Experience and Inventory Management,” Soc. Informatics, Business, Polit. Law, Environ. Sci. Technol., vol. 10, no. 1, pp. 53–74, 2024, doi: 10.22624/AIMS/SIJ/V10N1P7.

R. R. Ataduhor et al., “StreamBoostE: A Hybrid Boosting-Collaborative Filter Scheme for Adaptive User-Item Recommender for Streaming Services,” Adv. Multidiscip. Sci. Res. J., vol. 10, no. 2, pp. 89–106, 2024, doi: 10.22624/AIMS/V10N2P8.

G. TekalignTujo, G. Dileep Kumar, D. ElifeneshYitagesu, and B. MeseretGirma, “Predictive Model to Predict Seed Classes using Machine Learning,” Int. J. Eng. Res. & Technol., vol. 6, no. 08, pp. 334–344, 2017.

Q. Li et al., “An Enhanced Grey Wolf Optimization Based Feature Selection Wrapped Kernel Extreme Learning Machine for Medical Diagnosis,” Comput. Math. Methods Med., vol. 2017, pp. 1–15, 2017, doi: 10.1155/2017/9512741.

F. Mustofa, A. N. Safriandono, A. R. Muslikh, and D. R. I. M. Setiadi, “Dataset and Feature Analysis for Diabetes Mellitus Classi-fication using Random Forest,” J. Comput. Theor. Appl., vol. 1, no. 1, pp. 41–48, 2023, doi: 10.33633/jcta.v1i1.9190.

A. R. Muslikh, D. R. I. M. Setiadi, and A. A. Ojugo, “Rice disease recognition using transfer xception convolution neural network,” J. Tek. Inform., vol. 4, no. 6, pp. 1541–1547, 2023, doi: 10.52436/1.jutif.2023.4.6.1529.

E. U. Omede, A. E. Edje, M. I. Akazue, H. Utomwen, and A. A. Ojugo, “IMANoBAS: An Improved Multi-Mode Alert Notification IoT-based Anti-Burglar Defense System,” J. Comput. Theor. Appl., vol. 1, no. 3, pp. 273–283, Feb. 2024, doi: 10.62411/jcta.9541.

C. C. Odiakaose et al., “DeLEMPaD: Pilot Study on a Deep Learning Ensemble for Energy Market Prediction of Price Volatility and Direction,” Comput. Inf. Syst. Dev. Informatics Allied Res. J., vol. 15, no. 1, pp. 47–62, 2024, doi: 10.22624/AIMS/CISDI/V15N1P4.

C. L. Udeze, I. E. Eteng, and A. E. Ibor, “Application of Machine Learning and Resampling Techniques to Credit Card Fraud Detection,” J. Niger. Soc. Phys. Sci., vol. 12, p. 769, Aug. 2022, doi: 10.46481/jnsps.2022.769.

N. N. Wijaya, D. R. I. M. Setiadi, and A. R. Muslikh, “Music-Genre Classification using Bidirectional Long Short-Term Memory and Mel-Frequency Cepstral Coefficients,” J. Comput. Theor. Appl., vol. 2, no. 1, pp. 13–26, 2024.

D. A. Oyemade, R. J. Ureigho, F. A.-A. Imouokhome, E. U. Omoregbee, J. Akpojaro, and A. Ojugo, “A Three Tier Learning Model for Universities in Nigeria,” J. Technol. Soc., vol. 12, no. 2, pp. 9–20, 2016, doi: 10.18848/2381-9251/CGP/v12i02/9-20.

F. O. Aghware, R. E. Yoro, P. O. Ejeh, C. C. Odiakaose, F. U. Emordi, and A. A. Ojugo, “DeLClustE: Protecting Users from Credit-Card Fraud Transaction via the Deep-Learning Cluster Ensemble,” Int. J. Adv. Comput. Sci. Appl., vol. 14, no. 6, pp. 94–100, 2023, doi: 10.14569/IJACSA.2023.0140610.

Y. Bouchlaghem, Y. Akhiat, and S. Amjad, “Feature Selection: A Review and Comparative Study,” E3S Web Conf., vol. 351, pp. 1–6, 2022, doi: 10.1051/e3sconf/202235101046.

S. Wang, J. Tang, H. Liu, and E. Lansing, “Encyclopedia of Machine Learning and Data Science,” Encycl. Mach. Learn. Data Sci., no. October 2017, pp. 1–9, 2020, doi: 10.1007/978-1-4899-7502-7.

A. Jovic, K. Brkic, and N. Bogunovic, “A review of feature selection methods with applications,” in 2015 38th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), IEEE, May 2015, pp. 1200–1205. doi: 10.1109/MIPRO.2015.7160458.

J. Li et al., “Feature selection: A data perspective,” ACM Comput. Surv., vol. 50, no. 6, 2017, doi: 10.1145/3136625.

C. C. Aggarwal, “Educational and software resources for data classification,” Data Classif. Algorithms Appl., pp. 657–665, 2014, doi: 10.1201/b17320.

Downloads

Published

2024-06-27

How to Cite

Ako, R. E., Aghware, F. O., Okpor, M. D., Akazue, M. I., Yoro, R. E., Ojugo, A. A., Setiadi, D. R. I. M., Odiakaose, C. C., Abere, R. A., Emordi, F. U., Geteloma, V. O., & Ejeh, P. O. (2024). Effects of Data Resampling on Predicting Customer Churn via a Comparative Tree-based Random Forest and XGBoost. Journal of Computing Theories and Applications, 2(1), 86–101. https://doi.org/10.62411/jcta.10562