Leveraging Variational Quantum-Classical Algorithms for Enhanced Lung Cancer Prediction

Authors

DOI:

https://doi.org/10.62411/jcta.10424

Keywords:

Classical algorithm, PennyLane, Quantum algorithm, Quantum computing, Quantum machine learning

Abstract

This work explores the potential of PennyLane and variational quantum-classical algorithms (VQCA) to forecast lung cancer using a structured dataset. The VQCA model performs exceptionally well, with flawless training, validation, and test accuracies of 1.0, demonstrating its capacity to identify patterns in the dataset and provide reliable predictions successfully. Contrarily, the accuracy of the quantum neural network (QNN) and classical neural network (NN) models is lower, demonstrating the benefits of utilizing quantum computing methods for enhanced predictive modeling. We provide a complete examination of the data, stressing the better performance of the VQCA model and its promise in correctly predicting lung cancer. The results highlight the importance of quantum-classical algorithms and help us understand the benefits and drawbacks of various strategies for predicting lung cancer. The study highlights the potential applications of quantum computing techniques in advancing the field of healthcare analytics. It shows the capability of the VQCA model to predict lung cancer using a tabular dataset accurately. Further research in this area is needed to explore scalability and practical implementation aspects. In summary, this study showcases the potential of VQCA and PennyLane in predicting lung cancer and underscores the benefits of quantum computing techniques in healthcare analytics.

Author Biographies

Philip Omoniyi Adebayo, Kogi State Polytechnic

Department of Computer Engineering, Kogi State Polytechnic, Lokoja, Nigeria

Frederick Basaky, Federal University Lokoja.

Department of Computer Science, Federal University Lokoja, Kogi State, Nigeria

Edgar Osaghae, Federal University Lokoja.

Department of Computer Science, Federal University Lokoja, Kogi State, Nigeria

References

H. Sung et al., “Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries,” CA. Cancer J. Clin., vol. 71, no. 3, pp. 209–249, May 2021, doi: 10.3322/caac.21660.

A. Esteva et al., “A guide to deep learning in healthcare,” Nat. Med., vol. 25, no. 1, pp. 24–29, Jan. 2019, doi: 10.1038/s41591-018-0316-z.

J. Biamonte, P. Wittek, N. Pancotti, P. Rebentrost, N. Wiebe, and S. Lloyd, “Quantum machine learning,” Nature, vol. 549, no. 7671, pp. 195–202, Sep. 2017, doi: 10.1038/nature23474.

A. Ara, M. A. A. Maraj, M. A. Rahman, and M. H. Bari, “The Impact of Machine Learning on Prescriptive Analytics for Optimized Business Decision-Making,” Glob. Mainstream J., vol. 1, no. 1, pp. 7–18, Apr. 2024, doi: 10.62304/ijmisds.v1i1.112.

Z. Obermeyer and E. J. Emanuel, “Predicting the Future — Big Data, Machine Learning, and Clinical Medicine,” N. Engl. J. Med., vol. 375, no. 13, pp. 1216–1219, Sep. 2016, doi: 10.1056/NEJMp1606181.

A. Esteva et al., “Dermatologist-level classification of skin cancer with deep neural networks,” Nature, vol. 542, no. 7639, pp. 115–118, Feb. 2017, doi: 10.1038/nature21056.

A. Pumsirirat and L. Yan, “Credit Card Fraud Detection using Deep Learning based on Auto-Encoder and Restricted Boltzmann Machine,” Int. J. Adv. Comput. Sci. Appl., vol. 9, no. 1, 2018, doi: 10.14569/IJACSA.2018.090103.

D. R. I. M. Setiadi, A. R. Muslikh, S. W. Iriananda, W. Warto, J. Gondohanindijo, and A. A. Ojugo, “Outlier Detection Using Gaussian Mixture Model Clustering to Optimize XGBoost for Credit Approval Prediction,” J. Comput. Theor. Appl., vol. 2, no. 2, pp. 244–255, Nov. 2024, doi: 10.62411/jcta.11638.

W. Lakhchini, R. Wahabi, and M. El Kabbouri, “Artificial Intelligence & Machine Learning in Finance: A literature review,” Int. J. Accounting, Financ. Audit. Manag. Econ., vol. 3, no. 6–1, pp. 437–455, 2022, doi: 10.5281/zenodo.7454232.

M. A. Thanoon, M. A. Zulkifley, M. A. A. Mohd Zainuri, and S. R. Abdani, “A Review of Deep Learning Techniques for Lung Cancer Screening and Diagnosis Based on CT Images,” Diagnostics, vol. 13, no. 16, p. 2617, Aug. 2023, doi: 10.3390/diagnostics13162617.

A. Hosny, C. Parmar, J. Quackenbush, L. H. Schwartz, and H. J. W. L. Aerts, “Artificial intelligence in radiology,” Nat. Rev. Cancer, vol. 18, no. 8, pp. 500–510, Aug. 2018, doi: 10.1038/s41568-018-0016-5.

D. Ardila et al., “End-to-end lung cancer screening with three-dimensional deep learning on low-dose chest computed tomography,” Nat. Med., vol. 25, no. 6, pp. 954–961, Jun. 2019, doi: 10.1038/s41591-019-0447-x.

M. T. Lu, V. K. Raghu, T. Mayrhofer, H. J. W. L. Aerts, and U. Hoffmann, “Deep Learning Using Chest Radiographs to Identify High-Risk Smokers for Lung Cancer Screening Computed Tomography: Development and Validation of a Prediction Model,” Ann. Intern. Med., vol. 173, no. 9, pp. 704–713, Nov. 2020, doi: 10.7326/M20-1868.

M. Benedetti, E. Lloyd, S. Sack, and M. Fiorentini, “Parameterized quantum circuits as machine learning models,” Quantum Sci. Technol., vol. 4, no. 4, p. 043001, Nov. 2019, doi: 10.1088/2058-9565/ab4eb5.

V. Bergholm et al., “PennyLane: Automatic differentiation of hybrid quantum-classical computations,” arXiv. Nov. 12, 2018. doi: 10.48550/arXiv.1811.04968.

R. Stephens, Essential Algorithms, A Practical Approach to Computer Algorithms using Python and C#. Indianapolis: Wiley, 2019. doi: 10.1002/9781119575955.

M. Kashif and S. Al-Kuwari, “Design Space Exploration of Hybrid Quantum–Classical Neural Networks,” Electronics, vol. 10, no. 23, p. 2980, Nov. 2021, doi: 10.3390/electronics10232980.

V. Havlíček et al., “Supervised learning with quantum-enhanced feature spaces,” Nature, vol. 567, no. 7747, pp. 209–212, Mar. 2019, doi: 10.1038/s41586-019-0980-2.

M. Schuld and F. Petruccione, “Quantum Machine Learning,” in Encyclopedia of Machine Learning and Data Mining, Boston, MA: Springer US, 2016, pp. 1–10. doi: 10.1007/978-1-4899-7502-7_913-1.

M. Schuld, M. Fingerhuth, and F. Petruccione, “Implementing a distance-based classifier with a quantum interference circuit,” EPL (Europhysics Lett., vol. 119, no. 6, p. 60002, Sep. 2017, doi: 10.1209/0295-5075/119/60002.

M. Benedetti, E. Lloyd, S. Sack, and M. Fiorentini, “Erratum: Parameterized quantum circuits as machine learning models (2019 Quant. Sci. Tech. 4 043001),” Quantum Sci. Technol., vol. 5, no. 1, p. 019601, Dec. 2019, doi: 10.1088/2058-9565/ab5944.

V. Dunjko and H. J. Briegel, “Machine learning & artificial intelligence in the quantum domain: a review of recent progress,” Reports Prog. Phys., vol. 81, no. 7, p. 074001, Jul. 2018, doi: 10.1088/1361-6633/aab406.

F. S. Gomiasti, W. Warto, E. Kartikadarma, J. Gondohanindijo, and D. R. I. M. Setiadi, “Enhancing Lung Cancer Classification Effectiveness Through Hyperparameter-Tuned Support Vector Machine,” J. Comput. Theor. Appl., vol. 1, no. 4, pp. 396–406, Mar. 2024, doi: 10.62411/jcta.10106.

S. Vashisth, I. Dhall, and G. Aggarwal, “Design and analysis of quantum powered support vector machines for malignant breast cancer diagnosis,” J. Intell. Syst., vol. 30, no. 1, pp. 998–1013, Sep. 2021, doi: 10.1515/jisys-2020-0089.

M. A. Pfeffer and S. H. Ling, “Evolving Optimised Convolutional Neural Networks for Lung Cancer Classification,” Signals, vol. 3, no. 2, pp. 284–295, May 2022, doi: 10.3390/signals3020018.

A. N. Safriandono, D. R. I. M. Setiadi, A. Dahlan, F. Z. Rahmanti, I. S. Wibisono, and A. A. Ojugo, “Analyzing Quantum Feature Engineering and Balancing Strategies Effect on Liver Disease Classification,” J. Futur. Artif. Intell. Technol., vol. 1, no. 1, pp. 51–63, Jun. 2024, doi: 10.62411/faith.2024-12.

J. Morgado et al., “Machine Learning and Feature Selection Methods for EGFR Mutation Status Prediction in Lung Cancer,” Appl. Sci., vol. 11, no. 7, p. 3273, Apr. 2021, doi: 10.3390/app11073273.

S. Altares-López, J. J. García-Ripoll, and A. Ribeiro, “AutoQML: Automatic Generation and Training of Robust Quantum-Inspired Classifiers by Using Genetic Algorithms on Grayscale Images,” Aug. 2022, doi: 10.1016/j.eswa.2023.122984.

S. Y.-C. Chen, C.-H. H. Yang, J. Qi, P.-Y. Chen, X. Ma, and H.-S. Goan, “Variational Quantum Circuits for Deep Reinforcement Learning,” IEEE Access, vol. 8, pp. 141007–141024, 2020, doi: 10.1109/ACCESS.2020.3010470.

D. Szwarcman, D. Civitarese, and M. Vellasco, “Quantum-inspired evolutionary algorithm applied to neural architecture search,” Appl. Soft Comput., vol. 120, p. 108674, May 2022, doi: 10.1016/j.asoc.2022.108674.

P.-L. Zheng, J.-B. Wang, and Y. Zhang, “Efficient and quantum-adaptive machine learning with fermion neural networks,” Nov. 2022, doi: 10.1103/PhysRevApplied.20.044002.

A. Melnikov, M. Kordzanganeh, A. Alodjants, and R.-K. Lee, “Quantum machine learning: from physics to software engineering,” Adv. Phys. X, vol. 8, no. 1, Dec. 2023, doi: 10.1080/23746149.2023.2165452.

M. Schuld and N. Killoran, “Quantum Machine Learning in Feature Hilbert Spaces,” Phys. Rev. Lett., vol. 122, no. 4, p. 040504, Feb. 2019, doi: 10.1103/PhysRevLett.122.040504.

Dhruv Saldanha, Amogh Agastya, Pratyanush G, and Madhavi R P, “A Review of Supervised Variational Quantum Classifiers,” Int. J. Eng. Res., vol. V9, no. 04, Apr. 2020, doi: 10.17577/IJERTV9IS040485.

S. Bravyi, D. Gosset, and R. König, “Quantum advantage with shallow circuits,” Science (80-. )., vol. 362, no. 6412, pp. 308–311, Oct. 2018, doi: 10.1126/science.aar3106.

M. P. Harrigan et al., “Quantum approximate optimization of non-planar graph problems on a planar superconducting processor,” Nat. Phys., vol. 17, no. 3, pp. 332–336, Mar. 2021, doi: 10.1038/s41567-020-01105-y.

M. V. Davidovich, “Casimir-Lifshitz forces and plasmons in a structure of two dielectric rods: Green’s function method of electrodynamics,” arXiv. Feb. 10, 2021. [Online]. Available: http://arxiv.org/abs/2102.07618

K. A. Tychola, T. Kalampokas, and G. A. Papakostas, “Quantum Machine Learning—An Overview,” Electronics, vol. 12, no. 11, p. 2379, May 2023, doi: 10.3390/electronics12112379.

S. K. Punia, M. Kumar, and A. Sharma, “Intelligent Data Analysis with Classical Machine Learning,” in Intelligent Computing and Applications, 2021, pp. 793–799. doi: 10.1007/978-981-15-5566-4_71.

K. P. Murphy, Machine Learning. London, England: MIT Press, 2012.

I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. London, England: MIT Press, 2016.

M. Akrom et al., “Quantum machine learning for corrosion resistance in stainless steel,” Mater. Today Quantum, vol. 3, no. August, p. 100013, Sep. 2024, doi: 10.1016/j.mtquan.2024.100013.

M. Akrom, S. Rustad, and H. K. Dipojono, “Development of quantum machine learning to evaluate the corrosion inhibition capability of pyrimidine compounds,” Mater. Today Commun., vol. 39, p. 108758, Jun. 2024, doi: 10.1016/j.mtcomm.2024.108758.

P. Adebayo, F. Basaky, and E. Osaghae, “Developing a Model for Predicting Lung Cancer Using Variational Quantum-Classical Algorithm: A Survey,” J. Appl. Artif. Intell., vol. 3, no. 1, pp. 47–60, Jun. 2022, doi: 10.48185/jaai.v3i1.446.

Downloads

Published

2024-12-06

How to Cite

Adebayo, P. O., Basaky, F., & Osaghae, E. (2024). Leveraging Variational Quantum-Classical Algorithms for Enhanced Lung Cancer Prediction. Journal of Computing Theories and Applications, 2(3), 307–323. https://doi.org/10.62411/jcta.10424

Issue

Section

Articles