A Scoping Literature Review of Artificial Intelligence in Epidemiology: Uses, Applications, Challenges and Future Trends
DOI:
https://doi.org/10.62411/jcta.10350Keywords:
AI, Epidemiology, Infodemiology, Infoveillance, Machine LearningAbstract
Artificial Intelligence (AI) has been applied to many human endeavors, and epidemiology is no exception. The AI community has recently seen a renewed interest in applying AI methods and approaches to epidemiological problems. However, a number of challenges are impeding the growth of the field. This work reviews the uses and applications of AI in epidemiology from 1994 to 2023. The following themes were uncovered: epidemic outbreak tracking and surveillance, Geo-location and visualization of epidemics data, Tele-Health, vaccine resistance and hesitancy sentiment analysis, diagnosis, predicting and monitoring recovery and mortality, and decision support systems. Disease detection received the most interest during the time under review. Furthermore, the following AI approaches were found to be used in epidemiology: prediction, geographic information systems (GIS), knowledge representation, analytics, sentiment analysis, contagion analysis, warning systems, and classification. Finally, the work makes the following findings: the absence of benchmark datasets for epidemiological purposes, the need to develop ethical guidelines to regulate the development of AI for epidemiology as this is a major issue impeding it’s growth, a concerted and continuous collaboration between AI and Epidemiology experts to grow the field, the need to develop explainable and privacy retaining AI methods for more secured and human understandable AI solutions.References
R. M. Aiken and R. G. Epstein, “Ethical Guidelines for AI in Education: Starting a Conversation,” Int. J. Artif. Intell. Educ., vol. 11, pp. 163–176, 2000.
Z. Chen, K. Marple, E. Salazar, G. Gupta, and L. Tamil, “A Physician Advisory System for Chronic Heart Failure management based on knowledge patterns,” Theory Pract. Log. Program., vol. 16, no. 5–6, pp. 604–618, Sep. 2016, doi: 10.1017/S1471068416000429.
P. Kumar, S. K. Sharma, and V. Dutot, “Artificial intelligence (AI)-enabled CRM capability in healthcare: The impact on service innovation,” Int. J. Inf. Manage., vol. 69, p. 102598, Apr. 2023, doi: 10.1016/j.ijinfomgt.2022.102598.
A. Kaplan and M. Haenlein, “Rulers of the world, unite! The challenges and opportunities of artificial intelligence,” Bus. Horiz., vol. 63, no. 1, pp. 37–50, Jan. 2020, doi: 10.1016/j.bushor.2019.09.003.
S. Charan, M. J. Khan, and K. Khurshid, “Breast cancer detection in mammograms using convolutional neural network,” in 2018 International Conference on Computing, Mathematics and Engineering Technologies (iCoMET), Mar. 2018, pp. 1–5. doi: 10.1109/ICOMET.2018.8346384.
M. Somasundaram, K. A. M. Junaid, and S. Mangadu, “Artificial Intelligence (AI) Enabled Intelligent Quality Management System (IQMS) For Personalized Learning Path,” Procedia Comput. Sci., vol. 172, pp. 438–442, 2020, doi: 10.1016/j.procs.2020.05.096.
C. G. Geanuracos, S. D. Cunningham, G. Weiss, D. Forte, L. M. Henry Reid, and J. M. Ellen, “Use of Geographic Information Systems for Planning HIV Prevention Interventions for High-Risk Youths,” Am. J. Public Health, vol. 97, no. 11, pp. 1974–1981, Nov. 2007, doi: 10.2105/AJPH.2005.076851.
S. J. Pierce, R. L. Miller, M. M. Morales, and J. Forney, “Identifying HIV Prevention Service Needs of African American Men Who Have Sex With Men,” J. Public Heal. Manag. Pract., vol. 13, no. Supplement, pp. S72–S79, Jan. 2007, doi: 10.1097/00124784-200701001-00012.
C. Fulcher and C. Kaukinen, “Mapping and visualizing the location HIV service providers: An exploratory spatial analysis of Toronto neighborhoods,” AIDS Care, vol. 17, no. 3, pp. 386–396, Apr. 2005, doi: 10.1080/09540120512331314312.
U. Kitron, U. Shalom, C. Costin, H. Pener, Z. Greenberg, and L. Orshan, “Geographic Information System in Malaria Surveillance: Mosquito Breeding and Imported Cases in Israel, 1992,” Am. J. Trop. Med. Hyg., vol. 50, no. 5, pp. 550–556, May 1994, doi: 10.4269/ajtmh.1994.50.550.
P. Ceccato, C. Vancutsem, R. Klaver, J. Rowland, and S. J. Connor, “A Vectorial Capacity Product to Monitor Changing Malaria Transmission Potential in Epidemic Regions of Africa,” J. Trop. Med., vol. 2012, pp. 1–6, 2012, doi: 10.1155/2012/595948.
S. Sasaki, H. Suzuki, K. Igarashi, B. Tambatamba, and P. Mulenga, “Spatial Analysis of Risk Factor of Cholera Outbreak for 2003–2004 in a Peri-urban Area of Lusaka, Zambia,” Am. J. Trop. Med. Hyg., vol. 79, no. 3, pp. 414–421, Sep. 2008, doi: 10.4269/ajtmh.2008.79.414.
A. Signorini, A. M. Segre, and P. M. Polgreen, “The Use of Twitter to Track Levels of Disease Activity and Public Concern in the U.S. during the Influenza A H1N1 Pandemic,” PLoS One, vol. 6, no. 5, p. e19467, May 2011, doi: 10.1371/journal.pone.0019467.
H. T. Ho et al., “Using Google Trends to Examine the Spatio-Temporal Incidence and Behavioral Patterns of Dengue Disease: A Case Study in Metropolitan Manila, Philippines,” Trop. Med. Infect. Dis., vol. 3, no. 4, p. 118, Nov. 2018, doi: 10.3390/tropicalmed3040118.
C. Alicino et al., “Assessing Ebola-related web search behaviour: insights and implications from an analytical study of Google Trends-based query volumes,” Infect. Dis. Poverty, vol. 4, no. 1, p. 54, Dec. 2015, doi: 10.1186/s40249-015-0090-9.
A. R. Daughton and M. J. Paul, “Identifying Protective Health Behaviors on Twitter: Observational Study of Travel Advisories and Zika Virus,” J. Med. Internet Res., vol. 21, no. 5, p. e13090, May 2019, doi: 10.2196/13090.
N. Mahroum et al., “Public reaction to Chikungunya outbreaks in Italy—Insights from an extensive novel data streams-based structural equation modeling analysis,” PLoS One, vol. 13, no. 5, p. e0197337, May 2018, doi: 10.1371/journal.pone.0197337.
M. El Boujnouni, “A study and identification of COVID-19 viruses using N-grams with Naïve Bayes, K-Nearest Neighbors, Artificial Neural Networks, Decision tree and Support Vector Machine,” in 2022 International Conference on Intelligent Systems and Computer Vision (ISCV), May 2022, pp. 1–7. doi: 10.1109/ISCV54655.2022.9806081.
E. L. N. Maciel et al., “Spatial patterns of pulmonary tuberculosis incidence and their relationship to socio-economic status in Vitoria, Brazil.,” Int. J. Tuberc. Lung Dis., vol. 14, no. 11, pp. 1395–402, Nov. 2010, [Online]. Available: http://www.ncbi.nlm.nih.gov/pubmed/20937178
C. K. Monaghan et al., “Machine Learning for Prediction of Patients on Hemodialysis with an Undetected SARS-CoV-2 Infection,” Kidney360, vol. 2, no. 3, pp. 456–468, Mar. 2021, doi: 10.34067/KID.0003802020.
X. Mei et al., “Artificial intelligence–enabled rapid diagnosis of patients with COVID-19,” Nat. Med., vol. 26, no. 8, pp. 1224–1228, Aug. 2020, doi: 10.1038/s41591-020-0931-3.
H. C. Metsky, C. A. Freije, T.-S. F. Kosoko-Thoroddsen, P. C. Sabeti, and C. Myhrvold, “CRISPR-based COVID-19 surveillance using a genomically-comprehensive machine learning approach,” bioRxiv. 2020. doi: 10.1101/2020.02.26.967026.
L. P. Garcia et al., “Estimating underdiagnosis of COVID-19 with nowcasting and machine learning,” Rev. Bras. Epidemiol., vol. 24, 2021, doi: 10.1590/1980-549720210047.
N. N. Sun et al., “A prediction model based on machine learning for diagnosing the early COVID-19 patients,” medRxiv. pp. 1–12, 2020. doi: 10.1101/2020.06.03.20120881.
M. Jamshidi et al., “Artificial Intelligence and COVID-19: Deep Learning Approaches for Diagnosis and Treatment,” IEEE Access, vol. 8, pp. 109581–109595, 2020, doi: 10.1109/ACCESS.2020.3001973.
S. Hassantabar et al., “CovidDeep: SARS-CoV-2/COVID-19 Test Based on Wearable Medical Sensors and Efficient Neural Networks,” IEEE Trans. Consum. Electron., vol. 67, no. 4, pp. 244–256, Nov. 2021, doi: 10.1109/TCE.2021.3130228.
M. Kukar et al., “COVID-19 diagnosis by routine blood tests using machine learning,” Sci. Rep., vol. 11, no. 1, p. 10738, May 2021, doi: 10.1038/s41598-021-90265-9.
F. Soares, “A novel specific artificial intelligence-based method to identify COVID-19 cases using simple blood exams,” medRxiv. p. 2020.04.10.20061036, 2020. doi: 10.1101/2020.04.10.20061036.
A. Banerjee et al., “Use of Machine Learning and Artificial Intelligence to predict SARS-CoV-2 infection from Full Blood Counts in a population,” Int. Immunopharmacol., vol. 86, p. 106705, Sep. 2020, doi: 10.1016/j.intimp.2020.106705.
V. A. de Freitas Barbosa et al., “Heg.IA: an intelligent system to support diagnosis of Covid-19 based on blood tests,” Res. Biomed. Eng., vol. 38, no. 1, pp. 99–116, Mar. 2022, doi: 10.1007/s42600-020-00112-5.
C. Pawlowski et al., “Longitudinal laboratory testing tied to PCR diagnostics in COVID-19 patients reveals temporal evolution of distinctive coagulopathy signatures.” May 21, 2020. [Online]. Available: http://arxiv.org/abs/2005.10938
N. L. Bragazzi, J. D. Kong, and J. Wu, “Is monkeypox a new, emerging sexually transmitted disease? A rapid review of the literature,” J. Med. Virol., vol. 95, no. 1, Jan. 2023, doi: 10.1002/jmv.28145.
K. T. D. Eames and M. J. Keeling, “Contact tracing and disease control,” Proc. R. Soc. London. Ser. B Biol. Sci., vol. 270, no. 1533, pp. 2565–2571, Dec. 2003, doi: 10.1098/rspb.2003.2554.
F. K. Dosilovic, M. Brcic, and N. Hlupic, “Explainable artificial intelligence: A survey,” in 2018 41st International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), May 2018, pp. 0210–0215. doi: 10.23919/MIPRO.2018.8400040.
D. J. Crandall, L. Backstrom, D. Cosley, S. Suri, D. Huttenlocher, and J. Kleinberg, “Inferring social ties from geographic coincidences,” Proc. Natl. Acad. Sci., vol. 107, no. 52, pp. 22436–22441, Dec. 2010, doi: 10.1073/pnas.1006155107.
E. Cho, S. A. Myers, and J. Leskovec, “Friendship and mobility,” in Proceedings of the 17th ACM SIGKDD international conference on Knowledge discovery and data mining, Aug. 2011, pp. 1082–1090. doi: 10.1145/2020408.2020579.
M. Salathé and J. H. Jones, “Dynamics and Control of Diseases in Networks with Community Structure,” PLoS Comput. Biol., vol. 6, no. 4, p. e1000736, Apr. 2010, doi: 10.1371/journal.pcbi.1000736.
M. Salathé, M. Kazandjieva, J. W. Lee, P. Levis, M. W. Feldman, and J. H. Jones, “A high-resolution human contact network for infectious disease transmission,” Proc. Natl. Acad. Sci., vol. 107, no. 51, pp. 22020–22025, Dec. 2010, doi: 10.1073/pnas.1009094108.
B. Srivastava and F. Rossi, “Rating AI systems for bias to promote trustable applications,” IBM J. Res. Dev., vol. 63, no. 4/5, pp. 5:1-5:9, Jul. 2019, doi: 10.1147/JRD.2019.2935966.
S. Pollett et al., “Evaluating Google Flu Trends in Latin America: Important Lessons for the Next Phase of Digital Disease Detection,” Clin. Infect. Dis., vol. 64, no. 1, pp. 34–41, Jan. 2017, doi: 10.1093/cid/ciw657.
Q. Xu, Y. R. Gel, L. L. Ramirez Ramirez, K. Nezafati, Q. Zhang, and K.-L. Tsui, “Forecasting influenza in Hong Kong with Google search queries and statistical model fusion,” PLoS One, vol. 12, no. 5, p. e0176690, May 2017, doi: 10.1371/journal.pone.0176690.
A. N. Belkacem, S. Ouhbi, A. Lakas, E. Benkhelifa, and C. Chen, “End-to-End AI-Based Point-of-Care Diagnosis System for Classifying Respiratory Illnesses and Early Detection of COVID-19: A Theoretical Framework,” Front. Med., vol. 8, Mar. 2021, doi: 10.3389/fmed.2021.585578.
C. Brown et al., “Exploring Automatic Diagnosis of COVID-19 from Crowdsourced Respiratory Sound Data,” in Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, Aug. 2020, pp. 3474–3484. doi: 10.1145/3394486.3412865.
E. Fayyoumi, S. Idwan, and H. AboShindi, “Machine Learning and Statistical Modelling for Prediction of Novel COVID-19 Patients Case Study: Jordan,” Int. J. Adv. Comput. Sci. Appl., vol. 11, no. 5, 2020, doi: 10.14569/IJACSA.2020.0110518.
A. M. U. D. Khanday, S. T. Rabani, Q. R. Khan, N. Rouf, and M. Mohi Ud Din, “Machine learning based approaches for detecting COVID-19 using clinical text data,” Int. J. Inf. Technol., vol. 12, no. 3, pp. 731–739, Sep. 2020, doi: 10.1007/s41870-020-00495-9.
H. J. Chen et al., “Machine learning-based CT radiomics model distinguishes COVID-19 from non-COVID-19 pneumonia,” BMC Infect. Dis., vol. 21, no. 1, p. 931, Dec. 2021, doi: 10.1186/s12879-021-06614-6.
S. Dutta and S. K. Bandyopadhyay, “Machine learning approach for confirmation of COVID-19 cases: positive, negative, death and release,” Iberoam. J. Med., vol. 2, no. 3, pp. 172–177, May 2020, doi: 10.53986/ibjm.2020.0031.
D. Ferrari et al., “Machine learning in predicting respiratory failure in patients with COVID-19 pneumonia—Challenges, strengths, and opportunities in a global health emergency,” PLoS One, vol. 15, no. 11, p. e0239172, Nov. 2020, doi: 10.1371/journal.pone.0239172.
A. Mavragani and G. Ochoa, “Google Trends in Infodemiology and Infoveillance: Methodology Framework,” JMIR Public Heal. Surveill., vol. 5, no. 2, p. e13439, May 2019, doi: 10.2196/13439.
G. Eysenbach, “Infodemiology and Infoveillance,” Am. J. Prev. Med., vol. 40, no. 5, pp. S154–S158, May 2011, doi: 10.1016/j.amepre.2011.02.006.
A. Vespignani et al., “Modelling COVID-19,” Nat. Rev. Phys., vol. 2, no. 6, pp. 279–281, May 2020, doi: 10.1038/s42254-020-0178-4.
F. Bloise and M. Tancioni, “Predicting the spread of COVID-19 in Italy using machine learning: Do socio-economic factors matter?,” Struct. Chang. Econ. Dyn., vol. 56, pp. 310–329, Mar. 2021, doi: 10.1016/j.strueco.2021.01.001.
S. F. McGough, J. S. Brownstein, J. B. Hawkins, and M. Santillana, “Forecasting Zika Incidence in the 2016 Latin America Outbreak Combining Traditional Disease Surveillance with Search, Social Media, and News Report Data,” PLoS Negl. Trop. Dis., vol. 11, no. 1, p. e0005295, Jan. 2017, doi: 10.1371/journal.pntd.0005295.
T. Wagner et al., “Augmented curation of clinical notes from a massive EHR system reveals symptoms of impending COVID-19 diagnosis,” Elife, vol. 9, Jul. 2020, doi: 10.7554/eLife.58227.
R. T. Gluskin, M. A. Johansson, M. Santillana, and J. S. Brownstein, “Evaluation of Internet-Based Dengue Query Data: Google Dengue Trends,” PLoS Negl. Trop. Dis., vol. 8, no. 2, p. e2713, Feb. 2014, doi: 10.1371/journal.pntd.0002713.
C. M. Smith, S. C. Le Comber, H. Fry, M. Bull, S. Leach, and A. C. Hayward, “Spatial methods for infectious disease outbreak investigations: systematic literature review,” Eurosurveillance, vol. 20, no. 39, Oct. 2015, doi: 10.2807/1560-7917.ES.2015.20.39.30026.
G. E. Glass, B. S. Schwartz, J. M. Morgan, D. T. Johnson, P. M. Noy, and E. Israel, “Environmental risk factors for Lyme disease identified with geographic information systems.,” Am. J. Public Health, vol. 85, no. 7, pp. 944–948, Jul. 1995, doi: 10.2105/AJPH.85.7.944.
D. E. Impoinvil et al., “The Spatial Heterogeneity between Japanese Encephalitis Incidence Distribution and Environmental Variables in Nepal,” PLoS One, vol. 6, no. 7, p. e22192, Jul. 2011, doi: 10.1371/journal.pone.0022192.
S. A. Speer, J. C. Semenza, T. Kurosaki, and H. Anton-Culver, “Risk factors for acute myeloid leukemia and multiple myeloma: a combination of GIS and case-control studies.,” J. Environ. Health, vol. 64, no. 7, pp. 9–16; quiz 35–6, Mar. 2002, [Online]. Available: http://www.ncbi.nlm.nih.gov/pubmed/11901667
A. Poulstrup and H. L. Hansen, “Use of GIS and Exposure Modeling as Tools in a Study of Cancer Incidence in a Population Exposed to Airborne Dioxin,” Environ. Health Perspect., vol. 112, no. 9, pp. 1032–1036, Jun. 2004, doi: 10.1289/ehp.6739.
M. Palaniyandi, “The environmental aspects of dengue and chikungunyatransmissionin India : Remote sensing and GIS for epidemic control,” Int. J. Mosq. Res. ·, vol. 1, no. 2, pp. 35–40, 2014.
D. A. Salmon, M. Z. Dudley, J. M. Glanz, and S. B. Omer, “Vaccine Hesitancy,” Am. J. Prev. Med., vol. 49, no. 6, pp. S391–S398, Dec. 2015, doi: 10.1016/j.amepre.2015.06.009.
K. H. Saglani and N. J. Janwe, “Machine Learning Based Sentiment Analysis on Twitter Data,” Int. J. Emerg. Trends Eng. Res., vol. 8, no. 8, pp. 4413–4419, Aug. 2020, doi: 10.30534/ijeter/2020/60882020.
B. L. Hoffman et al., “It’s not all about autism: The emerging landscape of anti-vaccination sentiment on Facebook,” Vaccine, vol. 37, no. 16, pp. 2216–2223, Apr. 2019, doi: 10.1016/j.vaccine.2019.03.003.
R. F. Hunter et al., “Ethical Issues in Social Media Research for Public Health,” Am. J. Public Health, vol. 108, no. 3, pp. 343–348, Mar. 2018, doi: 10.2105/AJPH.2017.304249.
N. Yiannakoulias, C. E. Slavik, and M. Chase, “Expressions of pro- and anti-vaccine sentiment on YouTube,” Vaccine, vol. 37, no. 15, pp. 2057–2064, Apr. 2019, doi: 10.1016/j.vaccine.2019.03.001.
F. Kunneman, M. Lambooij, A. Wong, A. van den Bosch, and L. Mollema, “Monitoring stance towards vaccination in twitter messages,” BMC Med. Inform. Decis. Mak., vol. 20, no. 1, p. 33, Dec. 2020, doi: 10.1186/s12911-020-1046-y.
X. Yuan and A. T. Crooks, “Examining Online Vaccination Discussion and Communities in Twitter,” in Proceedings of the 9th International Conference on Social Media and Society, Jul. 2018, pp. 197–206. doi: 10.1145/3217804.3217912.
G. Guibon, M. Ochs, and P. Bellot, “From Emoji Usage to Categorical Emoji Prediction,” in Computational Linguistics and Intelligent Text Processing, 2023, pp. 329–338. doi: 10.1007/978-3-031-23804-8_26.
E. D’Andrea, P. Ducange, A. Bechini, A. Renda, and F. Marcelloni, “Monitoring the public opinion about the vaccination topic from tweets analysis,” Expert Syst. Appl., vol. 116, pp. 209–226, Feb. 2019, doi: 10.1016/j.eswa.2018.09.009.
L. Li et al., “Using Artificial Intelligence to Detect COVID-19 and Community-acquired Pneumonia Based on Pulmonary CT: Evaluation of the Diagnostic Accuracy,” Radiology, vol. 296, no. 2, pp. E65–E71, Aug. 2020, doi: 10.1148/radiol.2020200905.
A. Bharti, S. Krishnan, and S. K. Bharti, “Envisioning the Veracity of Digital Ecosystem in Improvising Effective Pandemic Response,” Front. Blockchain, vol. 3, Feb. 2021, doi: 10.3389/fbloc.2020.599428.
J. S. Obeid et al., “An artificial intelligence approach to COVID-19 infection risk assessment in virtual visits: A case report,” J. Am. Med. Informatics Assoc., vol. 27, no. 8, pp. 1321–1325, Aug. 2020, doi: 10.1093/jamia/ocaa105.
U. Bharti, D. Bajaj, H. Batra, S. Lalit, S. Lalit, and A. Gangwani, “Medbot: Conversational Artificial Intelligence Powered Chatbot for Delivering Tele-Health after COVID-19,” in 2020 5th International Conference on Communication and Electronics Systems (ICCES), Jun. 2020, pp. 870–875. doi: 10.1109/ICCES48766.2020.9137944.
S. Huang, J. Yang, S. Fong, and Q. Zhao, “Artificial intelligence in the diagnosis of COVID-19: challenges and perspectives,” Int. J. Biol. Sci., vol. 17, no. 6, pp. 1581–1587, 2021, doi: 10.7150/ijbs.58855.
T. F. Jones, R. F. Benson, E. W. Brown, J. R. Rowland, S. C. Crosier, and W. Schaffner, “Epidemiologic Investigation of a Restaurant-Associated Outbreak of Pontiac Fever,” Clin. Infect. Dis., vol. 37, no. 10, pp. 1292–1297, Nov. 2003, doi: 10.1086/379017.
J. Liu, J. Ma, J. Li, M. Huang, N. Sadiq, and Y. Ai, “Robust Watermarking Algorithm for Medical Volume Data in Internet of Medical Things,” IEEE Access, vol. 8, pp. 93939–93961, 2020, doi: 10.1109/ACCESS.2020.2995015.
J. D. Ferreira, D. Paolotti, F. M. Couto, and M. J. Silva, “On the usefulness of ontologies in epidemiology research and practice,” J. Epidemiol. Community Health, vol. 67, no. 5, pp. 385–388, May 2013, doi: 10.1136/jech-2012-201142.
R. R. Rao, K. Makkithaya, and N. Gupta, “Ontology based semantic representation for Public Health data integration,” in 2014 International Conference on Contemporary Computing and Informatics (IC3I), Nov. 2014, pp. 357–362. doi: 10.1109/IC3I.2014.7019701.
Q. Wang, M. Su, M. Zhang, and R. Li, “Integrating Digital Technologies and Public Health to Fight Covid-19 Pandemic: Key Technologies, Applications, Challenges and Outlook of Digital Healthcare,” Int. J. Environ. Res. Public Health, vol. 18, no. 11, p. 6053, Jun. 2021, doi: 10.3390/ijerph18116053.
C. Bellinger, M. S. Mohomed Jabbar, O. Zaïane, and A. Osornio-Vargas, “A systematic review of data mining and machine learning for air pollution epidemiology,” BMC Public Health, vol. 17, no. 1, p. 907, Dec. 2017, doi: 10.1186/s12889-017-4914-3.
A. Gupta and R. Katarya, “Social media based surveillance systems for healthcare using machine learning: A systematic review,” J. Biomed. Inform., vol. 108, p. 103500, Aug. 2020, doi: 10.1016/j.jbi.2020.103500.
B. Wahl, A. Cossy-Gantner, S. Germann, and N. R. Schwalbe, “Artificial intelligence (AI) and global health: how can AI contribute to health in resource-poor settings?,” BMJ Glob. Heal., vol. 3, no. 4, p. e000798, Aug. 2018, doi: 10.1136/bmjgh-2018-000798.
B. Pang and Lillian Lee, “Opinion mining and sentiment analysis,” Foundations and Trends in Information Retrieval. 2008.
A. Shaban-Nejad, M. Michalowski, J. Brownstein, and D. Buckeridge, “Guest Editorial Explainable AI: Towards Fairness, Accountability, Transparency and Trust in Healthcare,” IEEE J. Biomed. Heal. Informatics, vol. 25, no. 7, pp. 2374–2375, Jul. 2021, doi: 10.1109/JBHI.2021.3088832.
T.-Y. Wang, S.-L. Chen, H.-C. Huang, S.-H. Kuo, and Y.-J. Shiu, “The development of an intelligent monitoring and caution system for pressure ulcer prevention,” in 2011 International Conference on Machine Learning and Cybernetics, Jul. 2011, pp. 566–571. doi: 10.1109/ICMLC.2011.6016779.
R. Zhou, X. Zhang, X. Wang, G. Yang, N. Guizani, and X. Du, “Efficient and Traceable Patient Health Data Search System for Hospital Management in Smart Cities,” IEEE Internet Things J., vol. 8, no. 8, pp. 6425–6436, Apr. 2021, doi: 10.1109/JIOT.2020.3028598.
A. Adiga, D. Dubhashi, B. Lewis, M. Marathe, S. Venkatramanan, and A. Vullikanti, “Mathematical Models for COVID-19 Pandemic: A Comparative Analysis,” J. Indian Inst. Sci., vol. 100, no. 4, pp. 793–807, Oct. 2020, doi: 10.1007/s41745-020-00200-6.
A. J. Aljaaf, D. Al-Jumeily, A. J. Hussain, P. Fergus, M. Al-Jumaily, and K. Abdel-Aziz, “Toward an optimal use of artificial intelligence techniques within a clinical decision support system,” in 2015 Science and Information Conference (SAI), Jul. 2015, pp. 548–554. doi: 10.1109/SAI.2015.7237196.
Z. C. Antoniou, A. S. Panayides, M. Pantzaris, A. G. Constantinides, C. S. Pattichis, and M. S. Pattichis, “Real-Time Adaptation to Time-Varying Constraints for Medical Video Communications,” IEEE J. Biomed. Heal. Informatics, vol. 22, no. 4, pp. 1177–1188, Jul. 2018, doi: 10.1109/JBHI.2017.2726180.
S. Ardabili et al., “COVID-19 Outbreak Prediction with Machine Learning,” Algorithms, vol. 13, no. 10, p. 249, Oct. 2020, doi: 10.3390/a13100249.
E. Avila, A. Kahmann, C. Alho, and M. Dorn, “Hemogram data as a tool for decision-making in COVID-19 management: applications to resource scarcity scenarios,” PeerJ, vol. 8, p. e9482, Jun. 2020, doi: 10.7717/peerj.9482.
D. Baker and H. Taylor, “Inequality in health and health service use for mothers of young children in south west England. Survey Team of the Avon Longitudinal Study of Pregnancy and Childhood Team.,” J. Epidemiol. Community Heal., vol. 51, no. 1, pp. 74–79, Feb. 1997, doi: 10.1136/jech.51.1.74.
D. Brinati, A. Campagner, D. Ferrari, M. Locatelli, G. Banfi, and F. Cabitza, “Detection of COVID-19 Infection from Routine Blood Exams with Machine Learning: A Feasibility Study,” J. Med. Syst., vol. 44, no. 8, p. 135, Aug. 2020, doi: 10.1007/s10916-020-01597-4.
A. Borda, A. Molnar, C. Neesham, and P. Kostkova, “Ethical Issues in AI-Enabled Disease Surveillance: Perspectives from Global Health,” Appl. Sci., vol. 12, no. 8, p. 3890, Apr. 2022, doi: 10.3390/app12083890.
Z. Chen et al., “An AI-Based Heart Failure Treatment Adviser System,” IEEE J. Transl. Eng. Heal. Med., vol. 6, pp. 1–10, 2018, doi: 10.1109/JTEHM.2018.2883069.
A. Borlase, J. P. Webster, and J. W. Rudge, “Opportunities and challenges for modelling epidemiological and evolutionary dynamics in a multihost, multiparasite system: Zoonotic hybrid schistosomiasis in West Africa,” Evol. Appl., vol. 11, no. 4, pp. 501–515, Apr. 2018, doi: 10.1111/eva.12529.
Y. Chen et al., “An Interpretable Machine Learning Framework for Accurate Severe vs Non-Severe COVID-19 Clinical Type Classification,” SSRN Electron. J., 2020, doi: 10.2139/ssrn.3638427.
C. Comito, D. Falcone, and A. Forestiero, “Current Trends And Practices In Smart Health Monitoring And Clinical Decision Support,” in 2020 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), Dec. 2020, pp. 2577–2584. doi: 10.1109/BIBM49941.2020.9313449.
M. Daltayanni, C. Wang, and R. Akella, “A Fast Interactive Search System for Healthcare Services,” in 2012 Annual SRII Global Conference, Jul. 2012, pp. 525–534. doi: 10.1109/SRII.2012.65.
Y. Deng et al., “A New Framework to Reduce Doctor’s Workload for Medical Image Annotation,” IEEE Access, vol. 7, pp. 107097–107104, 2019, doi: 10.1109/ACCESS.2019.2917932.
D. U. Pfeiffer, T. P. Robinson, M. Stevenson, K. B. Stevens, D. J. Rogers, and A. C. A. Clements, Spatial Analysis in Epidemiology. London, England: Oxford University Press, 2008.
B. Dutta and P. Das, “Semantic Annotator for Knowledge Graph Exploration : Pattern-Based NLP Technique,” J. Inf. Manag., vol. 60, no. 1, pp. 49–62, Mar. 2023, doi: 10.17821/srels/2023/v60i1/170889.
Y. K. Dwivedi et al., “Artificial Intelligence (AI): Multidisciplinary perspectives on emerging challenges, opportunities, and agenda for research, practice and policy,” Int. J. Inf. Manage., vol. 57, p. 101994, Apr. 2021, doi: 10.1016/j.ijinfomgt.2019.08.002.
G. Eysenbach, “Infodemiology and Infoveillance: Framework for an Emerging Set of Public Health Informatics Methods to Analyze Search, Communication and Publication Behavior on the Internet,” J. Med. Internet Res., vol. 11, no. 1, p. e11, Mar. 2009, doi: 10.2196/jmir.1157.
C. Feng et al., “A novel artificial intelligence-assisted triage tool to aid in the diagnosis of suspected COVID-19 pneumonia cases in fever clinics,” Ann. Transl. Med., vol. 9, no. 3, pp. 201–201, Feb. 2021, doi: 10.21037/atm-20-3073.
K. F. Sellers, E. K. T. Benn, M. Garcia, and M. Kellam, “Addressing Implicit Bias Among Women Statisticians and Data Scientists,” CHANCE, vol. 30, no. 2, pp. 38–41, Apr. 2017, doi: 10.1080/09332480.2017.1320477.
J. C. Gomes et al., “Covid-19 diagnosis by combining RT-PCR and pseudo-convolutional machines to characterize virus sequences,” Sci. Rep., vol. 11, no. 1, p. 11545, Jun. 2021, doi: 10.1038/s41598-021-90766-7.
V. Gomoi and V. Stoicu-Tivadar, “A new method in automatic generation of medical protocols using artificial intelligence tools and a data manager,” in 2010 International Joint Conference on Computational Cybernetics and Technical Informatics, May 2010, pp. 243–246. doi: 10.1109/ICCCYB.2010.5491290.
R. T. Gupta, B. Spilseth, N. Patel, A. F. Brown, and J. Yu, “Multiparametric prostate MRI: focus on T2-weighted imaging and role in staging of prostate cancer,” Abdom. Radiol., vol. 41, no. 5, pp. 831–843, May 2016, doi: 10.1007/s00261-015-0579-5.
M. S. Hossen and D. Karmoker, “Predicting the Probability of Covid-19 Recovered in South Asian Countries Based on Healthy Diet Pattern Using a Machine Learning Approach,” in 2020 2nd International Conference on Sustainable Technologies for Industry 4.0 (STI), Dec. 2020, pp. 1–6. doi: 10.1109/STI50764.2020.9350439.
A. Imran et al., “AI4COVID-19: AI enabled preliminary diagnosis for COVID-19 from cough samples via an app,” Informatics Med. Unlocked, vol. 20, p. 100378, 2020, doi: 10.1016/j.imu.2020.100378.
M. Johnson, A. Albizri, A. Harfouche, and S. Fosso-Wamba, “Integrating human knowledge into artificial intelligence for complex and ill-structured problems: Informed artificial intelligence,” Int. J. Inf. Manage., vol. 64, p. 102479, Jun. 2022, doi: 10.1016/j.ijinfomgt.2022.102479.
J. J. Jones, J. E. Settle, R. M. Bond, C. J. Fariss, C. Marlow, and J. H. Fowler, “Inferring Tie Strength from Online Directed Behavior,” PLoS One, vol. 8, no. 1, p. e52168, Jan. 2013, doi: 10.1371/journal.pone.0052168.
J. Jumper et al., “Highly accurate protein structure prediction with AlphaFold,” Nature, vol. 596, no. 7873, pp. 583–589, Aug. 2021, doi: 10.1038/s41586-021-03819-2.
A. Kapoor et al., “Examining COVID-19 Forecasting using Spatio-Temporal Graph Neural Networks,” Jul. 2020, [Online]. Available: http://arxiv.org/abs/2007.03113
A. Kaur, R. Garg, and P. Gupta, “Challenges facing AI and Big data for Resource-poor Healthcare System,” in 2021 Second International Conference on Electronics and Sustainable Communication Systems (ICESC), Aug. 2021, pp. 1426–1433. doi: 10.1109/ICESC51422.2021.9532955.
K. Davagdorj, J.-W. Bae, V.-H. Pham, N. Theera-Umpon, and K. H. Ryu, “Explainable Artificial Intelligence Based Framework for Non-Communicable Diseases Prediction,” IEEE Access, vol. 9, pp. 123672–123688, 2021, doi: 10.1109/ACCESS.2021.3110336.
B. (Raymond) Kim, K. Srinivasan, S. H. Kong, J. H. Kim, C. S. Shin, and S. Ram, “ROLEX: A Novel Method for Interpretable Machine Learning Using Robust Local Explanations,” MIS Q., vol. 47, no. 3, pp. 1303–1332, Jun. 2022, doi: 10.25300/MISQ/2022/17141.
U. S. Kesmodel, “Information bias in epidemiological studies with a special focus on obstetrics and gynecology,” Acta Obstet. Gynecol. Scand., vol. 97, no. 4, pp. 417–423, Apr. 2018, doi: 10.1111/aogs.13330.
M. Madanan, N. A. M. Zulkefli, and N. C. Velayudhan, “Designing a Hybrid Artificial Intelligent Clinical Decision Support System Using Artificial Neural Network and Artificial Bee Colony for Predicting Heart Failure Rate,” in 2021 International Conference on Computer Communication and Informatics (ICCCI), Jan. 2021, pp. 1–7. doi: 10.1109/ICCCI50826.2021.9457007.
P. K. Maduri, Y. Dewangan, D. Yadav, S. Chauhan, and K. Singh, “IOT Based Patient Health Monitoring Portable Kit,” in 2020 2nd International Conference on Advances in Computing, Communication Control and Networking (ICACCCN), Dec. 2020, pp. 513–516. doi: 10.1109/ICACCCN51052.2020.9362985.
C. McGregor et al., “Health Analytics as a Service with Artemis Cloud: Service Availability,” in 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Jul. 2020, pp. 5644–5648. doi: 10.1109/EMBC44109.2020.9176507.
A. Minz and C. Mahobiya, “MR Image Classification Using Adaboost for Brain Tumor Type,” in 2017 IEEE 7th International Advance Computing Conference (IACC), Jan. 2017, pp. 701–705. doi: 10.1109/IACC.2017.0146.
J. A. Oyedepo, O. B. Shittu, T. O. S. Popoola, and E. O. Ogunshola, “Rapid Epidemiological Mapping of Cholera in Some Parts of Abeokuta Metropolis: A GIS-Supported Post-Epidemic Assessment,” Int. J. Public Heal. Epidemiol., vol. 4, no. 6, pp. 152–157, 2015.
L. G. Pee, S. L. Pan, and L. Cui, “Artificial intelligence in healthcare robots: A social informatics study of knowledge embodiment,” J. Assoc. Inf. Sci. Technol., vol. 70, no. 4, pp. 351–369, Apr. 2019, doi: 10.1002/asi.24145.
N. Pearce et al., “Worldwide trends in the prevalence of asthma symptoms: phase III of the International Study of Asthma and Allergies in Childhood (ISAAC),” Thorax, vol. 62, no. 9, pp. 758–766, Sep. 2007, doi: 10.1136/thx.2006.070169.
M. Peng et al., “Artificial Intelligence Application in COVID-19 Diagnosis and Prediction,” SSRN Electron. J., 2020, doi: 10.2139/ssrn.3541119.
Z. Ren et al., “Spatial-Temporal Variation and Primary Ecological Drivers of Anopheles sinensis Human Biting Rates in Malaria Epidemic-Prone Regions of China,” PLoS One, vol. 10, no. 1, p. e0116932, Jan. 2015, doi: 10.1371/journal.pone.0116932.
A. Ribbens, J. Hermans, F. Maes, D. Vandermeulen, and P. Suetens, “Unsupervised Segmentation, Clustering, and Groupwise Registration of Heterogeneous Populations of Brain MR Images,” IEEE Trans. Med. Imaging, vol. 33, no. 2, pp. 201–224, Feb. 2014, doi: 10.1109/TMI.2013.2270114.
Y. Guo et al., “The application of artificial intelligence and data integration in COVID-19 studies: a scoping review,” J. Am. Med. Informatics Assoc., vol. 28, no. 9, pp. 2050–2067, Aug. 2021, doi: 10.1093/jamia/ocab098.
M. T. Sqalli and D. Al-Thani, “AI-supported Health Coaching Model for Patients with Chronic Diseases,” in 2019 16th International Symposium on Wireless Communication Systems (ISWCS), Aug. 2019, pp. 452–456. doi: 10.1109/ISWCS.2019.8877113.
O. Strachna and O. Asan, “Reengineering Clinical Decision Support Systems for Artificial Intelligence,” in 2020 IEEE International Conference on Healthcare Informatics (ICHI), Nov. 2020, pp. 1–3. doi: 10.1109/ICHI48887.2020.9374370.
F. Giuste et al., “Explainable Artificial Intelligence Methods in Combating Pandemics: A Systematic Review,” IEEE Rev. Biomed. Eng., vol. 16, pp. 5–21, 2023, doi: 10.1109/RBME.2022.3185953.
Y. Wang, M. Hu, Q. Li, X.-P. Zhang, G. Zhai, and N. Yao, “Abnormal respiratory patterns classifier may contribute to large-scale screening of people infected with COVID-19 in an accurate and unobtrusive manner.” Feb. 12, 2020. [Online]. Available: http://arxiv.org/abs/2002.05534
A. Wesolowski et al., “Quantifying the Impact of Human Mobility on Malaria,” Science (80-. )., vol. 338, no. 6104, pp. 267–270, Oct. 2012, doi: 10.1126/science.1223467.
Y. Woo, P. T. C. Andres, H. Jeong, and C. Shin, “Classification of diabetic walking through machine learning: Survey targeting senior citizens,” in 2021 International Conference on Artificial Intelligence in Information and Communication (ICAIIC), Apr. 2021, pp. 435–437. doi: 10.1109/ICAIIC51459.2021.9415250.
J. Wu et al., “Rapid and accurate identification of COVID-19 infection through machine learning based on clinical available blood test results,” medRxiv. p. 2020.04.02.20051136, 2020. doi: 10.1101/2020.04.02.20051136.
X. Xie, Z. Zang, and J. M. Ponzoa, “The information impact of network media, the psychological reaction to the COVID-19 pandemic, and online knowledge acquisition: Evidence from Chinese college students,” J. Innov. Knowl., vol. 5, no. 4, pp. 297–305, Oct. 2020, doi: 10.1016/j.jik.2020.10.005.
B. Xu et al., “Epidemiological data from the COVID-19 outbreak, real-time case information,” Sci. Data, vol. 7, no. 1, p. 106, Mar. 2020, doi: 10.1038/s41597-020-0448-0.
H. Yu and Z. Zhou, “Optimization of IoT-Based Artificial Intelligence Assisted Telemedicine Health Analysis System,” IEEE Access, vol. 9, pp. 85034–85048, 2021, doi: 10.1109/ACCESS.2021.3088262.
A. P. Zhao et al., “AI for science: Predicting infectious diseases,” J. Saf. Sci. Resil., vol. 5, no. 2, pp. 130–146, Jun. 2024, doi: 10.1016/j.jnlssr.2024.02.002.
Q. Zhang et al., “The epidemiology of Plasmodium vivax and Plasmodium falciparum malaria in China, 2004–2012: from intensified control to elimination,” Malar. J., vol. 13, no. 1, p. 419, Dec. 2014, doi: 10.1186/1475-2875-13-419.
K. M. Boehm, P. Khosravi, R. Vanguri, J. Gao, and S. P. Shah, “Harnessing multimodal data integration to advance precision oncology,” Nat. Rev. Cancer, vol. 22, no. 2, pp. 114–126, Feb. 2022, doi: 10.1038/s41568-021-00408-3.
Y. Zhou et al., “A Radiomics Approach With CNN for Shear-Wave Elastography Breast Tumor Classification,” IEEE Trans. Biomed. Eng., vol. 65, no. 9, pp. 1935–1942, Sep. 2018, doi: 10.1109/TBME.2018.2844188.
Y. Zoabi, S. Deri-Rozov, and N. Shomron, “Machine learning-based prediction of COVID-19 diagnosis based on symptoms,” npj Digit. Med., vol. 4, no. 1, p. 3, Jan. 2021, doi: 10.1038/s41746-020-00372-6.
A. Iorliam and J. A. Ingio, “A Comparative Analysis of Generative Artificial Intelligence Tools for Natural Language Processing,” J. Comput. Theor. Appl., vol. 2, no. 1, pp. 91–105, Feb. 2024, doi: 10.62411/jcta.9447.
K. Bhaduri, M. D. Stefanski, and A. N. Srivastava, “Privacy-Preserving Outlier Detection Through Random Nonlinear Data Distortion,” IEEE Trans. Syst. Man, Cybern. Part B, vol. 41, no. 1, pp. 260–272, Feb. 2011, doi: 10.1109/TSMCB.2010.2051540.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Kamal Bakari Jillahi, Aamo Iorliam
This work is licensed under a Creative Commons Attribution 4.0 International License.