Enhancing the Random Forest Model via Synthetic Minority Oversampling Technique for Credit-Card Fraud Detection
DOI:
https://doi.org/10.62411/jcta.10323Keywords:
Credit card fraud detection, Feature selection, Imbalanced dataset, Random Forest, SMOTEAbstract
Fraudsters increasingly exploit unauthorized credit card information for financial gain, targeting un-suspecting users, especially as financial institutions expand their services to semi-urban and rural areas. This, in turn, has continued to ripple across society, causing huge financial losses and lowering user trust implications for all cardholders. Thus, banks cum financial institutions are today poised to implement fraud detection schemes. Five algorithms were trained with and without the application of the Synthetic Minority Over-sampling Technique (SMOTE) to assess their performance. These algorithms included Random Forest (RF), K-Nearest Neighbors (KNN), Naïve Bayes (NB), Support Vector Machines (SVM), and Logistic Regression (LR). The methodology was implemented and tested through an API using Flask and Streamlit in Python. Before applying SMOTE, the RF classifier outperformed the others with an accuracy of 0.9802, while the accuracies for LR, KNN, NB, and SVM were 0.9219, 0.9435, 0.9508, and 0.9008, respectively. Conversely, after the application of SMOTE, RF achieved a prediction accuracy of 0.9919, whereas LR, KNN, NB, and SVM attained accuracies of 0.9805, 0.9210, 0.9125, and 0.8145, respectively. These results highlight the effectiveness of combining RF with SMOTE to enhance prediction accuracy in credit card fraud detection.References
A. Abbasi, F. M. Zahedi, and Y. Chen, “Phishing susceptibility: The good, the bad, and the ugly,” in 2016 IEEE Conference on Intelligence and Security Informatics (ISI), Sep. 2016, pp. 169–174. doi: 10.1109/ISI.2016.7745462.
M. Jameaba, “Digitization, FinTech Disruption, and Financial Stability: The Case of the Indonesian Banking Sector,” SSRN Electron. J., vol. 34, pp. 1–44, 2020, doi: 10.2139/ssrn.3529924.
M. Ahmed, K. Ansar, C. B. Muckley, A. Khan, A. Anjum, and M. Talha, “A semantic rule based digital fraud detection,” PeerJ Comput. Sci., vol. 7, no. 1, p. e649, Aug. 2021, doi: 10.7717/peerj-cs.649.
R. E. Yoro and A. A. Ojugo, “Quest for Prevalence Rate of Hepatitis-B Virus Infection in the Nigeria: Comparative Study of Supervised Versus Unsupervised Models,” Am. J. Model. Optim., vol. 7, no. 2, pp. 42–48, 2019, doi: 10.12691/ajmo-7-2-2.
R. E. Yoro and A. A. Ojugo, “An Intelligent Model Using Relationship in Weather Conditions to Predict Livestock-Fish Farming Yield and Production in Nigeria,” Am. J. Model. Optim., vol. 7, no. 2, pp. 35–41, 2019, doi: 10.12691/ajmo-7-2-1.
A. Adimabua Ojugo and R. Elizabeth Yoro, “Extending the three-tier constructivist learning model for alternative delivery: ahead the COVID-19 pandemic in Nigeria,” Indones. J. Electr. Eng. Comput. Sci., vol. 21, no. 3, p. 1673, Mar. 2021, doi: 10.11591/ijeecs.v21.i3.pp1673-1682.
A. A. Ojugo, M. I. Akazue, P. O. Ejeh, C. C. Odiakaose, and F. U. Emordi, “DeGATraMoNN: Deep Learning Memetic Ensemble to Detect Spam Threats via a Content-Based Processing,” Kongzhi yu Juece/Control Decis., vol. 38, no. 1, pp. 667–678, 2023.
H. Z. Alenzi and N. O, “Fraud Detection in Credit Cards using Logistic Regression,” Int. J. Adv. Comput. Sci. Appl., vol. 11, no. 12, 2020, doi: 10.14569/IJACSA.2020.0111265.
S. M. Albladi and G. R. S. Weir, “User characteristics that influence judgment of social engineering attacks in social networks,” Human-centric Comput. Inf. Sci., vol. 8, no. 1, p. 5, Dec. 2018, doi: 10.1186/s13673-018-0128-7.
R. E. Yoro, F. O. Aghware, B. O. Malasowe, O. Nwankwo, and A. A. Ojugo, “Assessing contributor features to phishing susceptibility amongst students of petroleum resources varsity in Nigeria,” Int. J. Electr. Comput. Eng., vol. 13, no. 2, p. 1922, Apr. 2023, doi: 10.11591/ijece.v13i2.pp1922-1931.
P. Alexopoulos, K. Kafentzis, X. Benetou, T. Tagaris, and P. Georgolios, “Towards a Generic Fraud Ontology in E-Government,” in Proceedings of the Second International Conference on e-Business, 2007, pp. 269–276. doi: 10.5220/0002112602690276.
A. Algarni, Y. Xu, and T. Chan, “An empirical study on the susceptibility to social engineering in social networking sites: the case of Facebook,” Eur. J. Inf. Syst., vol. 26, no. 6, pp. 661–687, Nov. 2017, doi: 10.1057/s41303-017-0057-y.
K. G. Al-Hashedi and P. Magalingam, “Financial fraud detection applying data mining techniques: A comprehensive review from 2009 to 2019,” Comput. Sci. Rev., vol. 40, p. 100402, May 2021, doi: 10.1016/j.cosrev.2021.100402.
A. A. Hamad et al., “Secure Complex Systems: A Dynamic Model in the Synchronization,” Comput. Intell. Neurosci., vol. 2021, pp. 1–6, Dec. 2021, doi: 10.1155/2021/9719413.
F. Itoo, Meenakshi, and S. Singh, “Comparison and analysis of logistic regression, Naïve Bayes and KNN machine learning algorithms for credit card fraud detection,” Int. J. Inf. Technol., vol. 13, no. 4, pp. 1503–1511, Aug. 2021, doi: 10.1007/s41870-020-00430-y.
D. V. Ojie, M. I. Akazue, E. U. Omede, E. . Oboh, and A. Imianvan, “Survival Prediction of Cervical Cancer Patients using Genetic Algorithm-Based Data Value Metric and Recurrent Neural Network,” Int. J. Soft Comput. Eng., vol. 13, no. 2, pp. 29–41, May 2023, doi: 10.35940/ijsce.B3608.0513223.
E. I. Ihama, M. I. Akazue, E. Omede, and D. Ojie, “A Framework for Smart City Model Enabled by Internet of Things (IoT),” Int. J. Comput. Appl., vol. 185, no. 6, pp. 6–11, May 2023, doi: 10.5120/ijca2023922685.
A. Borucka, “Logistic regression in modeling and assessment of transport services,” Open Eng., vol. 10, no. 1, pp. 26–34, Jan. 2020, doi: 10.1515/eng-2020-0029.
I. Sadgali, N. Sael, and F. Benabbou, “Performance of machine learning techniques in the detection of financial frauds,” Procedia Comput. Sci., vol. 148, pp. 45–54, 2019, doi: 10.1016/j.procs.2019.01.007.
T. Sahmoud and D. M. Mikki, “Spam Detection Using BERT,” Front. Soc. Sci. Technol., vol. 14, no. 2, pp. 23–35, Jun. 2022, doi: 10.48550/arXiv.2206.02443.
F. U. Emordi, C. C. Odiakaose, P. O. Ejeh, O. Attoh, and N. C. Ashioba, “Student’s Perception and Assessment of the Dennis Osadebay University Asaba Website for Academic Information Retrieval, Improved Web Presence, Footprints and Usability,” FUPRE J. Sci. Ind. Res., vol. 7, no. 3, pp. 49–60, 2023.
E. Ileberi, Y. Sun, and Z. Wang, “A machine learning based credit card fraud detection using the GA algorithm for feature selection,” J. Big Data, vol. 9, no. 1, p. 24, Dec. 2022, doi: 10.1186/s40537-022-00573-8.
L. Moumeni, M. Saber, I. Slimani, I. Elfarissi, and Z. Bougroun, “Machine Learning for Credit Card Fraud Detection,” in International Journal of Applied Engineering Research, vol. 15, no. 24, 2022, pp. 211–221. doi: 10.1007/978-981-33-6893-4_20.
C. Li, N. Ding, H. Dong, and Y. Zhai, “Application of Credit Card Fraud Detection Based on CS-SVM,” Int. J. Mach. Learn. Comput., vol. 11, no. 1, pp. 34–39, Jan. 2021, doi: 10.18178/ijmlc.2021.11.1.1011.
I. Benchaji, S. Douzi, B. El Ouahidi, and J. Jaafari, “Enhanced credit card fraud detection based on attention mechanism and LSTM deep model,” J. Big Data, vol. 8, no. 1, p. 151, Dec. 2021, doi: 10.1186/s40537-021-00541-8.
U. K. Okpeki, S. Adegoke, and E. U. Omede, “Application of Artificial Intelligence for Facial Accreditation of Officials and,” FUPRE J. Sci. Ind. Res., vol. 6, no. 3, pp. 1–11, 2022.
F. O. Aghware, R. E. Yoro, P. O. Ejeh, C. C. Odiakaose, F. U. Emordi, and A. A. Ojugo, “DeLClustE: Protecting Users from Credit-Card Fraud Transaction via the Deep-Learning Cluster Ensemble,” Int. J. Adv. Comput. Sci. Appl., vol. 14, no. 6, pp. 94–100, 2023, doi: 10.14569/IJACSA.2023.0140610.
L. E. Mukhanov, “Using bayesian belief networks for credit card fraud detection,” Proc. IASTED Int. Conf. Artif. Intell. Appl. AIA 2008, no. February 2008, pp. 221–225, 2008.
V. Filippov, L. Mukhanov, and B. Shchukin, “Credit card fraud detection system,” in 2008 7th IEEE International Conference on Cybernetic Intelligent Systems, Sep. 2008, pp. 1–6. doi: 10.1109/UKRICIS.2008.4798919.
D. Varmedja, M. Karanovic, S. Sladojevic, M. Arsenovic, and A. Anderla, “Credit Card Fraud Detection - Machine Learning methods,” in 2019 18th International Symposium INFOTEH-JAHORINA (INFOTEH), Mar. 2019, pp. 1–5. doi: 10.1109/INFOTEH.2019.8717766.
E. Altman, “Synthesizing credit card transactions,” in Proceedings of the Second ACM International Conference on AI in Finance, Nov. 2021, vol. 14, pp. 1–9. doi: 10.1145/3490354.3494378.
E. A. L. Marazqah Btoush, X. Zhou, R. Gururajan, K. C. Chan, R. Genrich, and P. Sankaran, “A systematic review of literature on credit card cyber fraud detection using machine and deep learning,” PeerJ Comput. Sci., vol. 9, p. e1278, Apr. 2023, doi: 10.7717/peerj-cs.1278.
S. Xuan, G. Liu, Z. Li, L. Zheng, S. Wang, and C. Jiang, “Random forest for credit card fraud detection,” in 2018 IEEE 15th International Conference on Networking, Sensing and Control (ICNSC), Mar. 2018, pp. 1–6. doi: 10.1109/ICNSC.2018.8361343.
M. I. Akazue, A. Clive, E. Abel, O. Edith, and E. Ufiofio, “Cybershield: Harnessing Ensemble Feature Selection Technique for Robust Distributed Denial of Service Attacks Detection,” Kongzhi yu Juece/Control Decis., vol. 38, no. 3, 2023.
Y. Abakarim, M. Lahby, and A. Attioui, “An Efficient Real Time Model For Credit Card Fraud Detection Based On Deep Learning,” in Proceedings of the 12th International Conference on Intelligent Systems: Theories and Applications, Oct. 2018, pp. 1–7. doi: 10.1145/3289402.3289530.
M. Zareapoor and P. Shamsolmoali, “Application of Credit Card Fraud Detection: Based on Bagging Ensemble Classifier,” Procedia Comput. Sci., vol. 48, pp. 679–685, 2015, doi: 10.1016/j.procs.2015.04.201.
B. Gaye and A. Wulamu, “Sentimental Analysis for Online Reviews using Machine learning Algorithms,” pp. 1270–1275, 2019.
Maya Gopal P S and Bhargavi R, “Selection of Important Features for Optimizing Crop Yield Prediction,” Int. J. Agric. Environ. Inf. Syst., vol. 10, no. 3, pp. 54–71, Jul. 2019, doi: 10.4018/IJAEIS.2019070104.
David Opeoluwa Oyewola, E. G. Dada, J. N. Ndunagu, T. Abubakar Umar, and A. S.A, “COVID-19 Risk Factors, Economic Factors, and Epidemiological Factors nexus on Economic Impact: Machine Learning and Structural Equation Modelling Approaches,” J. Niger. Soc. Phys. Sci., vol. 3, no. 4, pp. 395–405, Nov. 2021, doi: 10.46481/jnsps.2021.173.
X. Zhang, Y. Han, W. Xu, and Q. Wang, “HOBA: A novel feature engineering methodology for credit card fraud detection with a deep learning architecture,” Inf. Sci. (Ny)., vol. 557, pp. 302–316, May 2021, doi: 10.1016/j.ins.2019.05.023.
M. Al-Qatf, Y. Lasheng, M. Al-Habib, and K. Al-Sabahi, “Deep Learning Approach Combining Sparse Autoencoder With SVM for Network Intrusion Detection,” IEEE Access, vol. 6, pp. 52843–52856, 2018, doi: 10.1109/ACCESS.2018.2869577.
A. A. Ojugo and O. Nwankwo, “Spectral-Cluster Solution For Credit-Card Fraud Detection Using A Genetic Algorithm Trained Modular Deep Learning Neural Network,” JINAV J. Inf. Vis., vol. 2, no. 1, pp. 15–24, Jan. 2021, doi: 10.35877/454RI.jinav274.
A. Razaque et al., “Credit Card-Not-Present Fraud Detection and Prevention Using Big Data Analytics Algorithms,” Appl. Sci., vol. 13, no. 1, p. 57, Dec. 2022, doi: 10.3390/app13010057.
K. A. K. Saputra, Mu’ah, Jurana, C. W. M. Korompis, and D. T. H. Manurung, “Fraud Prevention Determinants: A Balinese Cultural Overview,” Australas. Accounting, Bus. Financ. J., vol. 16, no. 3, pp. 167–181, 2022, doi: 10.14453/aabfj.v16i3.11.
M. I. Akazue, I. A. Debekeme, A. E. Edje, C. Asuai, and U. J. Osame, “UNMASKING FRAUDSTERS: Ensemble Features Selection to Enhance Random Forest Fraud Detection,” J. Comput. Theor. Appl., vol. 1, no. 2, pp. 201–211, Dec. 2023, doi: 10.33633/jcta.v1i2.9462.
A. A. Ojugo et al., “Forging a User-Trust Memetic Modular Neural Network Card Fraud Detection Ensemble: A Pilot Study,” J. Comput. Theor. Appl., vol. 1, no. 2, pp. 50–60, Oct. 2023, doi: 10.33633/jcta.v1i2.9259.
J. Femila Roseline, G. Naidu, V. Samuthira Pandi, S. Alamelu alias Rajasree, and D. N. Mageswari, “Autonomous credit card fraud detection using machine learning approach,” Comput. Electr. Eng., vol. 102, p. 108132, Sep. 2022, doi: 10.1016/j.compeleceng.2022.108132.
O. Sinayobye, R. Musabe, A. Uwitonze, and A. Ngenzi, “A Credit Card Fraud Detection Model Using Machine Learning Methods with a Hybrid of Undersampling and Oversampling for Handling Imbalanced Datasets for High Scores,” 2023, pp. 142–155. doi: 10.1007/978-3-031-34222-6_12.
A. Ali et al., “Financial Fraud Detection Based on Machine Learning: A Systematic Literature Review,” Appl. Sci., vol. 12, no. 19, p. 9637, Sep. 2022, doi: 10.3390/app12199637.
N. Rtayli and N. Enneya, “Enhanced credit card fraud detection based on SVM-recursive feature elimination and hyper-parameters optimization,” J. Inf. Secur. Appl., vol. 55, p. 102596, Dec. 2020, doi: 10.1016/j.jisa.2020.102596.
A. A. Ojugo and R. E. Yoro, “Computational Intelligence in Stochastic Solution for Toroidal N-Queen,” Prog. Intell. Comput. Appl., vol. 1, no. 2, pp. 46–56, 2013, doi: 10.4156/pica.vol2.issue1.4.
A. A. Ojugo and A. O. Eboka, “Comparative Evaluation for High Intelligent Performance Adaptive Model for Spam Phishing Detection,” Digit. Technol. Vol. 3, 2018, Pages 9-15, vol. 3, no. 1, pp. 9–15, Nov. 2018, doi: 10.12691/DT-3-1-2.
S. B. N and C. B. Akki, “Sentiment Prediction using Enhanced XGBoost and Tailored Random Forest,” Int. J. Comput. Digit. Syst., vol. 10, no. 1, pp. 191–199, Jan. 2021, doi: 10.12785/ijcds/100119.
M. M. S, C. B.R, S. S, V. . Sulakhe, and V. B. Gowda, “Developing An Application for Identification of Missing Children and Criminal Using Face Recognition.,” IJARCCE, vol. 12, no. 6, pp. 272–279, May 2023, doi: 10.17148/IJARCCE.2023.12648.
Sharmila, R. Sharma, D. Kumar, V. Puranik, and K. Gautham, “Performance Analysis of Human Face Recognition Techniques,” in 2019 4th International Conference on Internet of Things: Smart Innovation and Usages (IoT-SIU), Apr. 2019, no. May 2020, pp. 1–4. doi: 10.1109/IoT-SIU.2019.8777610.
M. Ifeanyi Akazue, R. Elizabeth Yoro, B. Ogheneovo Malasowe, O. Nwankwo, and A. Arnold Ojugo, “Improved services traceability and management of a food value chain using block-chain network: a case of Nigeria,” Indones. J. Electr. Eng. Comput. Sci., vol. 29, no. 3, p. 1623, Mar. 2023, doi: 10.11591/ijeecs.v29.i3.pp1623-1633.
A. Maureen, O. Anthonia, E. Omede, and J. P. A. . Hampo, “Use of Adaptive Boosting Algorithm to Estimate User ’ s Trust in the Utilization o f Virtual Assistant Systems,” Int. J. Innov. Sci. Res. Technol., vol. 8, no. 1, pp. 502–507, 2023.
M. K. G. Roshan, “Multiclass Medical X-ray Image Classification using Deep Learning with Explainable AI,” Int. J. Res. Appl. Sci. Eng. Technol., vol. 10, no. 6, pp. 4518–4526, Jun. 2022, doi: 10.22214/ijraset.2022.44541.
A. Ojugo and O. D. Otakore, “Forging An Optimized Bayesian Network Model With Selected Parameters For Detection of The Coronavirus In Delta State of Nigeria,” J. Appl. Sci. Eng. Technol. Educ., vol. 3, no. 1, pp. 37–45, Apr. 2021, doi: 10.35877/454RI.asci2163.
A. A. Ojugo and A. O. Eboka, “Empirical Bayesian network to improve service delivery and performance dependability on a campus network,” IAES Int. J. Artif. Intell., vol. 10, no. 3, p. 623, Sep. 2021, doi: 10.11591/ijai.v10.i3.pp623-635.
L. De Kimpe, M. Walrave, W. Hardyns, L. Pauwels, and K. Ponnet, “You’ve got mail! Explaining individual differences in becoming a phishing target,” Telemat. Informatics, vol. 35, no. 5, pp. 1277–1287, Aug. 2018, doi: 10.1016/j.tele.2018.02.009.
K. Deepika, M. P. S. Nagenddra, M. V. Ganesh, and N. Naresh, “Implementation of Credit Card Fraud Detection Using Random Forest Algorithm,” Int. J. Res. Appl. Sci. Eng. Technol., vol. 10, no. 3, pp. 797–804, Mar. 2022, doi: 10.22214/ijraset.2022.40702.
J. R. Amalraj and R. Lourdusamy, “A Novel Distributed Token-Based Access Control Algorithm Using A Secret Sharing Scheme for Secure Data Access Control,” Int. J. Comput. Networks Appl., vol. 9, no. 4, p. 374, Aug. 2022, doi: 10.22247/ijcna/2022/214501.
P. Boulieris, J. Pavlopoulos, A. Xenos, and V. Vassalos, “Fraud detection with natural language processing,” Mach. Learn., Jul. 2023, doi: 10.1007/s10994-023-06354-5.
I. A. Anderson and W. Wood, “Habits and the electronic herd: The psychology behind social media’s successes and failures,” Consum. Psychol. Rev., vol. 4, no. 1, pp. 83–99, Jan. 2021, doi: 10.1002/arcp.1063.
Y. Kang, M. Ozdogan, X. Zhu, Z. Ye, C. Hain, and M. Anderson, “Comparative assessment of environmental variables and machine learning algorithms for maize yield prediction in the US Midwest,” Environ. Res. Lett., vol. 15, no. 6, p. 064005, Jun. 2020, doi: 10.1088/1748-9326/ab7df9.
A. A. Ojugo and O. D. Otakore, “Improved Early Detection of Gestational Diabetes via Intelligent Classification Models: A Case of the Niger Delta Region in Nigeria,” J. Comput. Sci. Appl., vol. 6, no. 2, pp. 82–90, 2018, doi: 10.12691/jcsa-6-2-5.
A. S. Pillai, “Multi-Label Chest X-Ray Classification via Deep Learning,” J. Intell. Learn. Syst. Appl., vol. 14, no. 04, pp. 43–56, 2022, doi: 10.4236/jilsa.2022.144004.
D. S. Charan, H. Nadipineni, S. Sahayam, and U. Jayaraman, “Method to Classify Skin Lesions using Dermoscopic images,” Aug. 2020.
A. E. Ibor, E. B. Edim, and A. A. Ojugo, “Secure Health Information System with Blockchain Technology,” J. Niger. Soc. Phys. Sci., vol. 5, no. 992, pp. 1–8, 2023, doi: 10.46481/jnsps.2022.992.
W. W. Guo and H. Xue, “Crop Yield Forecasting Using Artificial Neural Networks: A Comparison between Spatial and Temporal Models,” Math. Probl. Eng., vol. 2014, no. 4, pp. 1–7, 2014, doi: 10.1155/2014/857865.
V. N. Dornadula and S. Geetha, “Credit Card Fraud Detection using Machine Learning Algorithms,” Procedia Comput. Sci., vol. 165, pp. 631–641, 2019, doi: 10.1016/j.procs.2020.01.057.
K. Kakhi, R. Alizadehsani, H. M. D. Kabir, A. Khosravi, S. Nahavandi, and U. R. Acharya, “The internet of medical things and artificial intelligence: trends, challenges, and opportunities,” Biocybern. Biomed. Eng., vol. 42, no. 3, pp. 749–771, Jul. 2022, doi: 10.1016/j.bbe.2022.05.008.
H. Said, B. B. S. Tawfik, and M. A. Makhlouf, “A Deep Learning Approach for Sentiment Classification of COVID-19 Vaccination Tweets,” Int. J. Adv. Comput. Sci. Appl., vol. 14, no. 4, pp. 530–538, 2023, doi: 10.14569/IJACSA.2023.0140458.
O. V. Lee et al., “A malicious URLs detection system using optimization and machine learning classifiers,” Indones. J. Electr. Eng. Comput. Sci., vol. 17, no. 3, p. 1210, Mar. 2020, doi: 10.11591/ijeecs.v17.i3.pp1210-1214.
M. Rathi and V. Pareek, “Spam Mail Detection through Data Mining – A Comparative Performance Analysis,” Int. J. Mod. Educ. Comput. Sci., vol. 5, no. 12, pp. 31–39, Dec. 2013, doi: 10.5815/ijmecs.2013.12.05.
X. Ying, “An Overview of Overfitting and its Solutions,” J. Phys. Conf. Ser., vol. 1168, no. 2, p. 022022, Feb. 2019, doi: 10.1088/1742-6596/1168/2/022022.
A. A. Ojugo and A. O. Eboka, “Assessing Users Satisfaction and Experience on Academic Websites: A Case of Selected Nigerian Universities Websites,” Int. J. Inf. Technol. Comput. Sci., vol. 10, no. 10, pp. 53–61, Oct. 2018, doi: 10.5815/ijitcs.2018.10.07.
A. A. Ojugo and R. E. Yoro, “Predicting Futures Price And Contract Portfolios Using The ARIMA Model: A Case of Nigeria’s Bonny Light and Forcados,” Quant. Econ. Manag. Stud., vol. 1, no. 4, pp. 237–248, Aug. 2020, doi: 10.35877/454RI.qems139.
G. Behboud, “Reasoning using Modular Neural Network,” Towar. Data Sci., vol. 34, no. 2, pp. 12–34, 2020.
R. Nasir, M. Afzal, R. Latif, and W. Iqbal, “Behavioral Based Insider Threat Detection Using Deep Learning,” IEEE Access, vol. 9, pp. 143266–143274, 2021, doi: 10.1109/ACCESS.2021.3118297.
A. A. Ojugo and A. O. Eboka, “Modeling the Computational Solution of Market Basket Associative Rule Mining Approaches Using Deep Neural Network,” Digit. Technol., vol. 3, no. 1, pp. 1–8, 2018, doi: 10.12691/dt-3-1-1.
A. A. Ojugo and D. O. Otakore, “Redesigning Academic Website for Better Visibility and Footprint: A Case of the Federal University of Petroleum Resources Effurun Website,” Netw. Commun. Technol., vol. 3, no. 1, p. 33, Jul. 2018, doi: 10.5539/nct.v3n1p33.
A. Taravat and F. Del Frate, “Weibull Multiplicative Model and Machine Learning Models for Full-Automatic Dark-Spot Detection from SAR Images,” Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci., vol. XL-1/W3, no. September 2013, pp. 421–424, Sep. 2013, doi: 10.5194/isprsarchives-XL-1-W3-421-2013.
P. . Maya Gopal and Bhargavi R, “Feature Selection for Yield Prediction Using BORUTA Algorithm,” Int. J. Pure Appl. Math., vol. 118, no. 22, pp. 139–144, 2018.
M. I. Akazue, A. A. Ojugo, R. E. Yoro, B. O. Malasowe, and O. Nwankwo, “Empirical evidence of phishing menace among undergraduate smartphone users in selected universities in Nigeria,” Indones. J. Electr. Eng. Comput. Sci., vol. 28, no. 3, p. 1756, Dec. 2022, doi: 10.11591/ijeecs.v28.i3.pp1756-1765.
F. O. Aghware, R. E. Yoro, P. O. Ejeh, C. C. Odiakaose, F. U. Emordi, and A. A. Ojugo, “Sentiment analysis in detecting sophistication and degradation cues in malicious web contents,” Kongzhi yu Juece/Control Decis., vol. 38, no. 01, p. 653, 2023.
R. E. Yoro, F. ObukohwoAghware, M. I. Akazue, A. E. Ibor, and A. A. Ojugo, “Evidence of personality traits on phishing attack menace among selected university undergraduates in Nigerian,” Int. J. Electr. Comput. Eng., vol. 13, no. 2, p. 1943, Apr. 2023, doi: 10.11591/ijece.v13i2.pp1943-1953.
M. Gratian, S. Bandi, M. Cukier, J. Dykstra, and A. Ginther, “Correlating human traits and cyber security behavior intentions,” Comput. Secur., vol. 73, pp. 345–358, Mar. 2018, doi: 10.1016/j.cose.2017.11.015.
I. P. and A. A., “Evolutionary Memetic Models for Malware Intrusion Detection: A Comparative Quest for Computational Solution and Convergence,” Int. J. Comput. Appl., vol. 179, no. 39, pp. 34–43, May 2018, doi: 10.5120/ijca2018916586.
C. Bentéjac, A. Csörg?, and G. Martínez-Muñoz, “A comparative analysis of gradient boosting algorithms,” Artif. Intell. Rev., vol. 54, no. 3, pp. 1937–1967, Mar. 2021, doi: 10.1007/s10462-020-09896-5.
V. Umarani, A. Julian, and J. Deepa, “Sentiment Analysis using various Machine Learning and Deep Learning Techniques,” J. Niger. Soc. Phys. Sci., vol. 3, no. 4, pp. 385–394, Nov. 2021, doi: 10.46481/jnsps.2021.308.
A. A. Ojugo and A. O. Eboka, “Memetic algorithm for short messaging service spam filter using text normalization and semantic approach,” Int. J. Informatics Commun. Technol., vol. 9, no. 1, p. 9, Apr. 2020, doi: 10.11591/ijict.v9i1.pp9-18.
F. Omoruwou, A. A. Ojugo, and S. E. Ilodigwe, “Strategic Feature Selection for Enhanced Scorch Prediction in Flexible Polyurethane Form Manufacturing,” J. Comput. Theor. Appl., vol. 2, no. 1, pp. 126–137, Mar. 2024, doi: 10.62411/jcta.9539.
A. Artikis et al., “A Prototype for Credit Card Fraud Management,” in Proceedings of the 11th ACM International Conference on Distributed and Event-based Systems, Jun. 2017, pp. 249–260. doi: 10.1145/3093742.3093912.
M. Barlaud, A. Chambolle, and J.-B. Caillau, “Robust supervised classification and feature selection using a primal-dual method,” Feb. 2019.
A. A. Ojugo et al., “CoSoGMIR: A Social Graph Contagion Diffusion Framework using the Movement-Interaction-Return Technique,” J. Comput. Theor. Appl., vol. 1, no. 2, pp. 163–173, Dec. 2023, doi: 10.33633/jcta.v1i2.9355.
G. TekalignTujo, G. Dileep Kumar, D. ElifeneshYitagesu, and B. MeseretGirma, “Predictive Model to Predict Seed Classes using Machine Learning,” Int. J. Eng. Res. Technol., vol. 6, no. 08, pp. 334–344, 2017.
Q. Li et al., “An Enhanced Grey Wolf Optimization Based Feature Selection Wrapped Kernel Extreme Learning Machine for Medical Diagnosis,” Comput. Math. Methods Med., vol. 2017, pp. 1–15, 2017, doi: 10.1155/2017/9512741.
C. C. Odiakaose, F. U. Emordi, P. O. Ejeh, O. Attoh, and N. C. Ashioba, “A pilot study to enhance semi-urban tele-penetration and services provision for undergraduates via the effective design and extension of campus telephony,” FUPRE J. Sci. Ind. Res., vol. 7, no. 3, pp. 35–48, 2023.
F. Mustofa, A. N. Safriandono, A. R. Muslikh, and D. R. I. M. Setiadi, “Dataset and Feature Analysis for Diabetes Mellitus Classification using Random Forest,” J. Comput. Theor. Appl., vol. 1, no. 1, pp. 41–48, Jan. 2023, doi: 10.33633/jcta.v1i1.9190.
A. R. Muslikh, D. R. I. M. Setiadi, and A. A. Ojugo, “Rice Disease Recognition using Transfer Learning Xception Convolutional Neural Network,” J. Tek. Inform., vol. 4, no. 6, pp. 1535–1540, Dec. 2023, doi: 10.52436/1.jutif.2023.4.6.1529.
E. U. Omede, A. E. Edje, M. I. Akazue, H. Utomwen, and A. A. Ojugo, “IMANoBAS: An Improved Multi-Mode Alert Notification IoT-based Anti-Burglar Defense System,” J. Comput. Theor. Appl., vol. 2, no. 1, pp. 43–53, Feb. 2024, doi: 10.62411/jcta.9541.
C. Jiang, J. Song, G. Liu, L. Zheng, and W. Luan, “Credit Card Fraud Detection: A Novel Approach Using Aggregation Strategy and Feedback Mechanism,” IEEE Internet Things J., vol. 5, no. 5, pp. 3637–3647, Oct. 2018, doi: 10.1109/JIOT.2018.2816007.
A. Shaji, S. Binu, A. M. Nair, and J. George, “Fraud Detection in Credit Card Transaction Using ANN and SVM,” 2021, pp. 187–197. doi: 10.1007/978-3-030-79276-3_14.
C. Shorten and T. M. Khoshgoftaar, “A survey on Image Data Augmentation for Deep Learning,” J. Big Data, vol. 6, no. 60, 2019, doi: 10.1186/s40537-019-0197-0.
J. K. Oladele et al., “BEHeDaS: A Blockchain Electronic Health Data System for Secure Medical Records Exchange,” J. Comput. Theor. Appl., vol. 2, no. 1, pp. 1–12, Jan. 2024, doi: 10.62411/jcta.9509.
M. Armstrong and J. Vickers, “Patterns of Price Competition and the Structure of Consumer Choice,” MPRA Pap., vol. 1, no. 98346, pp. 1–40, 2020.
D. A. Oyemade, R. J. Ureigho, F. A.-A. Imouokhome, E. U. Omoregbee, J. Akpojaro, and A. Ojugo, “A Three Tier Learning Model for Universities in Nigeria,” J. Technol. Soc., vol. 12, no. 2, pp. 9–20, 2016, doi: 10.18848/2381-9251/CGP/v12i02/9-20.
J. Li et al., “Feature Selection,” ACM Comput. Surv., vol. 50, no. 6, pp. 1–45, Nov. 2018, doi: 10.1145/3136625.
C. C. Aggarwal, Data Classification. Chapman and Hall/CRC, 2014. doi: 10.1201/b17320.
A. Adimabua Ojugo, P. Ogholuwarami Ejeh, O. Chukwufunaya Christopher, A. Okonji Eboka, and F. Uchechukwu Emordi, “Improved distribution and food safety for beef processing and management using a blockchain-tracer support framework,” Int. J. Informatics Commun. Technol., vol. 12, no. 3, p. 205, Dec. 2023, doi: 10.11591/ijict.v12i3.pp205-213.
Y. Bouchlaghem, Y. Akhiat, and S. Amjad, “Feature Selection: A Review and Comparative Study,” E3S Web Conf., vol. 351, p. 01046, May 2022, doi: 10.1051/e3sconf/202235101046.
S. Wang, J. Tang, H. Liu, and E. Lansing, Encyclopedia of Machine Learning and Data Science, no. October 2017. New York, NY: Springer US, 2020. doi: 10.1007/978-1-4899-7502-7.
A. Jovic, K. Brkic, and N. Bogunovic, “A review of feature selection methods with applications,” in 2015 38th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), May 2015, pp. 1200–1205. doi: 10.1109/MIPRO.2015.7160458.
D. H. Zala and M. B. Chaudhari, “Review on use of ‘BAGGING’ technique in agriculture crop yield prediction,” IJSRD - Int. J. Sci. Res. Dev., vol. 6, no. 8, pp. 675–676, 2018.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Arnold Adimabua Ojugo, Fidelis Obukohwo Aghware
This work is licensed under a Creative Commons Attribution 4.0 International License.