INTEGRASI PERINGKAS DOKUMEN OTOMATIS SEBAGAI FEATURE REDUCTION PADA CLUSTERING DOKUMEN

Authors

  • Abu Salam Magister Teknik Informatika, Univ. Dian Nuswantoro
  • Catur Supriyanto Magister Teknik Informatika, Univ. Dian Nuswantoro
  • Amiq Fahmi Manajemen Informatika, Univ. Dian Nuswantoro

Abstract

Clustering dokumen merupakan proses pengelompokan dokumen yang memiliki kesamaan topik, clustering dokumen memudahkan pengguna menemukan dokumen yang diinginkan. Dalam proses clustering dokumen, dokumen direpresentasikan menggunakan Vector Space Model (VSM). Masalah dalam VSM adalah matrik term-dokumen biasanya sangat jarang (banyak mengandung angka 0 dalam term-dokumen matrik) dan juga mempunyai dimensi tinggi, sehingga masalah-masalah ini dapat mengurangi kinerja clustering dokumen. Oleh karena itu diperlukan suatu metode untuk bisa mengurangi dimensi term-dokumen dan menghilangkan term yang bernilai 0 tersebut sehingga dapat meningkatkan kinerja proses clustering. Dalam penelitian ini diusulkan model peringkas dokumen otomatis sebagai feature reduction pada proses clustering dokumen.Tujuan dari penelitian ini adalah untuk meningkatkan akurasi dari clustering dokumen dengan mengintegrasikan peringkas dokumen otomatis sebagai feature reduction. Ada beberapa tahapan clustering dalam penelitian ini, yaitu preprocessing, peringkas dokumen otomatis, pembobotan kata, feature selection, feature transformation dan algoritma clustering. Tahap Preprocessing yang digunakan dalam penelitian ini adalah tokenization, stopword, stemming dan pemenggalan kalimat. Proses peringkas dokumen otomatis ditujukan untuk penyeleksian kalimat agar didapatkan ringkasan teks yang diperoleh dengan menyajikan kembali bagian tulisan yang dianggap topik utama tulisan dengan bentuk yang lebih disederhanakan baru kemudian selanjutnya dilakukan proses pembobotan kata, feature selection, feature transformation dan clustering. Hasil penelitian menunjukkan bahwa integrasi peringkas dokumen otomatis sebagai feature reduction dapat meningkatkan kinerja clustering dokumen sampai dengan 91,7 %, mengalami peningkatan dari tingkat akurasi 89,6 % untuk proses feature reduction tanpa menggunakan peringkas dokumen otomatis. Kemudian pengaruh Integrasi peringkas dokumen otomatis sebagai feature reduction untuk waktu komputasi yang dibutuhkan adalah pada % feature selection yang semakin kecil integrasi peringkas dokumen otomatis sebagai feature reduction membutuhkan tambahan waktu komputasi tersendiri, akan tetapi pada proporsi feature selection yang semakin besar, % peringkas dokumen otomatis dapat menurunkan waktu komputasi yang digunakan.Kata kunci: Text mining; Clustering Dokumen; Peringkas Dokumen Otomatis.

Downloads

Published

2012-06-23