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Abstract: The integration of Artificial Intelligence (Al) into precision agriculture has significantly im-
proved plant disease recognition; however, many existing deep learning models remain computationally
expensive and feature-redundant, limiting their deployment on low-power and edge devices. To ad-
dress these limitations, this study proposes a lightweight framework for maize leaf disease recognition
based on serial deep feature extraction, dimensionality reduction, and machine-learning—based classifi-
cation. A pre-trained MobileNetV2 network is employed as a fixed feature extractor to obtain discrim-
inative visual representations, while Principal Component Analysis (PCA) is applied to reduce feature
dimensionality by approximately 76%, retaining 95% of the original variance and improving computa-
tional efficiency. The compressed features are subsequently classified using a Radial Basis Function
Support Vector Machine (RBF-SVM), optimized via grid search and cross-validation. Experiments
conducted on a four-class maize leaf disease dataset (Northern Leaf Blight, Common Rust, Gray Leaf
Spot, and Healthy), with class imbalance handled during training, demonstrate that the proposed Mo-
bileNetV2-PCA-SVM pipeline achieves 97.58% accuracy, 96.60% precision, 96.59% recall, and
96.59% F1-score, outperforming the DenseNet201 + Bayesian-optimized SVM baseline (94.60%,
94.40%, 94.40%, and 94.40%, respectively). This improvement corresponds to a 2.98% accuracy gain,
a 55% reduction in error rate, an 86% reduction in model parameters (20.31M to 2.75M), and an 85%
reduction in model size (81 MB to 12 MB). These results indicate that the proposed framework pro-
vides a compact and efficient solution with strong potential for deployment in resource-constrained

agricultural environments.

Keywords: Deep feature extraction; Edge computing; Lightweight model; Maize leaf disease

recognition; MobileNetV2; Plant disease classification; Precision agriculture; Smart agriculture.

1. Introduction

Crop diseases remain a major constraint on agricultural productivity, particularly in sta-
ple crops that support global food systems. In maize (Zea mays), foliar diseases such as Gray
Leaf Spot, Northern Leaf Blight, and Rust can severely reduce yield and crop quality, with
losses exceeding 50% under severe infestation conditions [1], [2]. Effective disease manage-
ment therefore, depends on early and accurate diagnosis, which is often challenging to achieve
at scale using manual field inspection alone. Visual symptoms on leaves provide critical diag-
nostic cues, making image-based analysis a promising foundation for automated disease mon-
itoring systems [3]. Recent advances in artificial intelligence (Al) and computer vision have
further enabled the development of practical, data-driven tools that support timely interven-
tion and sustainable crop management in precision agriculture [4]—[0].

Deep learning approaches, particularly Convolutional Neural Networks (CNNs), have
demonstrated strong performance in automatic plant disease recognition by learning hierar-
chical and discriminative features from leaf images [3], [7], [8]. Well-known architectures such
as VGGNet, ResNet, and DenseNet have achieved high classification accuracy in controlled
experimental settings. Nevertheless, their deployment in real-world agricultural environments
remains challenging. Most CNN-based models require large and well-balanced datasets to
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generalize effectively, whereas agricultural image data are often affected by environmental
variability, inconsistent illumination, background clutter, and limited sample availability [9],
[10]. These factors frequently introduce domain shift and ovetfitting, reducing robustness and
limiting applicability in smallholder or resource-constrained farming contexts [11].

In addition to data-related challenges, high-capacity CNN architectures are computa-
tionally expensive, requiring substantial memory and processing resoutces for both training
and inference [7]. Such complexity limits deployment on low-power or embedded devices
commonly used in field monitoring systems. Consequently, lightweight CNN architectures
have gained increasing attention due to their ability to provide efficient yet discriminative
feature representations suitable for mobile and edge-based agricultural applications. Among
these, MobileNetV2 [12] is particulatly notable for its inverted residual structure and depth-
wise separable convolutions, which enable a favorable balance between computational effi-
ciency and representational capability.

Although lightweight CNNs reduce computational cost, the direct use of high-dimen-
sional deep feature vectors may still introduce redundancy and irrelevant information. Di-
mensionality reduction techniques, such as Principal Component Analysis (PCA), offer an
effective mechanism to retain the most informative components while discarding correlated
and noisy features [13], [14]. When applied after deep feature extraction, PCA further im-
proves computational efficiency and can enhance discriminative capability by emphasizing
essential visual patterns relevant to disease classification.

In parallel, classical machine learning classifiers—particularly Support Vector Machines
(SVMs) continue to demonstrate strong generalization performance on small or moderately
imbalanced datasets. When combined with nonlinear Radial Basis Function (RBF) kernels,
SVMs can model complex decision boundaries and improve separability between visually
similar disease classes [14]. Integrating CNN-based deep feature extraction with optimized
kernel-based classifiers, therefore, represents a promising hybrid approach that combines the
representational strength of deep learning with the robustness of statistical learning [15], [16].

Despite these advances, several gaps remain in existing maize disease recognition studies.
First, many works emphasize overall accuracy while underreporting recall performance for
diseased classes, even though false negatives are particularly costly in agricultural decision-
making. Second, the individual contributions of deep feature extraction, dimensionality re-
duction, and classifier choice are often insufficiently analyzed, limiting methodological trans-
parency. Third, although lightweight deployment is frequently claimed, efficiency gains are
rarely supported by explicit architectural justification or feature compression analysis. Finally,
systematic evaluation of model components through ablation and controlled experiments re-
mains limited in prior studies.

Motivated by these limitations, this work presents a compact and efficient maize leaf
disease recognition pipeline based on three sequential stages: (1) deep feature extraction using
MobileNetV2, (2) feature refinement through PCA-based dimensionality reduction, and (3)
classification using an optimized RBF-SVM. The proposed framework is designed to reduce
computational complexity and feature redundancy while maintaining strong recognition per-
formance under constrained data and resource settings. The main contributions of this study
can be summarized as follows:

e  Utilization of MobileNetV2 as a lightweight backbone for extracting discriminative
maize leaf features with low computational overhead.

e Application of dimensionality reduction to minimize redundancy while preserving in-
formative variance, leading to improved efficiency.

e  Robust SVM-Based Classification: Replacement of the CNN softmax head with a grid-
search-optimized RBF-SVM to enhance class separability under limited data conditions.

e Development of a serial and resource-efficient recognition framework suitable for de-
ployment in mobile and edge-based agricultural systems.

The remainder of this paper is organized as follows. Section 2 reviews related work on
deep learning and CNN-SVM-based plant disease recognition. Section 3 describes the pro-
posed MobileNetV2-PCA-SVM methodology in detail. Section 4 presents the experimental
setup, results, and performance analysis. Finally, Section 5 concludes the paper and outlines
directions for future research toward scalable and deployable maize disease recognition sys-
tems.
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2. Related Work

A substantial body of research has explored computational methods for plant disease
recognition, ranging from early handcrafted feature—based approaches to modern deep learn-
ing—driven image analysis. These studies have investigated a wide variety of crops, imaging
conditions, and classification strategies, with maize receiving particular attention due to its
economic importance [3]. Existing work can be broadly categorized into methods based on
handcrafted descriptors, deep convolutional neural networks, lightweight architectures for
efficient deployment, and CNN-based pipelines that employ feature compression and classi-
cal machine learning classifiers such as Support Vector Machines (SVMs) [9].

Hatly studies relied on handcrafted descriptors, including color, texture, and shape fea-
tures, for leaf disease detection. Although computationally lightweight, these approaches were
highly sensitive to variations in illumination, background, and imaging conditions, resulting
in limited robustness and inconsistent predictions [10], [13]. The introduction of Convolu-
tional Neural Networks (CNNs) marked a major shift in agricultural image analysis by ena-
bling automatic feature learning and hierarchical pattern extraction directly from raw images
[17], [18]. Architectures such as AlexNet, VGGNet, and ResNet achieved notable improve-
ments in classification accuracy across multiple crop species [19]—[21]. However, their large
model size and high computational demands restrict deployment on low-power or embedded
agricultural devices, particularly in real-time field applications [7], [22].

To overcome these limitations, lightweight CNN architectures such as MobileNet, Shuf-
fleNet, and EfficientNet have been proposed to reduce computational cost while preserving
representational capability [23], [24]. MobileNetV2, in particular, employs inverted residual
blocks and depthwise separable convolutions, achieving an effective balance between effi-
ciency and accuracy [25]. These architectural properties make MobileNetV2 well-suited for
deployment in resource-constrained environments, and several studies have demonstrated its
effectiveness for plant leaf disease recognition, including maize, tomato, and rice, with signif-
icantly reduced parameter footprints [15], [20].

Beyond architectural efficiency, feature redundancy remains a critical challenge in deep
learning—based plant disease recognition. High-dimensional feature vectors often contain cor-
related or noisy components that can degrade discriminative performance. PCA has therefore
been widely adopted as a dimensionality reduction technique to compress deep features while
preserving the most informative variance components [14], [16]. By reducing redundancy,
PCA improves computational efficiency and mitigates overfitting, thereby enhancing gener-
alization across variable field conditions [11]. Several studies have shown that combining
CNN-based feature extraction with PCA yields compact and discriminative representations
without increasing model complexity [27]—[29].

For the classification stage, classical machine learning algorithms—particularly SVMs,
continue to demonstrate strong generalization performance on small or moderately imbal-
anced agricultural datasets [30], [31]. When equipped with a nonlinear RBF kernel, SVMs can
model complex decision boundaries and improve class separability for visually similar diseases
[25]. Recent research indicates that replacing the softmax layer of CNNs with kernel-based
SVM classifiers can enhance robustness and stability under limited data conditions, especially
when deep features are used as input representations [4], [18].

Several studies have explored such CNN-SVM pipelines for plant disease recognition.
For example, Dash et al. [3] employed DenseNet201 as a deep feature extractor followed by
a Bayesian-optimized SVM classifier for maize disease classification, achieving high accuracy
at the cost of increased computational complexity. Similarly, Pradeepa et al. [16] applied a
CNN-SVM-based framework to rice leaf disease detection, demonstrating the benefits of
kernel-based classifiers in improving class separability and reducing overfitting. These ap-
proaches highlight the effectiveness of combining deep feature extraction with statistical
learning, particulatly in data-limited scenatios.

In parallel, attention mechanisms have been introduced to improve feature discrimina-
tion and interpretability in plant disease recognition models. Modules such as Coordinate
Attention (CA) and Efficient Channel Attention (ECA) enhance spatial and channel-wise fea-
ture emphasis, guiding networks toward the most informative lesion regions with minimal
computational overhead [32]—[35]. These mechanisms have been successfully integrated into
lightweight architectures such as MobileNetV2 and ShuffleNetV2, further improving accu-
racy and efficiency in agricultural image analysis [30].
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Plant disease recognition research has evolved from handcrafted visual descriptors to
deep CNN-based representations and, more recently, to serial pipelines that integrate deep
feature extraction, dimensionality reduction, and kernel-based classification [3], [14], [37], [38].
These approaches have demonstrated that combining efficient architectures with feature re-
finement can significantly improve classification performance while reducing computational
overhead. Despite these advances, challenges remain in balancing computational efficiency,
accuracy, and generalization across varying field conditions. These open issues motivate the
development of compact and efficient pipelines that are not only accurate but also practical
for deployment in real-world agricultural environments.

3. Proposed Method

This section describes the dataset preparation, preprocessing pipeline, model architec-
ture, and experimental configuration adopted for the proposed maize leaf disease recognition
framework. The developed system follows a serial processing pipeline comprising three main
stages: deep feature extraction with a pre-trained MobileNetV2 network, dimensionality re-
duction via PCA, and nonlinear classification with an optimized Radial Basis Function Sup-
port Vector Machine (RBF-SVM). The overall workflow of the proposed method is illustrated
in Figure 1.
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Figure 1. Workflow of the proposed maize leaf disease recognition framework based on Mo-
bileNetV2 feature extraction, PCA-based dimensionality reduction, and RBF-SVM classification.

3.1. Overview of the Framework

The proposed methodology begins with image preprocessing and class balancing to en-
sure representative learning across disease categories. Preprocessed maize leaf images are then
passed through a pre-trained MobileNetV2 network to extract discriminative deep feature
vectors from the global average pooling layer. These high-dimensional features are subse-
quently compressed using PCA to remove redundancy and reduce computational cost while
preserving essential variance.

The PCA-reduced feature vectors are used to train an RBF-SVM classifier, with hyperpa-
rameters optimized via grid search cross-validation. During inference, the trained classifier
predicts the disease class label for each input maize leaf image. This serial pipeline is designed
to achieve a favorable balance between recognition accuracy, computational efficiency, and
generalization capability under resource-constrained conditions.
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3.2. Experimental Environment

All experiments were conducted using both a Google Colab GPU runtime and a local
workstation to ensure reproducibility across different computing environments. The local
workstation was equipped with an Intel Core i7 processor (2.60 GHz, x64-based), 16 GB of
RAM, a 512 GB SSD, and an NVIDIA A100 GPU with 40 GB of VRAM. The operating
systems used were Ubuntu 22.04 LTS and Windows 11 Pro.

The implementation was carried out in Python 3.10, using PyTorch 2.2.0 for deep feature
extraction and Scikit-learn 1.4.2 for PCA computation, grid-search hyperparameter optimiza-
tion, and SVM training. Additional libraries included OpenCV and Pillow for image prepro-
cessing, NumPy and Pandas for numerical operations, and Matplotlib for visualization.

3.3. Dataset and Preprocessing

The maize leaf image dataset used in this study was obtained from the PlantVillage da-
taset, which was accessed via the Kaggle repository for ecase of availability at
https:/ /www.kaggle.com/datasets/abdallahalidev/plantvillage-dataset. It is important to
clarify that Kaggle served solely as a data hosting platform, and no additional or external
datasets were incorporated in this work. All experiments were therefore conducted using a
single, consistent dataset source, ensuring experimental transparency and fairness.

From the PlantVillage collection, maize-specific images were manually curated by select-
ing four visually distinct classes: Northern Leaf Blight (NLB), Common Rust, Gray Leaf Spot
(GLS), and Healthy leaves. Representative samples from each class are shown in Figure 2.
Prior to analysis, corrupted, duplicate, and blank images were removed to ensure dataset in-
tegrity and consistency. To enable reliable learning and fair comparison across classes, all
images were resized to a uniform resolution of 224 X 224 X 3 pixels in accordance with the
input requirements of the MobileNetV2 architecture. Pixel intensities were normalized to the
range [0, 1] using Min—Max scaling. This normalization was applied uniformly across all data
splits to stabilize training and improve numerical convergence.

@) @

Figure 2. Sample maize leaf image used (a) GLS; (b) Rust; (c) NLB; (d) Health.

Given the moderate class imbalance observed in the dataset, random oversampling was
applied to the training subset to reduce class skew and ensure more uniform class represen-
tation during learning. In addition, controlled data augmentation was applied exclusively to
the training data to increase intra-class diversity and improve model generalization, rather
than to balance the dataset artificially. Importantly, both oversampling and augmentation
were applied only to the training subset to prevent information leakage into the validation
and test sets. The dataset was partitioned into training (80%), validation (10%), and testing
(10%) subsets using stratified sampling, thereby preserving the original class distribution in
the evaluation data.

Data augmentation was applied to the training subset to improve model generalization
and mitigate class imbalance. Augmentation was performed in a class-wise manner, with more
intensive augmentation applied to underrepresented classes (particularly GLS) to reduce dis-
tribution skew. The applied transformations included random rotation (+30°), horizontal and
vertical flipping, and random zooming within the range of 10-20%. As a result, the effective
number of training samples increased non-uniformly across classes, as reported in Table 1,
while the validation and test subsets remained unchanged and free from augmented data. This
strategy enhanced intra-class diversity and ensured a more balanced training distribution with-
out altering the original dataset composition or introducing information leakage.
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Table 1. Dataset composition before and after augmentation.

Class Original After Augmentation

NLB 985 1,695

Rust 1,192 1,717

GLS 513 1,637
Healthy 1,162 1,591

3.4. Deep Feature Extraction and Dimensionality Reduction

Deep feature extraction was performed using the MobileNetV2 architecture pre-trained
on the ImageNet dataset. In this study, MobileNetV2 was employed exclusively as a fixed
feature extractor without fine-tuning its convolutional layers to reduce training complexity
and improve computational efficiency. The final classification head was removed, and the
global average pooling (GAP) layer output was used as the deep feature representation. Con-
sequently, each input maize leaf image was encoded into a 1280-dimensional feature vector
capturing high-level spatial and textural characteristics relevant to disease discrimination.

To reduce feature redundancy and improve efficiency, PCA was applied to the extracted
deep features as a dimensionality reduction step. PCA was fitted only on the training feature
set, and the learned transformation was subsequently applied to the validation and test sets to
prevent data leakage. The transformation retained approximately 95% of the original variance,
reducing the feature dimensionality from 1280 to 310 components and yielding a compact yet
discriminative feature representation suitable for efficient classification. The overall feature
transformation process is illustrated in Figure 3.

MobileNetV2
Deep Feature Extraction

e Pre-trained on ImageNet PCA

e Fixed convolutional layers 4,\/ DIEEETENLy REs e e —>

e Global Average Pooling e Principal Component
(GAP) 1280-D Analysis 310-D
Feature Vector i i Reduced
e Retains 95% Variance Features

===
Reduced

1280-D Feature Vector Features

Input Image

Figure 3. Serial feature transformation from MobileNetV2 deep features (1280-D) to PCA-reduced
representations (310-D).

Formally, given a deep feature vector & € R128% extracted by MobileNetV2, PCA pro-
jects the feature into a lower-dimensional space as follows:

z=W'(x—p, zeR3 (1)

where p denotes the mean feature vector computed from the training set, and W contains
the eigenvectors corresponding to the top principal components that retain 95% of the total
variance.

The PCA-reduced feature vectors were subsequently used as input to the RBF-SVM classifier for
training and evaluation. All transformed features were stored as structured numerical arrays to ensure
reproducibility and consistent experimental analysis.

3.5. RBF-SVM Training and Hyperparameter Optimization

The RBF-SVM was employed as the final classifier due to its strong ability to model
nonlinear feature distributions and its robustness to ovetlapping class boundaries. The classi-
fier was trained on PCA-reduced feature vectors, with the dataset partitioned into 80% train-
ing, 10% validation, and 10% test subsets.

An initial baseline model was trained using default parameters: regularization parameter
C =1, kernel type = RBF, kernel coefficient y = scale, tolerance tol = 1 X 1073, and no
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limit on the number of iterations until convergence. This baseline served as a reference for
evaluating the impact of hyperparameter optimization.

To further improve classification performance, a grid search combined with 5-fold
cross-validation was applied to the training set. The parameter search space included C €
{0.1,1,10,100}, and y € {107*,1075,107°}. The combination yielding the highest mean
validation accuracy was selected as the optimal configuration. The final optimized classifier
was retrained using the combined training and validation subsets and serialized in binary .pkl
format to ensure reproducibility and consistent deployment. Table 2 summarizes the hyperpa-
rameter ranges explored during the optimization process.

Table 2. Hyperparameter search space for RBF-SVM optimization.

Hyperparameter Range
Regulatization (C) 0.1, 1, 10, 100
Kernel coefficient (y) 1x107%, 1x107%, 1x107°
Kernel type RBF
Tolerance 1x1073

3.6. Evaluation Metrics and Visualization

Model performance was evaluated using four standard classification metrics: Accuracy,
Precision, Recall, and F1-score. These metrics provide a balanced assessment of overall cor-
rectness, class-wise reliability, and robustness across disease categories. Let TP, TN, FP,
FN denote the numbers of true positives, false positives, true negatives, and false negatives,
respectively. The evaluation metrics are defined as follows:

TP +TN

A - 1
CUraAY = TP TN + FP + FN @

TP

oo IR 5

Precision TP FP @)
TP

Recall = ———— 3

AT TP T EN ®

F1 ) Precision X Recall @
— P X
score Precision + Recall

In addition to global performance, class-wise Precision, Recall, and F1 Scores were ana-
lyzed to assess the model’s ability to correctly identify individual disease categories, particu-
larly under moderate class imbalance. Visual performance analyses were conducted using con-
fusion matrices and Receiver Operating Characteristic (ROC) curves to examine discrimina-
tive capability across classes. Training and validation accuracy plots were also included to
provide insight into convergence behavior and model stability during optimization.

4. Results and Discussion

This section presents the experimental results of the proposed maize leaf disease recog-
nition framework, which uses MobileNetV2 deep feature extraction, PCA-based dimension-
ality reduction, and an optimized RBF-SVM classifier. The evaluation focuses on three key
aspects: (1) the effectiveness of deep feature compression using PCA, (2) the performance of
the optimized RBF-SVM classifier, and (3) comparative benchmarking against the baseline
method proposed by Dash et al. (2023). All experiments were conducted following the pro-
tocol described in Section 3.

Model performance is analyzed using Accuracy, Precision, Recall, and F1-score, sup-
ported by visual interpretations including PCA variance curves, feature-space visualizations,
confusion matrices, and comparative bar charts. Given the practical nature of plant disease
diagnosis and the moderate class imbalance in the dataset, particular emphasis is placed on
recall performance for diseased classes, as false-negative predictions (infected leaves classified
as healthy) have more severe agronomic consequences than false positives.
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4.1. Feature Extraction and PCA-Based Dimensionality Reduction

Deep feature extraction was performed using the pre-trained MobileNetV2 architecture,
which produced a 1280-dimensional feature vector for each maize leaf image. These deep
features encode high-level color, texture, and structural information relevant to distinguishing
visually similar maize diseases. To reduce feature redundancy and improve computational
efficiency, PCA was applied to compress the 1280-D feature vectors while preserving the
most informative variance. The cumulative explained variance of the principal components
is shown in Figure 4.
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Figure 4. PCA cumulative explained variance curve for MobileNetV2 features
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Figure 5. PCA-reduced feature representation heatmap.

Figure 4. demonstrates that approximately the first 300 principal components capture
over 95% of the total variance, indicating that the dominant visual characteristics of all four
classes—Healthy, Gray Leaf Spot (GLS), Northern Leaf Blight (NLB), and Rust—are well
preserved after dimensionality reduction. Based on this analysis, 310 components were re-
tained, achieving 95.01% variance preservation while reducing feature dimensionality by ap-
proximately 76%. This compression directly reduces memory usage and speeds up inference
in the subsequent classification stage.

To further illustrate the structure of the PCA-transformed feature space, Figure 5. pre-
sents a heatmap visualization of the first 50 principal components across 60 representative
maize samples. Each row corresponds to a sample, and each column represents a principal
component dimension. The heatmap shows smooth intensity variations across components
and samples, indicating that PCA effectively decorrelates redundant feature dimensions while
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preserving meaningful variance patterns. This compact representation facilitates more stable
learning in the RBF-SVM classifier, leading to improved convergence behavior and enhanced
generalization performance in downstream classification.

4.2. Training and Optimization of the RBF-SVM Classifier

The PCA-reduced feature vectors were used to train the RBF-SVM classifier using a
five-fold cross-validation strategy combined with grid-search hyperparameter optimization.
The trend of training and validation accuracy across folds is illustrated in Figure 6, providing
insight into model stability and generalization behavior during optimization.
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Figure 6. Training and validation accuracy across five epochs.

As shown in Figure 6, training accuracy remained consistently above 99.9% across all
folds, while validation accuracy ranged between 97.0% and 97.8%. The small gap between
training and validation performance indicates minimal overfitting and confirms that the PCA-
compressed feature space supports stable kernel learning.

Based on grid-search results, the optimal hyperparameters were identified as C=10 and
¥ = 1 x 107>, Using this configuration, the final model achieved 100% validation accuracy
and 97.58% test accuracy. The combination of feature compression and kernel optimization
also contributed to faster convergence and reduced computational complexity, supporting
the suitability of the proposed framework for lightweight deployment.

4.3. Test Set Performance and Confusion Matrix Analysis

The classification performance of the optimized RBF-SVM model was evaluated on the
held-out test set to assess its generalization capability. Figure 7. shows strong diagonal domi-
nance, corresponding to an overall test accuracy of 97.58%. Only minor confusion was ob-
served between Gray Leaf Spot (GLS) and Northern Leaf Blight (NLB), which share similar
visual characteristics in early stages of disease. From an agricultural perspective, recall for
diseased classes is of primary importance, as false-negative predictions (infected leaves classi-
fied as healthy) can delay treatment and result in greater yield loss. The proposed model
achieved consistently high recall across all disease categories, particularly for Rust and NLB,
indicating strong sensitivity to disease symptoms and a low false-negative rate.

The detailed per-class performance metrics are summarized in Table 3, which shows
balanced precision and recall across all categories. Notably, the Healthy class achieved perfect
recall, ensuring that diseased leaves were not misclassified as healthy, while the Rust and NLB
classes achieved near-perfect F1 Scores, confirming strong discriminative capability and ro-
bust generalization.
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Figure 7. Confusion matrix test results of the RBF-SVM classifier

Table 3. Per-class classification performance of the proposed MobileNetV2-PCA-RBF-SVM model
on the test set.

Class Accuracy (%) Precision (%) Recall (%) F1-score (%)
Healthy 100.00 100.00 100.00 100.00
GLS 93.46 94.70 93.46 94.08
NLB 95.54 93.16 95.54 94.37
Rust 98.94 100.00 98.93 99.46
Macro Avg. - 96.97 96.98 96.97
Weighted Avg. 97.09 97.11 97.09 97.09

4.3.1. ROC-AUC and Recall-Focused Evaluation

To further evaluate the robustness of the proposed framework under moderate class
imbalance, ROC and Precision—Recall (PR) curves were generated. Unlike overall accuracy,
these metrics provide a more informative assessment of recall behavior and class separability,
which are critical in agricultural disease diagnosis, where false-negative predictions have se-
vere consequences.
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Figure 8. Macro-averaged ROC curve of test results.
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The macro-averaged ROC curve is shown in Figure 8. The curve exhibits a high true
positive rate across a wide range of false positive rates, indicating strong separability between
healthy and diseased samples as well as among visually similar disease categories such as GLS
and NLB. The high area under the curve (AUC) confirms the effectiveness of the deep feature
representation and the optimized kernel-based decision boundary.

To complement the ROC analysis, the macro-averaged Precision—Recall (PR) curve is
presented in Figure 9. The PR curve demonstrates that the proposed model maintains con-
sistently high recall while preserving strong precision, reinforcing its suitability for real-world
crop monitoring where missing infected leaves is more costly than false alarms.

Macro-Averaged Precision-Recall Curve
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Figure 9. Precision—Recall curve of test results.

Together, the confusion matrix analysis (Figure 7), ROC-AUC evaluation (Figure 8),
and Precision—Recall curve (Figure 9) provide consistent evidence that the proposed Mo-
bileNetV2-PCA—RBF-SVM framework achieves robust, recall-oriented performance and re-
liable class discrimination under practical agricultural conditions.

4.4. Ablation Study

An ablation study was conducted to evaluate the individual contributions of hyperpa-
rameter optimization, PCA-based dimensionality reduction, and data augmentation to the
overall performance of the proposed framework. The results of the ablation experiments are
summatized in Table 4.

Table 4. Ablation analysis of the proposed framework.

. Feature Accuracy ..
Model Configuration Dimension (%) Description
A Default RBE-SVM (Baseline) 1280 96,63 ~ Defaultparameters, no opti-
mization
B Optimized RBF-SVM (No PCA) 1280 97.09 Grid-search tuned, no di-
mensionality reduction
MobileNetV2 + PCA + Opti- . .
C  mized RBF-SVM (No Augmen- 310 9702  PCAapplied, without data
. augmentation
tation)
Proposed MobileNetV2 + PCA 310 97 58 Full configuration with PCA

+ Optimized RBF-SVM and augmentation
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The ablation results in Table 4. demonstrate that the performance gains of the proposed
framework are the cumulative effect of several complementary design choices rather than a
single component. Hyperparameter optimization alone (Model B) already provides a measut-
able improvement over the baseline, confirming the importance of kernel tuning for capturing
nonlinear class boundaries in deep feature space.

More importantly, the introduction of PCA (Model C) not only reduces the feature di-
mensionality by 75.8% but also yields a further accuracy gain, indicating that dimensionality
reduction acts as an effective feature refinement mechanism rather than a lossy compression
step. This finding highlights that removing redundant components can improve class separa-
bility while simultaneously reducing computational cost.

Finally, the full configuration achieves the highest accuracy, showing that data augmen-
tation contributes additional robustness by increasing intra-class variability, particularly for
visually similar diseases such as GLS and NLB. Together, these results confirm that the pro-
posed pipeline is both computationally efficient and performance-preserving, validating its
suitability for lightweight and deployable maize disease recognition systems.

5. Comparative Benchmarking with Existing Work

To validate the effectiveness of the proposed framework, a comparative evaluation was
conducted against the DenseNet201 + Bayesian-Optimized SVM model proposed by Dash
etal. (2023), which represents a recent and competitive approach for maize leaf disease recog-
nition. The comparison was performed using identical dataset splits and evaluation protocols
to ensure fairness. The quantitative results are summarized in Table 5.

Table 5. Performance comparison with existing methods.

Model Accuracy (%) Precision (%) Recall (%) Fl-score (%)
Dash et al. [3] 94.60 94.60 94.10 94.30
Alpsalaz et al. [2] 94.97 94.88 94.76 94.85
Proposed Model 97.58 96.60 96.59 96.59

The proposed model achieved a 2.98% improvement in accuracy and a 2.29% gain in
F1-score over the baseline, demonstrating consistently superior classification reliability across
all metrics. More importantly, the improvement in recall confirms that the proposed method
reduces false-negative predictions, which is critical in agricultural disease diagnosis where un-
detected infections may lead to delayed treatment and yield loss. Unlike the baseline Dense-
Net-based approach, the proposed framework achieves these gains while using a significantly
more compact representation, indicating that performance improvements arise from feature
refinement and kernel optimization rather than model over-parameterization. This confirms
that the proposed pipeline offers a more efficient and scalable alternative for practical deploy-
ment.

In addition to accuracy, model efficiency was evaluated in terms of parameter count and
memory footprint, as summarized in Table 6.

Table 6. Model efficiency comparison.

Model Parameters (M) Model Size (MB) Accuracy (%) Fl-score (%)
Dash et al. [3] 20.31 81 94.60 94.30
Proposed Model 2.75 12 97.58 96.59

The proposed framework achieves an 86.5% reduction in model parameters and an 85%
reduction in storage size, while simultaneously improving classification accuracy by nearly
3%. This efficiency gain is primarily attributed to the lightweight design of MobileNetV2 and
the application of PCA-based feature compression, which together reduce computational
overhead without sacrificing discriminative power.

These results demonstrate that the proposed MobileNetV2—PCA—RBF-SVM frame-
work offers a favorable trade-off between accuracy and efficiency, making it particularly suit-
able for real-time, edge-based agricultural monitoring systems with limited computational re-
sources.
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6. Conclusions

This study investigated whether a compact, efficient maize leaf disease recognition pipe-
line could achieve high diagnostic performance without relying on large or computationally
intensive deep networks. The experimental results demonstrate that this goal can be achieved
by combining lightweight deep feature extraction with systematic feature refinement and op-
timized kernel-based classification. By employing MobileNetV2 as a fixed feature extractor
and applying PCA for dimensionality reduction, the proposed framework effectively reduces
feature redundancy while preserving the most discriminative visual information. The opti-
mized RBF-SVM classifier further exploits this compact feature space to produce robust de-
cision boundaries, particularly for visually overlapping disease classes such as Gray Leaf Spot
and Northern Leaf Blight. Together, these design choices confirm that efficiency-oriented
architectures can maintain, and in some cases improve, classification reliability compared to
heavier deep learning models.

Beyond accuracy, the proposed framework significantly reduces model complexity and
memory footprint, making it well-suited for deployment on resource-constrained platforms.
This confirms that lightweight, serial feature-processing pipelines remain a practical and ef-
fective alternative for real-world agricultural applications where computational resources and
energy consumption are limited. Despite the encouraging results, several limitations should
be acknowledged. First, the experiments were conducted using publicly available datasets cap-
tured under controlled imaging conditions, which may not fully reflect the variability encoun-
tered in real field environments, such as illumination changes, background clutter, and partial
occlusion. Second, the evaluation focused on four common maize disease classes, and the
generalization of the framework to rarer diseases or multi-infection scenarios remains to be
investigated. Third, MobileNetV2 was employed as a fixed feature extractor to prioritize ef-
ficiency, leaving domain-specific fine-tuning as a potential direction for further performance
enhancement. Finally, although computational efficiency was analyzed, direct deployment and
benchmarking on embedded or edge devices were not included in this study.
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