

Journal of Computing Theories and Applications ISSN:3024-9104

DOI : 10.62411/jcta.15084 publikasi.dinus.ac.id/index.php/jcta/

Research Article

Android Malware Detection Using Machine Learning with
SMOTE-Tomek Data Balancing

Maryam Sufiyanu Masari 1, Maiauduga Abdullahi Danladi 1, Ilori Loretta Onyinye 2, and Loreta Katok

Tohomdet 2,*

1 Department of Cybersecurity, Faculty of Computing, Air Force Institute of Technology, Kaduna 800001,
Kaduna State, Nigeria; e-mail: msufiyanu90@gmail.com; abdullahi.maiauduga@afit.edu.ng.

2 Department of Information and Communication Technology, Faculty of Ground and Communication
Engineering, Air Force Institute of Technology, Kaduna 800001, Kaduna State, Nigeria;
e-mail: lorettaonyinye@gmail.com; loretatohomdet@gmail.com

* Corresponding Author: Loreta Katok Tohomdet

Abstract: Android malware poses an increasing threat to mobile ecosystems due to the rapid growth

of malicious applications and the rising complexity of attack strategies. This study addresses the chal-

lenge of reliable malware detection under imbalanced data conditions, which remains a critical limita-

tion of many existing detection approaches. The objective of this research is to empirically validate the

effectiveness of Random Forest for Android malware detection, while using comparative evaluation as

supporting evidence. A machine learning–based detection framework is developed using the prepro-

cessed TUANDROMD dataset, which contains 4,465 applications represented by 241 static and dy-

namic features. To mitigate class imbalance, SMOTE-Tomek is applied to the training subset, and

model performance is evaluated on an unseen test set using accuracy, precision, recall, F1-score, and

ROC AUC. The experimental results show that Random Forest achieves consistently strong and bal-

anced performance, particularly in maximizing recall and minimizing false negatives, while outperform-

ing baseline classifiers such as Decision Tree, K-Nearest Neighbors, and Support Vector Machine.

Comparison with previously published studies further supports the robustness and reliability of the

proposed approach. These findings demonstrate that combining ensemble-based learning with explicit

data balancing provides a practical and computationally efficient solution for Android malware detec-

tion. The study concludes that Random Forest, when appropriately balanced and evaluated, offers a

reliable alternative to more complex deep learning–based models for real-world Android security ap-

plications.

Keywords: Android malware detection; Cybersecurity; Imbalanced dataset; Intrusion detection;

Machine learning; Malicious detection; Malware classification; Random Forest.

1. Introduction

Malware, short for malicious software, refers to intentionally designed programs that
disrupt computer systems, compromise data integrity, and violate user privacy across a wide
range of platforms, including personal computers, mobile devices, and embedded systems
[1]. The primary objectives of malware attacks typically include system damage, unauthorized
access to resources, and the theft of sensitive information [2]. Over time, malware has evolved
into various forms, such as viruses, worms, Trojans, backdoors [3], ransomware [4], adware,
and spyware [5]. As illustrated in Figure 1, the number of malware incidents worldwide has
increased substantially in recent years, posing serious threats to modern digital infrastructures,
including IoT devices, personal computing systems, and Android-based smart devices [3].

The history of malware dates back to 1986, with the emergence of Brain, the first known
personal computer virus, which rapidly spread and infected millions of systems [6]. Since
then, the proliferation of internet-connected devices and the widespread adoption of smart
technologies have accelerated the development of increasingly sophisticated malware vari-
ants. Modern malware employs advanced evasion techniques, such as obfuscation,

Received: November, 14th 2025

Revised: January, 13th 2026

Accepted: January, 14th 2026

Published: January, 18th 2026

Copyright: © 2026 by the authors.

Submitted for possible open access

publication under the terms and

conditions of the Creative Commons

Attribution (CC BY) licenses

(https://creativecommons.org/licen

ses/by/4.0/)

https://publikasi.dinus.ac.id/index.php/jcta/index
https://publikasi.dinus.ac.id/index.php/jcta/index
https://publikasi.dinus.ac.id/index.php/jcta/index
https://orcid.org/0000-0002-2589-0594
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

Journal of Computing Theories and Applications 2026 (February), vol. 3, no. 3, Masari, et al. 303

polymorphism, metamorphism, packers, and crypters [7], which significantly complicate de-
tection by traditional antivirus solutions. The rapid expansion of Android-based ecosys-
tems—encompassing mobile banking, e-healthcare, e-learning, and smart manufacturing—
has further amplified the attack surface, enabling cybercriminals to exploit system vulnerabil-
ities for financial gain or to corrupt critical system resources [8]. Malware commonly infiltrates
systems through untrusted downloads, malicious URLs, phishing campaigns, or compro-
mised software updates [9]–[12].

Figure 1. Annual representation of the quantity of malware incidents.

Conventional malware detection approaches primarily rely on static analysis techniques
that compare suspicious files against known malware signatures. While effective against pre-
viously identified threats, these methods are inherently limited in detecting novel or zero-day
malware due to the continuous evolution of malicious code and their reliance on signature
databases [13]. To address these shortcomings, dynamic analysis techniques were introduced
to monitor runtime behaviors in isolated environments, capturing system calls, network traf-
fic, and memory usage to detect obfuscated or polymorphic malware [8]. Nevertheless, dy-
namic analysis may still fail when malware exhibits overlapping or concealed behavioral pat-
terns. As a result, hybrid approaches combining static and dynamic analysis have been pro-
posed to provide more comprehensive frameworks for malware assessment [14].

Despite these advances, the rapid growth in malware complexity necessitates more adap-
tive and scalable detection mechanisms. Consequently, recent studies have increasingly
adopted machine learning (ML) and deep learning (DL) techniques to enable automated mal-
ware detection systems that can learn discriminative patterns from data [15], [16]. Traditional
ML algorithms such as Decision Tree (DT), K-Nearest Neighbors (KNN), Support Vector
Machine (SVM), and Random Forest (RF) have been widely applied to classify benign and
malicious applications based on extracted behavioral features [17]–[19]. In parallel, DL mod-
els have demonstrated strong performance by automatically learning feature representations
from large-scale datasets [8], [20]. However, many DL-based approaches require substantial
computational resources and remain insufficiently explored in scenarios involving highly im-
balanced malware datasets.

Although several studies using benchmark datasets such as TUANDROMD report high
detection accuracy [21]–[24], many do not explicitly examine the impact of class imbalance
on model robustness and generalization. In malware detection, such an imbalance can bias
classifiers toward the majority class, resulting in inflated accuracy while degrading detection
reliability for minority-class samples. Motivated by this limitation, the present study does not
aim to identify the best-performing classifier through direct algorithmic competition. Instead,
it seeks to provide empirical evidence of RF suitability and robustness for Android malware
detection under imbalanced data conditions.

Random Forest is adopted as the primary detection model due to its ability to handle
high-dimensional feature spaces, mitigate overfitting through ensemble bagging, and maintain
robustness against noisy and correlated static and dynamic features [10], [25], [26], such as
permissions and API calls present in the TUANDROMD dataset. Furthermore, RF

0

2

4

6

8

10

12

2015 2016 2017 2018 2019 2020 2021 2022

8.2 7.9
8.6

10.5
9.9

5.6 5.4 5.5

Number of Malware attacks in billions

Journal of Computing Theories and Applications 2026 (February), vol. 3, no. 3, Masari, et al. 304

effectively captures complex nonlinear relationships in malware behavior and has consistently
demonstrated stable, reliable performance in prior empirical studies of imbalanced classifica-
tion problems. DT, KNN, and SVM are therefore employed strictly as baseline reference
models to contextualize the empirical strengths of RF rather than to conduct a conventional
comparative study.

In highly imbalanced malware datasets, conventional classifiers often become biased to-
ward the majority class, leading to poor detection of minority-class samples. To mitigate this
issue, data-level balancing techniques are commonly employed to improve learning fairness.
In this study, SMOTE-Tomek is adopted as a hybrid data balancing strategy, where the Syn-
thetic Minority Oversampling Technique (SMOTE) generates synthetic minority samples,
while Tomek links remove overlapping and noisy instances near the decision boundary [10],
[27]. This combination enables both class balancing and noise reduction, resulting in more
reliable model training and evaluation.

Accordingly, the objective of this study is to empirically validate the effectiveness of RF
for Android malware detection on the inherently imbalanced TUANDROMD dataset by em-
ploying appropriate data balancing strategies to ensure reliable learning and evaluation, while
benchmarking its performance against baseline models and existing state-of-the-art ap-
proaches.

2. Related Work

The detection of malware on Android platforms has attracted significant research atten-
tion in recent years, driven by the rapid growth of malicious applications targeting mobile
devices and the increasing sophistication of attack strategies. Numerous studies have explored
both conventional ML and DL approaches to address this challenge, often relying on bench-
mark datasets such as TUANDROMD, Drebin, MalGenome, and CIC-2020.

Several studies have investigated traditional ML models using the TUANDROMD da-
taset to evaluate their suitability for Android malware classification. Iqubal et al. [21] con-
ducted a comprehensive evaluation of multiple classifiers, including Logistic Regression,
SVM, DT, KNN, Naïve Bayes, Neural Networks, RF, Gradient Boosting, AdaBoost, Bag-
ging, and XGBoost, reporting near-perfect performance across various evaluation metrics.
Similarly, Bhandari et al. [22] demonstrated the strong performance of RF, achieving high
detection accuracy both with and without Principal Component Analysis (PCA). Other stud-
ies have explored the integration of static and dynamic features [23], the use of preprocessing
pipelines and feature selection strategies [28], and alternative ML classifiers such as SMO and
Simple Logistic [29], collectively highlighting the effectiveness of ML techniques for Android
malware detection.

In parallel, advanced DL and hybrid frameworks have been proposed to enhance detec-
tion performance further. Wajahat et al. [24] introduced a Deep Neural Decision Forest
model, while Ambekar et al. [30], [31] developed hybrid architectures that combine tabular
learning with sequential modeling and explainability mechanisms. Transformer-based ap-
proaches, such as Trandroid [32], have also been explored, demonstrating the potential of DL
models to capture complex behavioral patterns in Android applications. Despite their strong
performance, these approaches often require substantial computational resources and may be
less practical in resource-constrained environments.

However, a critical limitation in much of the existing literature is the insufficient consid-
eration of class imbalance, which is inherent in malware datasets where benign applications
typically outnumber malicious ones. This imbalance can bias learning algorithms toward the
majority class, leading to inflated accuracy while degrading recall and detection reliability for
malware [33]. Although some studies implicitly apply preprocessing techniques, the explicit
impact of data-balancing strategies, such as SMOTE, on model robustness and minority-class
detection performance remains underexplored.

Within this context, RF has emerged as a consistently stable and reliable classifier for
Android malware detection. Its ensemble-based architecture enables effective handling of
high-dimensional feature spaces, robustness to noisy and correlated features, and reduced
overfitting through bagging. Empirical evidence from multiple studies [21], [22], [28] indicates
that RF maintains strong and balanced performance across evaluation metrics, making it par-
ticularly suitable for imbalanced datasets when combined with appropriate resampling tech-
niques.

Journal of Computing Theories and Applications 2026 (February), vol. 3, no. 3, Masari, et al. 305

Motivated by these observations, the present study aims to empirically validate the ro-
bustness of RF on the inherently imbalanced TUANDROMD dataset by explicitly incorpo-
rating class-balancing techniques such as SMOTE and Tomek. Rather than emphasizing al-
gorithmic competition, DT, KNN, and SVM are employed strictly as baseline reference mod-
els to contextualize the stability and reliability of RF. A comprehensive evaluation framework
based on precision, recall, F1-score, and ROC AUC is adopted to assess both overall classifi-
cation performance and minority-class detection effectiveness, thereby providing a more re-
liable assessment of Android malware detection under imbalanced data conditions.

3. Proposed Method

This section presents the proposed analytical framework and methodology for Android
malware detection using ML techniques. The overall workflow, illustrated in Figure 2, consists
of data collection, preprocessing, class balancing, model development, and performance eval-
uation. Although multiple classifiers are implemented, RF is treated as the primary detection
model, while DT, KNN, and SVMnare used strictly as baseline reference models.

Figure 2. Proposed framework of the malware detection pipeline.

3.1. Data Collection

The dataset used in this study is the preprocessed version of the TUANDROMD da-
taset, obtained from the UCI Machine Learning Repository [34]. This benchmark dataset
contains 4,465 Android application samples, each represented by 241 integer-valued features,
and is widely used in Android malware detection research. The dataset is multivariate, belongs
to the computer science domain, and is specifically designed for binary classification tasks.
Each instance corresponds to either a malware or goodware application, with the class label
defined as follows: 1 → Malware, 0 → Goodware.

The selection of TUANDROMD over other Android malware datasets is motivated by
several factors. First, TUANDROMD provides comprehensive coverage of Android attack
behaviors by including 71 malware families collected from multiple sources, enabling the de-
velopment of a generalizable detection model rather than one limited to specific attack types.
Second, the dataset contains rich static and dynamic features—such as permissions and API
calls—which make it particularly suitable for evaluating ML models on high-dimensional data.

Compared to other commonly used datasets, such as Drebin and MalGenome, which
contain samples collected prior to 2012, TUANDROMD offers a more recent and diverse

https://archive.ics.uci.edu/dataset/855/tuandromd+%28tezpur+university+android+malware+dataset%29

Journal of Computing Theories and Applications 2026 (February), vol. 3, no. 3, Masari, et al. 306

representation of modern Android threats. Furthermore, the Contagio dataset lacks system-
atic categorization and sufficient diversity. As noted by Taheri et al. [35], reliance on outdated
or limited datasets can reduce model robustness and expose detection systems to adversarial
vulnerabilities. TUANDROMD addresses these limitations by providing a more representa-
tive dataset, thereby strengthening the validity of the proposed detection framework.

An initial statistical analysis of TUANDROMD revealed a pronounced class imbalance,
with 3,565 malware samples (79.8%) and 899 goodware samples (20.2%). To address this
imbalance and ensure fair evaluation, a data-level balancing strategy was applied to the training
subset only. A summary of the dataset characteristics is provided in Table 1.

Table 1. Statistical overview of the TUANDROMD dataset.

Statistic Value

Dataset shape 4,465 samples × 242 features

Malware instances 3,565 (79.8%)

Goodware instances 899 (20.2%)

Total missing values 242

Example features with high variance
KILL_BACKGROUND_PROCESSES, Ljavax/crypto/Ci-

pher, Ljava/lang/Runtime

The dataset consists of 241 feature attributes and one binary class label. Although 242

missing values were identified, their proportion is negligible relative to the dataset size. Fea-
ture variance analysis indicates that permission-based and API-related features exhibit high
variability, suggesting their strong discriminative potential. It is important to note that this
analysis was performed only for exploratory data analysis (EDA); no feature selection or di-
mensionality reduction was applied, and all features were retained during model training.
These observations further justify the use of robust ensemble-based classifiers and class bal-
ancing techniques.

3.2. Data Preprocessing

Data preprocessing is essential to ensure consistency, reliability, and fairness in model
training. In this study, preprocessing consisted of missing value handling, feature scaling, da-
taset splitting, and class balancing. Since TUANDROMD is a feature-ready dataset, no addi-
tional feature extraction was performed.

3.2.1. Handling Missing Data

The dataset was examined for missing values using statistical summary checks and the
isnull() function in Pandas. No systematic missing data patterns were detected across the 241
features, eliminating the need for imputation techniques such as mean or median replacement.

3.2.2. Feature Scaling

Because KNN and SVM rely on distance-based computations, feature scaling was ap-
plied to prevent attributes with larger numerical ranges from dominating the learning process.
Min–Max normalization was used to scale all features into the range [0, 1], as defined in Equa-
tion (1):

𝑋′ =
𝑋 − 𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛
 (1)

where 𝑋 = Original feature value, 𝑋𝑚𝑖𝑛 = Minimum value of the feature, 𝑋𝑚𝑎𝑥 = Maxi-
mum value of the feature and 𝑋′ = Scaled feature value. This normalization ensures that no
feature dominates due to its scale and maintains the interpretability of the data.

3.3. Train–Test Split and Cross-Validation

The dataset was divided into training and testing subsets using an 80:20 stratified split to
preserve the original class distribution. The test set was kept completely unseen and used
exclusively for final performance evaluation. Within the training set, stratified K-fold cross-
validation was employed during model development and hyperparameter tuning. This strat-
egy ensures that each fold maintains the original malware-to-goodware ratio, which is

Journal of Computing Theories and Applications 2026 (February), vol. 3, no. 3, Masari, et al. 307

particularly important for imbalanced datasets. All resampling operations were performed
only within the training folds to prevent data leakage and ensure unbiased evaluation.

3.3.1. Class Balancing with SMOTE-Tomek

To address the severe class imbalance in TUANDROMD, the training data was balanced
using SMOTE-Tomek, a hybrid technique that combines oversampling and noise removal.
SMOTE generates synthetic minority-class samples, while Tomek links remove overlapping
and ambiguous instances near class boundaries, thereby improving class separability.

After the 80:20 split, the training set contained 2,852 malware samples and 719 goodware
samples, while the test set contained 893 samples and remained untouched. SMOTE-Tomek
was applied exclusively to the training set, resulting in a balanced distribution of malware and
goodware samples, as shown in Figure 3.

(a)

(b)

Figure 3. Class distribution before (a) and after applying SMOTE-Tomek (b).

3.4. Model Development

Four ML models were developed for malware detection: DT, KNN, SVM, and RF. RF
is treated as the primary detection model, while the others serve as baseline references. The
configuration of each classifier is summarized in Table 2.

Table 2. Model configuration

Classifier Hyperparameters

Decision Tree criterion = gini, max_depth optimized via CV

KNN n_neighbors = 5 (grid search), distance = Euclidean

SVM RBF kernel, C and γ optimized via grid search

Random Forest n_estimators = 100, criterion = gini, max_features = sqrt

Table 2 summarizes the configuration of the classifiers used in this study. RF, which

serves as the primary detection model, was configured with 100 decision trees using the Gini
impurity criterion and square-root feature selection to enhance tree diversity and improve
generalization performance. Its ensemble-based architecture enables robust learning from
high-dimensional and correlated features, making it particularly suitable for Android malware
detection.

For comparison purposes, DT, KNN, and SVM were implemented as baseline reference
models. The DT classifier employed the Gini criterion, with the maximum tree depth opti-
mized through cross-validation to reduce overfitting. The KNN model used Euclidean dis-
tance, with the number of neighbors optimized via grid search, while the SVM model utilized

a radial basis function kernel with the regularization parameter 𝐶 and kernel parameter 𝛾
optimized through grid search. For all models, training was performed on the SMOTE-
Tomek–balanced training set to address class imbalance, while evaluation was conducted on
the original, untouched test set to ensure unbiased performance assessment.

3.5. Model Evaluation

Model performance was assessed using Accuracy, Precision, Recall, F1-score, and ROC
AUC, which together provide a comprehensive evaluation of binary classifiers under

3565

899
0

1000

2000

3000

4000

1 0

2853 2853

0

500

1000

1500

2000

2500

3000

1 0

Journal of Computing Theories and Applications 2026 (February), vol. 3, no. 3, Masari, et al. 308

imbalanced conditions. Confusion matrices were used to quantify correct and incorrect pre-
dictions for both classes. While accuracy provides an overall performance summary, it can be
misleading for imbalanced datasets such as TUANDROMD; therefore, greater emphasis is
placed on recall, F1-score, and ROC AUC, which better reflect the reliability of malware de-
tection.

4. Results and Discussion

This section presents the experimental results and discussion of the ML models devel-
oped for Android malware detection using the preprocessed and SMOTE-Tomek–balanced
TUANDROMD dataset. The evaluation focuses on demonstrating the robustness of the pro-
posed RF model while using DT, KNN, and SVM as baseline reference models.

4.1. Comparative Analysis of Classifiers

The comparative performance of the evaluated classifiers is summarized in Table 3,
which reports Accuracy, Precision, Recall, F1-score, and ROC AUC for each model, both
with and without SMOTE-Tomek-based balancing. This comparison highlights not only the
relative performance of the classifiers but also the impact of data balancing on minority-class
detection.

Table 3. Comparative performance of malware detection models.

Classifier
Without SMOTE-Tomek With SMOTE-Tomek

Accuracy Precision Recall F1-score ROC-AUC Accuracy Precision Recall F1-score ROC AUC

Random Forest 0.9913 0.9954 0.9937 0.9946 0.9990 0.9933 0.9917 1.0000 0.9958 0.9998

SVM 0.9812 0.9933 0.9832 0.9882 0.9970 0.9933 0.9986 0.9930 0.9958 0.9993

Decision Tree 0.9871 0.9902 0.9937 0.9920 0.9827 0.9888 0.9862 1.0000 0.9930 0.9805

K-Nearest Neighbors 0.9826 0.9906 0.9877 0.9891 0.9884 0.9765 0.9779 0.9930 0.9854 0.9578

Figure 4. Performance comparison of DT, RF, KNN, and SVM classifiers.

As shown in Table 3, all classifiers achieved high performance even without class bal-
ancing, indicating that the TUANDROMD dataset provides discriminative features for mal-
ware detection. However, performance improvements are consistently observed after apply-
ing SMOTE-Tomek. In particular, the RF model achieved perfect recall (1.0000) after bal-
ancing, eliminating all false negatives. This result confirms that performance gains are not
solely attributable to the classifier design but are also strongly influenced by the data-balancing
strategy.

A visual comparison of model performance is presented in Figure 4, which illustrates
Accuracy, Precision, Recall, F1-score, and ROC AUC for all classifiers. From both Table 3
and Figure 4, RF emerges as the most reliable model, especially in terms of Recall and ROC
AUC, which are critical for malware detection. While SVM achieves slightly higher precision,

Journal of Computing Theories and Applications 2026 (February), vol. 3, no. 3, Masari, et al. 309

its recall is marginally lower than RF's. DT and KNN also demonstrate strong performance;
however, their ROC AUC values indicate slightly lower generalization performance than en-
semble-based models such as RF and SVM.

4.2. Confusion Matrix Analysis

To further analyze classification behavior, Figures 5–8 present the confusion matrices
and ROC-AUC curves for all four classifiers evaluated on the test set. These visualizations
provide insight into the distributions of false positives and false negatives, which are particu-
larly critical in malware detection, where missed malware instances pose significant security
risks.

Figure 5 shows the confusion matrix and ROC-AUC curve of the RF model. RF cor-
rectly classified 174 goodware and 713 malware samples, misclassifying only 6 goodware in-
stances as malware and failing to miss any malware samples. This result confirms perfect recall
and demonstrates the high reliability of RF in detecting malicious applications.

(a)

(b)

Figure 5. Confusion matrix and ROC-AUC of RF.

Figure 6 presents the results for the DT classifier, which correctly identified 170 good-
ware and 713 malware samples, misclassifying 10 goodware samples as malware and missing
none. This explains its perfect recall and near-perfect precision.

(a)

(b)

Figure 6. Confusion matrix and ROC-AUC of DT.

Figure 7 shows that KNN correctly classified 180 goodware and 708 malware samples,
with no goodware samples misclassified as malware but 5 malware samples misclassified as
goodware, resulting in slightly lower recall than RF and DT.

Journal of Computing Theories and Applications 2026 (February), vol. 3, no. 3, Masari, et al. 310

(a)

(b)

Figure 7. Confusion matrix and ROC-AUC of KNN.

Figure 8 presents the SVM results, where 179 goodware and 708 malware samples were
correctly identified, with 1 goodware sample misclassified as malware and 5 malware samples
misclassified as goodware. This resulted in very high precision, with minimal false positives,
and a marginally lower recall due to a small number of missed malware instances.

(a)

(b)

Figure 8. Confusion matrix and ROC-AUC of RF.

Overall, the confusion matrices and ROC-AUC curves indicate that RF offers the best
balance between precision, recall, and generalization performance, making it particularly suit-
able for security-critical malware detection tasks.

4.3. Discussion and Comparison

The experimental results confirm the main hypothesis of this study: RF provides a robust
and reliable solution for Android malware detection when trained on imbalanced data explic-
itly balanced using SMOTE-Tomek. Rather than relying on algorithmic competition, the find-
ings demonstrate that the combination of an ensemble-based classifier and an appropriate
data-balancing strategy leads to consistently high detection performance, particularly for se-
curity-critical malware samples.

Across all evaluated models, applying SMOTE-Tomek significantly improved learning
fairness and minority-class detection, confirming the importance of explicitly addressing class
imbalance in Android malware datasets. This observation aligns with prior research indicating
that unbalanced data can bias classifiers toward the majority class and inflate accuracy without
improving true detection reliability. The results in Table 3 and the confusion matrix analysis
in Figures 5–8 collectively show that balancing the data is as critical as model selection for
achieving reliable malware detection.

Journal of Computing Theories and Applications 2026 (February), vol. 3, no. 3, Masari, et al. 311

The superior performance of RF can be attributed to its ensemble architecture, which
effectively handles high-dimensional, correlated features commonly found in Android mal-
ware datasets, such as permissions and API calls. Its ability to eliminate false negatives in the
test set confirms its suitability for real-world malware detection scenarios, where missing a
malicious application poses a higher risk than misclassifying benign software. The application
of SMOTE-Tomek-based balancing proved critical across all models, significantly improving
minority-class detection and ensuring fair evaluation. These findings reinforce the importance
of addressing class imbalance explicitly in malware detection pipelines. To further contextu-
alize the effectiveness of the proposed approach, Table 4 compares the RF model with exist-
ing state-of-the-art methods on the TUANDROMD dataset.

Table 4. Comparison of the proposed model with state-of-the-art methods on TUANDROMD

Reference Accuracy Precision Recall F1-score ROC AUC

Wahajat et al. [24] 0.9860 0.9890 0.9940 – –

Wahajat et al. [28] 0.9890 0.9700 1.0000 0.8420 –

Kacem and Tossou [32] 0.9925 0.9926 0.9925 0.9926 0.9876

Palabaş [33] 0.9700 0.8500 – – –

Akkaya and Altay [29] 0.9836 – – – –

Random Forest (Ours) 0.9930 0.9920 1.0000 0.9960 0.9998

The comparative analysis reveals that the proposed RF model outperforms existing

state-of-the-art models across key performance metrics. With an accuracy of 0.993, precision
of 0.992, recall of 1.000, F1-score of 0.996, and an exceptionally high ROC AUC of 0.9998,
the proposed model demonstrates superior predictive capability and robustness. In contrast,
Wahajat et al. [24] and Palabaş [33] reported lower precision and overall accuracy, indicating
reduced consistency and generalization. However, Kacem and Tossou [32] achieved compet-
itive results with an accuracy of 0.9925 and F1-score of 0.9926, their ROC AUC of 0.9876
falls short of the proposed model’s near-perfect classification performance. These results af-
firm that the proposed RF model provides more reliable and efficient predictions, marking a
significant improvement over the state-of-the-art approaches.

5. Conclusions

This study investigated the effectiveness of RF as a robust Android malware detection
model under imbalanced data conditions using the TUANDROMD dataset. Rather than fo-
cusing on algorithmic competition, the primary objective was to empirically validate the suit-
ability of RF when combined with explicit data balancing, and to assess its reliability relative
to commonly used baseline classifiers. The experimental results confirm that RF, when
trained on SMOTE-Tomek–balanced data, provides stable and reliable malware detection,
particularly in minimizing false negatives, which is critical for security-sensitive applications.
The findings demonstrate that addressing class imbalance is a decisive factor in model per-
formance and that combining ensemble learning with data-level balancing offers a practical
and effective solution for Android malware detection. Baseline models such as DT, KNN,
and SVM further contextualized this result, reinforcing the empirical robustness of RF with-
out framing the study as a purely competitive evaluation.

Despite these contributions, this work has several limitations. The experiments were
conducted using a single benchmark dataset, and although stratified cross-validation was ap-
plied during model development, generalization across datasets was not explored. In addition,
the study focused on conventional ML models and did not include DL–based approaches,
which may capture complementary behavioral patterns. Future research should extend this
framework by evaluating the proposed approach across multiple, more diverse Android mal-
ware datasets, integrating hybrid or ensemble strategies that combine ML and DL models,
and performing cross-dataset validation to assess generalization under real-world conditions.
Incorporating adaptive or incremental learning mechanisms to handle evolving malware be-
haviors also represents a promising direction for further investigation.

Journal of Computing Theories and Applications 2026 (February), vol. 3, no. 3, Masari, et al. 312

Author Contributions: Conceptualization: M.S.M., M.A.D., I.L.O., L.K.T.; Methodology:
L.K.T.; Software: L.K.T.; Validation: L.K.T., M.S.M., A.D.; Formal analysis: L.K.T.; Investi-
gation: M.S.M., M.A.D., I.L.O.; Resources: M.S.M., M.A.D., I.L.O.; Data curation: L.K.T.;
Writing—original draft preparation: M.S.M., M.A.D., I.L.O.; Writing—review and editing:
I.L.O., L.K.T.; Visualization: L.K.T.; Supervision: M.S.M., A.D.; Project administration:
M.S.M., M.A.D., I.L.O., L.K.T.; Funding acquisition: M.S.M., M.A.D., I.L.O. All authors have
read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The dataset is publicly available on the Kaggle platform and
can be accessed via the link; https://archive.ics.uci.edu/dataset/855/tu-
andromd+%28tezpur+university+android+malware+dataset%29.

Conflicts of Interest: The authors declare no conflict of interest.

References

[1] P. Kumar, G. P. Gupta, and R. Tripathi, “A Review on Intrusion Detection Systems and Cyber Threat Intelligence for Secure IoT-
Enabled Networks,” in Big Data Analytics in Fog-Enabled IoT Networks, Boca Raton: CRC Press, 2023, pp. 51–76. doi:
10.1201/9781003264545-3.

[2] A. K. Dey, G. P. Gupta, and S. P. Sahu, “A metaheuristic-based ensemble feature selection framework for cyber threat detection
in IoT-enabled networks,” Decis. Anal. J., vol. 7, p. 100206, Jun. 2023, doi: 10.1016/j.dajour.2023.100206.

[3] P. Kumar, G. P. Gupta, and R. Tripathi, “Toward Design of an Intelligent Cyber Attack Detection System using Hybrid Feature
Reduced Approach for IoT Networks,” Arab. J. Sci. Eng., vol. 46, no. 4, pp. 3749–3778, Apr. 2021, doi: 10.1007/s13369-020-05181-
3.

[4] A. Aghamohammadi and F. Faghih, “Lightweight versus obfuscation-resilient malware detection in android applications,” J. Comput.
Virol. Hacking Tech., vol. 16, no. 2, pp. 125–139, Jun. 2020, doi: 10.1007/s11416-019-00341-y.

[5] V. Sihag, M. Vardhan, and P. Singh, “A survey of android application and malware hardening,” Comput. Sci. Rev., vol. 39, p. 100365,
Feb. 2021, doi: 10.1016/j.cosrev.2021.100365.

[6] J. Singh and J. Singh, “A survey on machine learning-based malware detection in executable files,” J. Syst. Archit., vol. 112, p. 101861,
Jan. 2021, doi: 10.1016/j.sysarc.2020.101861.

[7] M. Conti, V. P., and A. Vitella, “Obfuscation detection in Android applications using deep learning,” J. Inf. Secur. Appl., vol. 70, p.
103311, Nov. 2022, doi: 10.1016/j.jisa.2022.103311.

[8] S. K. Smmarwar, G. P. Gupta, and S. Kumar, “AI-empowered malware detection system for industrial internet of things,” Comput.
Electr. Eng., vol. 108, p. 108731, May 2023, doi: 10.1016/j.compeleceng.2023.108731.

[9] P. H. Hussan and S. M. Mangj, “BERTPHIURL : A Teacher-Student Learning Approach Using DistilRoBERTa and RoBERTa
for Detecting Phishing Cyber URLs,” J. Futur. Artif. Intell. Technol., vol. 1, no. 4, 2025, doi: 10.62411/faith.3048-3719-71.

[10] M. D. Okpor et al., “Pilot Study on Enhanced Detection of Cues over Malicious Sites Using Data Balancing on the Random Forest
Ensemble,” J. Futur. Artif. Intell. Technol., vol. 1, no. 2, pp. 109–123, Sep. 2024, doi: 10.62411/faith.2024-14.

[11] M. N. Musa and M. E. Irhebhude, “An Empirical Analysis of Injection Attack Vectors and Mitigation Strategies in Redis NoSQL
Database,” J. Comput. Theor. Appl., vol. 2, no. 4, pp. 553–571, May 2025, doi: 10.62411/jcta.12640.

[12] C. Prakash, M. Lind, and E. De La Cruz, “Hybrid Real-time Framework for Detecting Adaptive Prompt Injection Attacks in Large
Language Models,” J. Comput. Theor. Appl., vol. 3, no. 3, pp. 286–301, Jan. 2026, doi: 10.62411/jcta.15254.

[13] M. Alazab et al., “A Hybrid Wrapper-Filter Approach for Malware Detection,” J. Networks, vol. 9, no. 11, Dec. 1969, doi:
10.4304/jnw.9.11.2878-2891.

[14] T. Sharma and D. Rattan, “Malicious application detection in android — A systematic literature review,” Comput. Sci. Rev., vol. 40,
p. 100373, May 2021, doi: 10.1016/j.cosrev.2021.100373.

[15] J. P. Ntayagabiri, Y. Bentaleb, J. Ndikumagenge, and H. El Makhtoum, “A Comparative Analysis of Supervised Machine Learning
Algorithms for IoT Attack Detection and Classification,” J. Comput. Theor. Appl., vol. 2, no. 3, pp. 395–409, Feb. 2025, doi:
10.62411/jcta.11901.

[16] D. Gibert, C. Mateu, and J. Planes, “The rise of machine learning for detection and classification of malware: Research
developments, trends and challenges,” J. Netw. Comput. Appl., vol. 153, p. 102526, Mar. 2020, doi: 10.1016/j.jnca.2019.102526.

[17] S. Abijah Roseline and S. Geetha, “A comprehensive survey of tools and techniques mitigating computer and mobile malware
attacks,” Comput. Electr. Eng., vol. 92, p. 107143, Jun. 2021, doi: 10.1016/j.compeleceng.2021.107143.

[18] D. Ucci, L. Aniello, and R. Baldoni, “Survey of machine learning techniques for malware analysis,” Comput. Secur., vol. 81, pp. 123–
147, Mar. 2019, doi: 10.1016/j.cose.2018.11.001.

[19] S. Madan, S. Sofat, and D. Bansal, “Tools and Techniques for Collection and Analysis of Internet-of-Things malware: A systematic
state-of-art review,” J. King Saud Univ. - Comput. Inf. Sci., vol. 34, no. 10, pp. 9867–9888, Nov. 2022, doi: 10.1016/j.jksuci.2021.12.016.

[20] S. I. Imtiaz, S. ur Rehman, A. R. Javed, Z. Jalil, X. Liu, and W. S. Alnumay, “DeepAMD: Detection and identification of Andro id
malware using high-efficient Deep Artificial Neural Network,” Futur. Gener. Comput. Syst., vol. 115, pp. 844–856, Feb. 2021, doi:
10.1016/j.future.2020.10.008.

[21] A. Iqubal, H. Happy, and S. K. Tiwari, “Android Malware Defense: Leveraging Machine Learning Models,” in 2024 4th International
Conference on Advancement in Electronics & Communication Engineering (AECE), Nov. 2024, pp. 1356–1361. doi:
10.1109/AECE62803.2024.10911128.

https://archive.ics.uci.edu/dataset/855/tuandromd+%28tezpur+university+android+malware+dataset%29
https://archive.ics.uci.edu/dataset/855/tuandromd+%28tezpur+university+android+malware+dataset%29

Journal of Computing Theories and Applications 2026 (February), vol. 3, no. 3, Masari, et al. 313

[22] T. Bhandari, R. V. Romould, M. K. Gourisaria, V. Singh, R. Chatterjee, and D. K. Behera, “Unveiling Machine Learning Paradigms
for Robust Malware Detection in Personal Data Security,” in 2024 Sixth International Conference on Computational Intelligence and
Communication Technologies (CCICT), Apr. 2024, pp. 226–231. doi: 10.1109/CCICT62777.2024.00045.

[23] H. Shah, V. Shah, N. Soni, V. Vadhavana, and K. Patel, “A Comparative Analysis for Android Malware Detection Using Machine
Learning Models,” in 2025 6th International Conference on Mobile Computing and Sustainable Informatics (ICMCSI), Jan. 2025, pp. 1040–
1047. doi: 10.1109/ICMCSI64620.2025.10883385.

[24] A. Wajahat et al., “An effective deep learning scheme for android malware detection leveraging performance metrics and
computational resources,” Intell. Decis. Technol., vol. 18, no. 1, pp. 33–55, Feb. 2024, doi: 10.3233/IDT-230284.

[25] A. Çetin and S. Öztürk, “Comprehensive Exploration of Ensemble Machine Learning Techniques for IoT Cybersecurity Across
Multi-Class and Binary Classification Tasks,” J. Futur. Artif. Intell. Technol., vol. 1, no. 4, pp. 371–384, Feb. 2025, doi:
10.62411/faith.3048-3719-51.

[26] B. Poudyal and M. Shakya, “Enhancing Earthquake Preparedness in Nepal through Machine Learning-Based Damage Prediction
Models,” J. Futur. Artif. Intell. Technol., vol. 2, no. 3, pp. 476–492, Oct. 2025, doi: 10.62411/faith.3048-3719-109.

[27] D. R. I. M. Setiadi, K. Nugroho, A. R. Muslikh, S. W. Iriananda, and A. A. Ojugo, “Integrating SMOTE-Tomek and Fusion Learning
with XGBoost Meta-Learner for Robust Diabetes Recognition,” J. Futur. Artif. Intell. Technol., vol. 1, no. 1, pp. 23–38, May 2024,
doi: 10.62411/faith.2024-11.

[28] A. Wajahat et al., “Outsmarting Android Malware with Cutting-Edge Feature Engineering and Machine Learning Techniques,”
Comput. Mater. Contin., vol. 79, no. 1, pp. 651–673, 2024, doi: 10.32604/cmc.2024.047530.

[29] E. S. Akkaya and E. V. Altay, “Investigating the Performance of Machine Learning Methods for Malware Detection,” in
EAI/Springer Innovations in Communication and Computing, 2025, pp. 329–340. doi: 10.1007/978-3-031-88999-8_25.

[30] N. G. Ambekar, S. Thokchom, and S. Moulik, “TC-AMD: Android Malware Detection through Transfomer-CNN Hybrid
Architecture,” in 2024 IEEE International Conference on Advanced Networks and Telecommunications Systems (ANTS), Dec. 2024, pp. 1–6.
doi: 10.1109/ANTS63515.2024.10898633.

[31] N. G. Ambekar, N. N. Devi, S. Thokchom, and Yogita, “TabLSTMNet: enhancing android malware classification through
integrated attention and explainable AI,” Microsyst. Technol., vol. 31, no. 3, pp. 695–713, Mar. 2025, doi: 10.1007/s00542-024-05615-
0.

[32] T. Kacem and S. Tossou, “Trandroid: An Android Mobile Threat Detection System Using Transformer Neural Networks,”
Electronics, vol. 14, no. 6, p. 1230, Mar. 2025, doi: 10.3390/electronics14061230.

[33] T. Palabaş, “Android malware classification using basic machine learning methods,” Adıyaman Üniversitesi Mühendislik Bilim. Derg.,
vol. 11, no. 23, pp. 190–202, Aug. 2024, doi: 10.54365/adyumbd.1462488.

[34] P. Borah, D. Bhattacharyya, and J. Kalita, “Malware Dataset Generation and Evaluation,” in 2020 IEEE 4th Conference on Information
& Communication Technology (CICT), Dec. 2020, pp. 1–6. doi: 10.1109/CICT51604.2020.9312053.

[35] R. Taheri, M. Shojafar, F. Arabikhan, and A. Gegov, “Unveiling vulnerabilities in deep learning-based malware detection:
Differential privacy driven adversarial attacks,” Comput. Secur., vol. 146, p. 104035, Nov. 2024, doi: 10.1016/j.cose.2024.104035.

