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Abstract: Digital image segmentation is essential in image processing, influencing the accuracy of
higher-level tasks. Thresholding is widely used, yet identifying optimal threshold values remains chal-
lenging. The Firefly Algorithm with Neighbourhood Attraction (FaNA), a metaheuristic approach, is
efficient for color image thresholding but underperforms on grayscale images due to suboptimal
thresholds. To overcome this, an enhanced version (eFalNA) was developed by integrating a chaotic
tent map for population initialization and a Lévy flight-based random walk for improved exploration.
eFaNA was compared with FaNA, fuzzy firefly algorithm (FFA), and the standard Firefly Algorithm
(FA) in multilevel thresholding of grayscale images. Results demonstrate that eFaNA achieves superior
segmentation quality with minimal detail loss, outperforming the others. The average PSNR obtained
by eFaNA, FFA, FaNA, and FA was 25.5320 dB, 25.4075 dB, 24.1522 dB, and 24.4506 dB, respec-
tively; average SSIM was 0.8641, 0.8604, 0.8432, and 0.6703; and execution time was 50.5322, 38.7720,
38.7528, and 107.6340 seconds, respectively. This reflects a PSNR improvement of 5.71% over FaNA,
0.49% over FFA, and 4.42% over FA, and an SSIM gain of 2.48% over FaNA, 0.43% over FFA, and
28.92% over FA. While eFaNA lags behind FFA and FaNA in execution time by ~11.8 seconds, it
significantly outperforms FA. The performance gain is attributed to the chaotic tent map’s diverse
initialization and the Lévy flight’s enhanced search capability. These improvements enable eFaNA to
deliver consistently better threshold values and segmentation results. However, its relatively higher

computational cost may limit applicability in real-time image processing.

Keywords: Digital image; Firefly algorithm with neighborhood attraction; Firefly optimization
algorithm; Image segmentation; Multilevel thresholding.

1. Introduction

Digital image processing is the application of various computing algorithms to process
digital images [1]. Digital image segmentation is a core activity in digital image processing. It
is the process of partitioning or separating digital images into their non-overlapping classes
[2], [3], where pixels within the same class belong to the same object parts or background. It
is a process that converts an image into distinct and uniform regions [4], [5], and it’s done by
grouping neighboring pixels that have coherent intensities [5], [6]. The aim is to change the
representation of a digital image to make it more meaningful and simpler for easier analysis.
It has several applications, such as in the diagnosis and monitoring of diseases, for example,
in medical imaging, for finding moving objects in video sequence [7], in computer vision and
robotics [8], in autonomous or self-driving cars [9], among others. A lot of digital image seg-
mentation methods have been proposed in the literature, including region and boundary-
growing-based methods [10], edge-based methods [11], clustering-based methods [12], Arti-
ficial Neural Network based method (ANN) [13] and thresholding-based methods [14].
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Several metaheuristics algorithms have been used to find optimal thresholds for image
segmentation. These include modified Grasshopper Optimization Algorithm (GOA) [14],
[15], Oppositional Symbiotic Organism Search (OSOS) [16], [17], learning enthusiasm-based
teaching-learning based optimization (LebTBLO) [18], [19] and firefly metaheuristic algo-
rithm [4] among others. However, some gaps in the existing literature associated with me-
taheuristic algorithms for image thresholding include not obtaining excellent threshold values,
which is denoted as the local optima problem and leads to poor threshold images. As a result,
threshold images are distorted and are incomparable with ground truths, often measured in
terms of Peak Signal Noise Ratio (PSNR), Structural Similarity Index Measure (SSIM), etc.
Another issue with these algorithms is their low performance on colored and medical images
such as Magnetic Resonance Images (MRI), X-rays, etc. In addition, these algorithms have
high computational time, often referred to as the Execution time. This is the cumulative time
these algorithms take to obtain resultant threshold values and segment digital images into
constituents.

The Firefly algorithm is one of the most commonly used metaheuristic algorithms for
image thresholding due to its performance and fewer parameters [14], [20]. However, it has
high computational time when used to threshold digital images. To reduce the time this algo-
rithm takes for thresholding digital images and their variants, the Firefly algorithm with
Neighborhood Attraction (FaNA) and fuzzy firefly [21] algorithms were employed. Although
FaNA threshold digital-colored images have low execution time, they do not produce optimal
threshold values resulting in qualitative and accurate digital greyscale images. This work con-
tributes to knowledge by developing a chaotic tent map-based enhanced firefly algorithm with
neighborhood attraction that addresses the local optima threshold problem in FaNA for gray-
scale images, consequently making it yield accurately segmented digital greyscale images.

The rest of this paper is structured as follows. Section 2 review of related works. Section
3 describes the firefly algorithm with neighborhood attraction. Section 4 describes the pro-
posed method. The results obtained by the proposed method and discussion are presented in
section 5. Section 6 concludes the paper and outlines possible directions for future research.

2. Related Work

In the existing literature that seeks to find a solution to local optima, threshold utilizes
metaheuristic algorithms. These algorithms can be broadly categorized into three: those based
on standard metaheuristic algorithm without modification, those modified by hybridization
with other metaheuristic algorithms, and those modified using other non-metaheuristic algo-
rithms or schemes. For instance, the standard Cuckoo search (CS), FA, Particle Swarm Op-
timization (PSO), and Differential Evolution (DE) were used to search for optima thresholds
that could segment grayscale images by [21]. Optima thresholds that could segment X-ray
digital images were sorted using standard FA and BAT algorithms [22]. The authors in [23]
seek to find an optimal threshold that could segment digital-coloured images using FFA,
FaNA, Salp Swarm algorithm (SSA), basic firefly algorithm, Opposition Dimension Firefly
Algorithm (ODFA), and Black Widow Optimization (BWO) algorithm. Optima thresholds
for digital grayscale images were found by [24] using a Hybridized firefly with the Dragonfly
algorithms and compared with GA, PSO, FA, BFO, and Electromagnetic Optimization
(EMO) algorithms. In addition, [25] utilizes hybrid FA with PSO, Genetic Algorithm (GA),
PSO, AMO (Animal Migration Optimization), and the standard FA to find optima thresholds
for digital grayscale images. The standard FA and Social Spider Optimization (SSO) were also
used to find optima thresholds for digital grayscale images [26]. A modified firefly algorithm
based on lévy flight was also used in [4] and [23] to find optima thresholds for digital grayscale
images. Study [27] seeks to find an optimal threshold for digital grayscale images using LFA
and chaotic Bat algorithm, PSO, lévy Bat (LBAT), and Bacteria Foraging Optimization algo-
rithm (BFO). In [28], a lévy flight-based FA and FFA were used to find optima thresholds
for digital-colored images. Lévy flight-based FA, 1évy flight-based BA, 1évy flight based BFO,
and lévy flight PSO were employed to find optima thresholds for segmenting noised stained
gray scaled images by [29]. The authors in [30] and [31] utilize Brownian random walk-based
FA, BFO, and CS to search for optima thresholds for colored RGB digital images.
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3. Firefly Algorithm with Neighborhood Attraction

Firefly Algorithm with Neighborhood Attraction was proposed by [32]. The contribu-
tion of this work was to select fireflies that will be compared with the current fireflies to
ascertain whether an update is necessary. FaNA is based on the k nearest neighbor strategy.
The attraction of fireflies is such that fireflies are attracted by brighter fireflies selected from
a predefined neighborhood rather than the entire population. The following modifications
were made to the standard firefly algorithm in the FaNA algorithm. Randomization parame-
ters, @&, and attractiveness coefficient were updated according to Equations (1) and (2), re-
spectively. The movement equation used was as shown in Equation (3) [32].

1

1
a(t+1) = (m)t a(t) M
B = Bmin + (BO - Bmin)e_yrz 2
x& = x0 + p(xL - xL) + a(®)S4€ ()

Whete S is the length scale of each variable. €; is a random number drawn from the uni-
form distribution. t is the iteration count, By is the minimum value of f8, B is the attrac-
tiveness constant, ¥ is the light absorption coefficient, r is the distance between fireflies, o is
the randomization parameter, and e is the exponent. f was limited within the range
[ﬁo'ﬁmm]' A, ¥, Bmin, Bo were initially set to 0.5, 1.0, 0.2 and 1.0 respectively. The Firefly
with Neighbourhood Attraction algorithm and its flow charts are shown in Algorithm 1.

Algorithm 1. Firefly Algorithm with Neighborhood Attraction (FaNA) [32]

INPUT: Number of fireflies (N), Attractiveness Coefficient or constant, Absorption Co-

efficient or constant, Maximum number of iterations or cycle

OUTPUT: Best firefly (best threshold vector)

1:  Randomly initialize the population of fireflies Fi where (i = 1, 2, ...n) according to
Algorithm 2.

2:  Compute the fitness value of each firefly

3: While FE < MAXFEs do

4: Update the parameter a according to Equation (1)

5: Fori=1to N, do

6: k=3

7: For j=i-k to itk do

8: If  NE i, then

9: Set=(G+N)%N

10: Calculate the attractiveness according to Equation (2).
11: If f(Fj) > f(Fi)

12: Move Fi towards Fj according to Equation (3).
13: Compute the fitness value of the new Fi

14 End

15: End

16: Next j

17 End

18: Next i

19:  End

20: FE++

21: End.

22: Return the best firefly

Algorithm 2. Random Initialization scheme
INPUT: UB, LB, population size, dimension
OUTPUT: Initial populations of fireflies, F
1:i=0,j=0

2:  while (i <= population size)
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Algorithm 2. Random Initialization scheme (continne)

3: while (j <= dimension)

4: F(,j)=(UB-LB) *rand (0,1) +LB
5: i=j+1

6: End while

7: i=i+1

8: End while

Where UB is the upper bound, LB is the lower bound, and rand (0,1) is the random function
that returns values between 0 and 1.

4. Proposed Method

This paper enhanced the firefly algorithm with neighborhood attraction to threshold
digital grayscale images by introducing a chaotic initialization scheme and 1évy flight-based
random walk mechanism. The enhanced algorithm works as follows. The first step computes
the initial solutions using a chaotic tent map, the second step evolves a new population based
on lévy flight random walk, the third step finds the fitness of each firefly, and the fourth step
compares the fitness of each firefly with one another. The fifth step moves towards brighter
firefly within the specified neighborhood, and the sixth step computes the new fitness of the
evolved fireflies. These procedures are repeated until a stopping condition or the maximum
number of iterations is reached. Algorithm 3 and Figure 1 show the algorithm and proposed
method flow chart. In the context of the enhanced firefly algorithm with neighborhood at-
traction, referred to as the proposed method. The movement equation of the firefly with
neighborhood attraction in Equation (3) was modified by setting the attractiveness term to
zero and adding 1évy flight random walk, fireflies’ individuals were initialized as expressed in
Equation (4).

Flepy = chaoticF + L(d) @)

Where chaoticF is a population of chaotic fireflies. Fjgyy is the 1évy based population of

fireflies. T is the iteration count, which is the dimension. L is a vector of random numbers
generated using the 1évy distribution obtained using Equations (5)-(11).

Algorithm 4. Proposed enhanced Firefly Algorithm with Neighborhood Attraction
(eFaNA)

INPUT: Number of fireflies, attractiveness coefficient or constant, absorption coefficient
or constant, maximum number of iterations or cycle

OUTPUT: Best firefly (best threshold vector)

1:  Initialize the firefly population using chaotic tent map according to Algorithm 6

2:  Evolve lévy flight-based firefly population using Algorithm 5

3: Compute the fitness value of each firefly

4 While FE < MAXFE do

5: Update the parameter a according to Equation (1)

6: Fori=1toNdo

7: k=3

8: For j=i-k to i+k do

9: If j NE i then

10: Setj=(+N) %N

11: Calculate the attractiveness according to Equation (2)
12: If £(Fj) > f(Fi)

13: Move Fi towards Fj according to Equation (3).
14 Compute the fitness value of the new Fi

15: End

16: End

17: Next j

18: End

19: Next i

20: End
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Algorithm 4. Proposed enhanced Firefly Algorithm with Neighborhood Attraction

(eFaNA) (continue)
21: FE++
22: End.

23: Return the best firefly

4.1. Random Walk

A random walk is a random process that consists of taking a series of random steps
consecutively [33]. It is one of the strategies for generating candidate solutions in a solution
space. Various random walks, such as the Lévy flight and Brownian Walk, may result depend-
ing on the distribution from which the step size or length is drawn. The Lévy flight strategy
is better than other strategies as it explores the search space more efficiently and has a longer
step length [28]. In Lévy flight, the step size is drawn from lévy distribution expressed as a
power law as in Equation (5).

L(s)~Is|7*F ®)

Where f is an index or exponent and s is the step length. 8 is within the range 0 < f < 2.
To generate the size of the random steps, we adopted Mantegna’s definition used in Nadimi-
Shahraki et al. [34], and was calculated as in Equation (6).

u
s = 0.01 W (6)

Where a is lévy index and is taken as 1.5, 4 and y are drawn from normal distributions,
denoted as Equations (7) -(9) [33].

r(1+a).a.2"‘7‘1 %

5, = 2 ™
I'l+ a)-sin (nz_a)

u~N(0,8,2) ®)

y~N(0,1) )

Where 6, and &, defined in Equations (10) and (11), respectively [33].

r'(1+ B)sin (mB/2)) ’
ar (1 + %) g2’

= (10)
5, =1 (11)

Whete 4 = 1.5, I' is the Gamma function. Lévy flight-based fireflies evolved according to
Algorithm 5.

Algorithm 5. Lévy flight Based Scheme
INPUT: population size, dimension, chaoticF
OUTPUT: lévy flight generated populations of fireflies, Fievy

i=i+1
End while

1: 1=0,j=0

2:  while (i <= population size)

3: while (j <= dimension)

4 Evolve 1évy flight-based population using Equation (4).
5: i=j+1

6: End while

7:

8:
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Initialize algorithm’s parameters, MaxFE, Initialize firefly population, chaoticF
Start N, and specify the objective function, f. |——» using chaotic tent map as in algorithm 6

Generate levy flight, Flevy based firefly

ICompute the fitness values of each firefly
population using algorithm 5

in the population. D—

Update a using equation 20

set FE=1 /
v

Yes

N . ¢‘

FE++ [«—No
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Setk=3

Set Upper = i+k|< Set lower =i-k [€
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wer >{(lowerindex + N) % attractiveness B using
N equation 21
1(F, i ) > f(F;) Flowerindex USing
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Compute fitness

value f, for new F;
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Figure 2. Flow chart of the enhanced firefly Algorithm with Neighborhood Attraction (eFaNA)
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4.2. Chaotic Tent Map

Random initialization of individuals in the population may lead to an unequal distribu-
tion of the individuals within the solution space, which may cause algorithms to be struck in
local optima and converge prematurely. To solve these problems, chaotic tent maps are often
used. They are of utmost importance in improving the performance of evolutionary algo-
rithms as they help them avoid local optima and speed up convergence [35]. There are various
chaotic maps, but we adopted the tent map used by [36]. A tent map is a one-dimensional
map that exhibits good chaotic behavior. It has better ergodicity and randomicity than ran-
dom distribution and can improve the global search ability of fireflies. The chaotic Tent map
is mathematically expressed in Equation (12) [36].

Zxk, OSkaOS

Y1 = {2(1 -x), 05<x <1 (12)

Where xj, ranges from 0 to 1. The tent map generates a chaotic sequence in (0,1). Fireflies are initial-
ized according to the initialization scheme presented in Algorithm 6.

Algorithm 6. Chaotic tent map-based initialization scheme
INPUT: UB, LB, population size, dimension

OUTPUT: Initial populations of fireflies, chaoticF
1:i=0,j=0

2:  while (i <= population size)

3: while (j <= dimension)

4: Randomly initialize variables I'i,j

5: If (Fi,j < =0.5)

6: // Map Fi,j to chaoticFi,j using equation 30 as follows:
7 ChaotiCFi'j = 2% Fi,j * (UB - LB) + LB

8: Else

9: ChaoticF;j = 2+ (1— F;;) * (UB —LB) + LB
10: j=j+1

11: End while

12: i=i+1

13: End while

where UB, is the upper bound and LB is the lower bound.

4.3. Enhanced Firefly Algorithm With Neighbourhood Attraction For the Multilevel
Thresholding of Digital Gray Scale Images

This section presents how the enhanced algorithm(eFaNA) was applied to threshold
grayscale images. The implementation is detailed as in Algorithm 7.

Algorithm 7. Applying eFaNA for thresholding of grayscale images

INPUT: Grayscale image, I,

OUTPUT: Grayscale image, I, Threshold image Iy, PSNR, SSIM values, Execution time
and standard deviation

Read the grayscale image, Ig

Compute the histogram of the image, Ig

Compute the occurrence probabilities of each gray scale level in Ig.

Execute Algorithm 4 using Otsu as an objective function, f.

Use the obtained optimal threshold vector in step 4 above to segment Ig, resulting in
Ith.

Compute the PSNR, RMSE, SSIM values, Execution time, mean, and standard devi-
ation defined as in Equation (12)-(17), respectively.

AR S

.0.\

4.4 Evaluation Metrics and Tools

To measure and compare the performances of the four different algorithms compared
in this work, the following evaluation metrics were used. These metrics are explained below.
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4.4.1. Peak Signal to Noise Ratio (PSNR)

This metric measures the quality of threshold images. Equation (13) [37] is the mathe-
matical formula for calculating PSNR.

Max
PSNR(; 5) = 20log;, (WEas) 13)

Where RMSE is the root-mean-square-error expressed as in Equation (14) [37], and Max
is the maximum pixel value in the given image.

MOSN (160 7) — S0, 2
RSME(I.S)ZJ 1_121_1(1\;*113/ 2 o

Where [ is the original image, and S is the segmented image with size M * N. PSNR is
measured in decibel (db).

4.4.2. Structural Similarity Index Metric (SSIM)

This evaluates the likeness between the original and segmented image. This is computed
as shown in Equation (15) [37].

(Zuius + Ca) (261'65 + Cb)
(Ui + p2 = C)(87 + 862+ Cp)

SSIM(i 5) = (1 5)
Where i and s are original and segmented images, respectively. ;i are average values. 67

and 82 are the variances. 8;8, is the covariance. C; = (kiL)? and Cp= (koL)? stabilize the
division with weak denominator, with L. = 256, k; = 0.01, and k.= 0.03.

4.4.3. Execution Time

This is the algorithm's cumulative time to obtain the best threshold values and segment
a given grayscale image using the obtained threshold values (given in seconds). The execution
time is the sum of the time the algorithm takes to obtain optimal thresholds and segment the
grayscale image. It is calculated as expressed in Equation (106).

Execution Time = z time taken to obtain thresholds + time taken to segment image (16)

This Equation denotes that the overall execution time equals the time it takes for an
algorithm to search for an optima threshold for a given image and the time it takes for the
algorithms to use the optima threshold to segment the image in consideration.

4.4.4. Mean
The average PSNR, fitness value, execution time, and SSIM are computed in Equation

(17).
mean = Z x;/n )

4.4.5. Standard Deviation

This finds out the stability of the evaluated algorithms. The value of the standard devia-
tion should be as small as possible. It is expressed mathematically as in Equation (18).

Z i (18)
4 maxlter

4.4.6. Hardware and Software Tools

The hardware and software used throughout this study's experiments was an HP 15
Notebook computer system with the following configurations: Intel Core i3, CPU N3510,
1.99 GHz processor, and 8 GB RAM. The algorithms in this study were implemented using
MATLAB version R2023a on a 64-bit Windows 10 Pro operating system.
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4.4.7 Experimental Datasets

Five different digital grayscale Image datasets were used for the experimental analysis.
These datasets include Lena, Mandrill, Traffic, Cameraman, and Livingroom. Each grayscale
image is 512 by 512 dimensions and was selected because they have different characteristics,
and the proposed algorithm’s performance was evaluated on them.
4.4.8 Experimental Settings

The initial population of fireflies used was set to 25. The number of runs was 30, and
the maximum number of iterations (MaxFE) was set to 100. The initial values of &, ¥, Bmin,
Bo wete initially set to 0.5, 1.0, 0.2 and 1.0 respectively. f was limited within the range
[ﬁo, Bmin]. Optimal thresholds were obtained for each grayscale image test data set at 2, 3, 4,
and 5 threshold levels.

5. Results and Discussion

This section presents the optimal thresholds obtained by the algorithms. It also discusses
the qualities of the threshold image obtained by the algorithms and compares them regarding
PNSR, SSIM, and execution time. Samples of the threshold digital images obtained by the
four algorithms compared were also presented.

Table 1. Optimal threshold distributions were obtained by FA, FFA, FaNA and eFaNA for each image dataset.

Threshold levels
Images Algorithms
2 3 4 5
FA [21] 84,120 42, 85,110 111, 136, 152 217 125, 155, 187, 232, 245
Lena FaNA [32] 105, 155 24,92, 114 27,106, 115, 255 24, 25,62, 84,120
eFaNA [Ours] 99, 164 134, 146, 240 32,78, 89, 138 18, 39, 80, 88, 98
FFA [23] 101, 164 65,99, 173 61, 86,101,167 24,91,138,203,255
FA [21] 63,119 61,76, 207 5,13, 16, 68 6,19,39,63,131
FaNA [32] 73,142 8,36, 86 8,46,80, 223 8,8,55,59,119
Cameraman
eFaNA [Ours] 127,194 60,111, 197 22,52,88,201 48,62,81,115,190
FFA [23] 123,193 107,145,199 37,91,121, 200 62,89,103,141,194
FA [21] 83,125 14, 37, 69 20,43,71, 122 27,62,99,119,171
Mandsill FaNA [32] 75,138 38,83,139 38, 66, 97, 155 48,76, 109, 147,170
eFaNA [Ours] 70,135 46,88,145 33,66,107,159 35,74,99,120, 165
FFA [23] 91,140 145,149, 250 104,140,146,219 133,161,173,220,255
FA [21] 107,136 68,92,157 39,66,90,104 34,36,67,68,93
Traffic FaNA [32] 86,138 35,75,94 46,67,79,183 38,45,64,76,102
eFaNA [Ours] 92,155 44.71,90 32,61,84,135 41,39,71,81,82
FFA [23] 110,163 120,146,184 124,147,178,224 100,129,164,189,223
FA [21] 106,140 108,137,234 36,65,106,188 4,13,44,72,158
.. FaNA [32] 91,136 115,139,227 40,55,87,135 11, 9,58,71,115
Livingroom
eFaNA [Ours] 87,141 79,87,141 21,55,92,151 33,27,67,83,109
FFA [23] 68,149 31,84,199 40,57,75,120 56,97,127,154,207

Table 1 shows the optimal threshold distributions obtained by FA, FFA, FaNA, and
eFaNA for each image dataset used in this work. Table 8 is a sample of the threshold digital
grayscale images obtained for traffic images using the optimal thresholds in Table 1. These
threshold distributions were obtained using the Otsu between class variance objective func-
tion.

Table 2 depicts the quality of the threshold digital images in terms of the average PSNR
obtained by the algorithms compared at different threshold levels. Table 2 shows that as the
threshold levels increase, the average PSNR values increase, proving that eFaNA can effec-
tively threshold digital grayscale images. Table 3 compares the overall average PSNR obtained
by FA, FFA, FaNA, and eFaNA at all the thresholds considered. From this table, it can be
seen that eFaNA obtained an overall average PSNR of 25.530db, FFA obtained an overall
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average PSNR of 25.40750db, FaNA obtained an overall average PSNR of 24.1522db and
the standard firefly algorithm obtained an overall average PSNR of 24.4506db. This result
means that eFaNA has an overall average PSNR improvement of about 5.7130% over FaNA,
an overall average PSNR improvement of about 0.4899% over FFA, and an overall average
PSNR improvement of 4.422% over FA. In addition, this table shows that eFaNA is generally
more stable at obtaining PSNR values because it has a better overall average standard devia-
tion of 1.5361db against an overall average standard deviation of 2.8317db by FaNA,
2.4742db by FFA and 4.6778db by FA. Figure 3 is a bar chart that compares the overall
average PSNR obtained by the four algorithms.

Table 2. The quality of the threshold digital images in terms of the average PSNR obtained by the algotithms compared at different

threshold levels.
Obijective function: Otsu Between Class Variance

Images Tfi‘:i;;’ld FA [21] FFA [23] FaNA [32] eFaNA [Ours]

mean std mean std mean std mean std
2 21.8214 3.0759 23.7961 0.4504 21.8754 0.5365 23.9082 0.2317
Lena 3 23.1287 6.2467 23.5254 2.6749 22.7451 1.2203 24.6303 0.4017
4 24.7947 3.4172 25.1945 2.6465 25.0653 1.4582 25.6268 1.3210
5 25.6454 3.0759 25.8110 2.4362 25.7623 3.1982 25.8180 2.0390
2 24.7549 2.1207 25.1181 0.5842 24.6830 0.4146 25.1987 0.2015
Cameraman 3 27.7017 7.0991 27.7224 4.7226 27.4329 1.9745 27.4720 1.2971
4 28.3022 6.2449 28.5932 2.5648 28.5597 2.4117 29.8449 1.0361
5 28.4279 7.1129 29.7767 5.0346 28.5855 3.8023 29.9071 2.4051
2 22.4423 2.3723 23.6565 0.3874 22,7159 0.9198 21.8057 0.9428
Mandill 3 25.2999 10.5197 25.8325 1.8346 24.4329 8.1106 26.7520 1.8159
4 25.6669 4.5932 26.7137 2.8743 24.5102 4.0949 27.8582 2.9207
5 25.9365 4.2342 26.7663 4.5048 25.3167 3.0243 27.1042 2.7415
2 17.0845 3.5946 21.1457 1.1490 18.8816 1.3676 20.9299 0.6313
Traffic 3 22.9086 4.8921 23.6673 2.6896 21.3936 3.2791 23.5473 0.9761
4 23.7890 3.8510 23.9746 2.6502 22.7832 4.1579 24.9936 2.9775
5 24.2707 4.5429 25.4895 3.6255 22.9630 5.1796 25.5443 2.4702
2 22.1896 2.4543 23.4492 1.0340 21.8816 1.5814 23.4572 0.4021
Livingroom 3 24.7275 7.3624 24.8571 2.7996 21.9254 3.3151 22.1101 1.6249
4 24.4537 2.6040 26.0870 2.3562 25.6589 3.2092 26.9642 2.1359
5 25.6659 4.1414 26.9739 2.4650 25.8723 3.3782 27.1679 2.1494

Table 3. The overall average PSNR and standard deviation obtained by the algorithms at each threshold level considered for each of

the five images.

Average PSNR * STD (dB)

Mean and deviation at FA [21] FFA [23] FaNA [32] eFaNA [Ours]
PSNR std PSNR std PSNR std PSNR std
Levels 2 Threshold 21.6585 2.7236 23.4331 0.7210 22.0075 0.9640 23.0599 0.4819
Levels 3 Threshold 24.7533 7.2240 25.12094 2.9442 23.5860 3.5799 24.9023 1.2231
Levels 4 Threshold 25.4013 4.1421 26.1126 2.6184 25.3155 3.0664 27.0575 2.0782
Levels 5 Threshold 25.9893 4.6215 26.9635 3.6132 25.7000 3.7165 27.1083 2.3610
Average 24.45006 4.6778 25.4075 2.4742 24.1522 2.8317 25.5320 1.5361

Table 4 shows the SSIM values of the threshold digital images obtained by each algo-
rithm at different threshold levels. This table shows that the enhanced FaNA often obtains a
slightly better average SSIM as the threshold increases. Table 5 presents the overall average
SSIM obtained by the algorithms. This table shows that eFaNA has an overall average SSIM
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of 0.8641, FFA has an overall average SSIM of 0.8604, FaNA has an overall average SSIM of
0.8432, and FA has an overall average SSIM of 0.6703. This means that eFaNA has an overall
average SSIM improvement of 2.4768% over FaNA, an overall average SSIM improvement
of 0.43237% over FFA, and an overall average SSIM improvement of 28.9198% over the
standard firefly algorithm. Moreover, this table shows that eFaNA is more stable as it has a
better standard deviation than other algorithms in consideration, with an overall average
standard deviation of 0.0479 against 0.1300 for FaNA, 0.0831 for FFA, and 0.0872 for FA.
Figure 4 shows the overall average SSIM and the overall average deviation from mean SSIM
by the algorithms. This result is comparable with those obtained in FA [21], FFA [23], and
FaNA [32].

Figure 3. A comparison of the overall average PSNR obtained by FA, FFA, FaNA and eFaNA

OVERALL AVERAGE PSNR
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25.53200

Table 4. Comparison of Mean and standard deviation of Structural Similarity Index Measure (SSIM) for each algorithm at different
threshold levels.

Objective function: Otsu Between Class Variance

Images Thl‘:vse}l‘;’ld FA [21] FFA [23] FaNA [32] ¢FaNA [Ours]
mean std mean std mean std mean std
2 0.8416  0.0445 08465  0.0071 0.8450 00076 08514  0.0045
e 3 0.8433  0.0940 08548 00398 08442 12203 08632 00243
4 0.8673  0.0841 0.8698  0.0428 08476 00653 08738  0.229
5 0.8726  0.0818 08740 01327 08594 01079 08846 0.0543
2 0.8713  0.0313 08737 00090 08656 00057 08768  0.0042
Cameraman 0.8808  0.0668  0.8891 0.0534  0.8749 00474 08524 00156
4 0.8104 00698 08769 00508 08525 00511 0.8774  0.0358
5 0.8813 01276 0.883%4  0.1901 0.8338 00762 0.8954  0.1000
2 0.8161 00578 07738 00130  0.8684 00022 08533  0.0026
Mandsl 3 08569 01027 08702  0.0421 0.8628  0.0903  0.8674  0.0144
4 0.8653 01248 08758 00560  0.8651 0.1394 08763  0.0371
5 0.8780 01186 08832 01975 08807 00765 08892  0.1278
2 07058 00697 07913 00229 07393 00280 08011 0.0113
Craffic 3 0.8071 00835  0.8719 01067 07845 00848 08502  0.1002
4 0.8060  0.1031 0.8317 01214 08030 01173 08562  0.0611
5 0.8317 0296 08523 01528 08189  0.1564 08607  0.1200
2 0.8010 00557  0.8494 00332 07960 00387 08559  0.0128
y 3 0.8971 0.1138 08812 00682 08724 00739 08325  0.0469
Livingroom
4 0.8713 00736 08774 01335 08760 00884 08799  0.0549
5 08783 01104 08820 01886  0.8741 0.1227 08842 01072
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Table 5. Comparison of the average SSIM and standard deviation obtained by FA, FFA, FaNA, and eFaNA for each five digital gray-

scale images.

Average SSIM *+ STD

Mean and deviation at FA [21] FFA [23] FaNA [32] eFaNA [Ours]
SSIM std SSIM std SSIM std SSIM std
Levels 2 Threshold 0.8072 0.0518 0.8269 0.0170 0.8229 0.0164 0.8477 0.0071
Levels 3 Threshold 0.8570 0.0922 0.8734 0.0620 0.8478 0.3033 0.8531 0.0403
Levels 4 Threshold 0.8441 0.0911 0.8663 0.0809 0.8488 0.0923 0.8727 0.0424
Levels 5 Threshold 0.8684 0.1136 0.8749 0.1723 0.8534 0.1079 0.8828 0.1019
Average 0.8442 0.0872 0.8604 0.0831 0.8432 0.1300 0.8641 0.0479

Table 6 shows the average execution time obtained by the four algorithms at different
threshold levels on all the digital grayscale images. Table 7 shows the overall average execution
time obtained by all the algorithms. From this table, it can be seen that eFaNA has an overall
average execution time of 50.5322 seconds against an overall average Execution time of
38.7528 seconds for FaNA, an overall average Execution time of 38.7726 seconds by FFA,
and an overall average execution time of 107.6340 seconds for FA. The overall average devi-
ation from the mean execution time obtained by the algorithms is shown in Figure 5. This
table shows that eFaNA has an average standard deviation from the mean Execution time of
6.6052 seconds, against 4.9404 seconds for FaNA, 6.0480 seconds for FFA, and 16.6569 sec-
onds for FA. This result shows that FaNA outperforms eFaNA by segmenting digital gray-
scale images in lesser execution time compared to eFaNA and FA. However, eFaNA has
better segmentation time efficiency than FA.

Table 6. Comparison of the mean and standard deviation of execution time (in seconds) for each algorithm at different thresholds

levels using Otsu objective function.

Threshold

Obijective function: Otsu Between Class Variance

Images levels FA [21] FFA [23] FaNA [32] eFaNA [Ours]

time std time std time std time std
2 88.2098 19.1110 37.3723 5.8517 31.1274 0.8027 37.0262 6.8251
Lena 3 118.2067 16.0284 39.2615 2.9556 37.4807 3.9699 35.4648 2.9037
4 99.6616 24.6340 49.8117 9.6474 49.7550 10.8344 46.6747 12.8143
5 107.3812 25.4585 58.4643 10.7389 68.3415 8.7257 60.0711 2.9462
2 78.7180 16.2980 36.2381 4.4529 34.1808 1.7240 32.4599 8.5185
3 123.0385 3.0401 51.6079 1.4535 64.7530 1.3365 56.7885 3.2075

Cameraman
4 102.1132 19.3959 54.5218 12.0404 64.7530 9.9271 55.1692 12.0563
5 111.8808 21.0630 55.9598 9.4755 70.4936 12.4704 62.3241 12.7078
2 100.2471 21.1944 39.07953 9.1064 37.3175 7.7764 69.2402 4.8273
Mandill 3 137.9080 7.6201 46.99347 1.7488 41.5267 1.8933 60.5505 12.9591
4 116.8505 25.0848 53.34716 12.0245 70.5606 8.8091 62.6374 13.0046
5 146.1605 28.1303 47.11662 11.4617 54.6418 10.3641 98.4154 6.7694
2 113.5037 4.4289 18.1378 10.3459 17.9014 1.2861 25.4931 2.6515
Traffic 3 85.8978 7.5799 32.3606 2.9205 16.2971 3.7287 31.2785 1.9907
4 108.0225 21.1942 36.0326 3.7328 18.0689 3.9621 38.7988 3.0970
5 109.8973 9.9325 47.1701 6.6616 27.0862 1.6898 45.5761 6.5386
2 103.3260 21.0198 18.5705 0.4924 17.3660 0.9608 30.4280 6.4810
.. 3 94.4083 20.2983 14.6174 3.5500 18.8603 3.3811 45.1375 7.0005
Livingroom

4 101.4389 15.6460 18.3912 1.0076 14.9513 0.7861 56.5279 1.7283
5 105.8101 5.9803 20.3981 1.2909 19.5937 4.3802 60.5817 3.0762
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Table 7. Comparison of the overall mean execution time (seconds) and its deviation obtained by FA, FFA, FaNA, and eFaNA.

OVERALL AVERAGE SSIM
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0.8432

eFaNA
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Figure 4. A comparison of the overall average standard deviation from the mean SSIM obtained by
FA, FFA, FaNA, and eFaNA

Average execution time * STD

Mean and deviation at FA [21] FFA [23] FaNA [32] eFaNA [Ours]
time std time std time std time std
Levels 2 Threshold 96.8009 16.4104 29.8796 6.0499 27.5786 2.5100 38.9295 5.8607
Levels 3 Threshold 111.8919 10.9134 36.9682 2.5257 35.7836 2.8619 45.8440 5.6123
Levels 4 Threshold 105.6173 21.1910 42.4209 7.6905 43.6178 6.8638 51.9616 8.5401
Levels 5 Threshold 116.2260 18.1129 45.8218 7.9257 48.0314 7.5260 65.3937 6.4076
Average 107.6340 16.6569 38.7726 6.0480 38.7528 4.9404 50.5322 6.6052
w 120.0 107.6340
2
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Figure 5. Comparison of the overall mean execution time obtained by FA, FFA, FaNA, and eFaNA

for each considered threshold level.

A sample of the resultant traffic threshold images obtained are as shown in Table 8 for

all the compared algorithms at threshold levels 2 to 5. Based on this table, it can be seen that
FA threshold images with major defects compared to the ground truth, while FFA, FaNA
and eFaNA threshold images with minimal defects with the traffic images yielded by eFaNA
being more visible with the least minimal defects
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Table 8. The compared algorithms determined the traffic image threshold.

Threshold levels

Method

FaNA [32]

FA [21]

FFA [23]

eFaNA [ours]

6. Conclusions and Recommendation

This work enhanced the Firefly algorithm with neighborhood attraction for digital gray
scale image thresholding. The results obtained reveal that eFaNA is comparable to FFA at
thresholding digital gray scale image. The enhanced FaNA is more consistent at yielding op-
timal threshold values that segment digital gray scale images without much loss of important
image details compared to FA and FaNA and FFA, but may not be a good option for real
time applications. These results also show that, enhancing firefly algorithm with neighboz-
hood attraction by introducing chaotic tent map and lévy flight based random walk into the
algorithm can improve the algorithm’s ability at yielding better threshold values, for segment-
ing digital gray scale images. This result was obtained because, the chaotic tent map included
in the algorithm generates more better initial population of fireflies and the lévy flight based
random walk scheme improved its exploration capability. Therefore, good initial population
of fire-flies are used to begin the search for optimal solutions that were used to segment the
given digital gray scale images. The enhanced firefly algorithm with neighborhood attraction
proposed in this work yield threshold values that segments digital gray scale images and ob-
tained threshold images with better PSNR and SSIM. It is however, not a good choice for
applications involving real time thresholding of digital gray scale images. Its performance
compared to other metaheuristics algorithms is also not known. Also, the performance of the
enhanced algorithm using other objective functions is not known. In addition, the perfor-
mance of the algorithm on colored digital images was not investigated in this work.

Despite these promising results, several limitations remain. The algorithm’s performance
has not been benchmarked against other metaheuristic methods such as PSO, ABC, ACO, or
ANN-based approaches for gray scale image thresholding. Additionally, its effectiveness us-
ing alternative objective functions, such as Tsalli, Kapur, or Minimum Cross Entropy (MCE),
has yet to be explored. Lastly, the algorithm was not evaluated on colored digital images.
Addressing these limitations in future research would provide a more comprehensive under-
standing of the enhanced algorithm's capabilities and applicability.
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