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Abstract 

This study explores Quantum Convolutional Neural Network (QCNN) starting from foundational 
quantum operations, such as the Rx gate for encoding MNIST image data into quantum states. 
We implemented quantum convolutional and pooling layers using one_unitary and two_unitary 
circuits, enabling effective feature extraction and dimensionality reduction while preserving 
critical information. Expressibility analysis revealed varying capabilities across different 
one_unitary circuits, with Rx, Ry, and Rz combinations demonstrating promising results akin to 
Haar random states. The proposed QCNN model exhibited robust performance metrics (accuracy: 
95.98%, precision: 94.44%, recall: 96.59%, F1-score: 0.9551, AUC: 0.9604) in classification 
tasks, supported by efficient convergence during optimization. Future directions include 
expanding QCNN applications to handle more complex datasets and optimizing architectures to 
enhance quantum machine learning capabilities, particularly in image processing. This study 
underscores the potential of QCNNs in advancing quantum computing applications in neural 
network architectures. 
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1. INTRODUCTION 
 

Quantum computing takes advantage of the non-classical characteristics of quantum states 
in a wide range of applications; it has grown in popularity [1], [2], [3], [4], [5], [6]. While certain 
activities have no classical equivalents, others have considerable quantum benefits [7], [8], [9]. 
Entanglement and superposition are two fundamental ideas that have fundamentally changed how 
information is represented in quantum computing. Unlike traditional computers, quantum 
computers use qubits rather than bits. Due to the intrinsic complexity of qubits, the basic units of 
information, quantum computers can do tasks beyond the capabilities of regular systems. Due to 
their entanglement and superposition, qubits may perform computational tasks faster than 
traditional computers, a significant departure from the field [10], [11], [12], [13]. 

Thanks to superposition, qubits can concurrently exist in states that represent 0 and 1. This 
property allows quantum computers to explore several possibilities at once and carry out intricate 
computations [14], [15], [16], [17], [18]. A qubit's quantum state is demonstrated by the equation 
|ψ⟩ = α|0⟩ + β|1⟩, emphasizing its capacity to exist in several states concurrently. This sets 
quantum computing apart from classical paradigms and further demonstrates the superior 
processing power of quantum computers. In a two-dimensional complex Hilbert space, the 
quantum state of a qubit is represented by the basis vectors |0⟩ and |1⟩. The superposition of the 
qubit in the states |0⟩ and |1⟩ is determined by the coefficients α and β. A crucial concept that 
describes the interdependence between the states of several qubits is entanglement, which enables 
quantum computers to perform exceptionally well while processing large datasets and solving 
certain computational problems [19], [20], [21]. 

Regression and data classification are two areas where machine learning (ML) works well 
[22], [23], [24], [25]. Nevertheless, it is difficult to apply quantum concepts to machine learning. 
A developing topic that combines quantum computing and machine learning is called quantum 
circuit learning (QCL) or quantum machine learning (QML) [26], [27]. With different quantum 
gate operations, QML algorithms may be constructed as quantum circuits [28], [29]. With major 
benefits over conventional approaches, particularly for near-term quantum devices, QML has the 
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potential to propel quantum computing in the noisy intermediate-scale quantum (NISQ) future 
[29], [30]. Quantum convolutional neural network (QCNN) is an integral part of the QML 
paradigm that utilizes the principles of quantum mechanics to improve processing and pattern 
recognition capabilities [31], [32]. 

Classical CNN primarily employs convolution layers to extract features from images [33], 
[34]. However, in QCNN, these convolution layers are instantiated through quantum circuits. 
Convolution is achieved by applying quantum gates to the image representation. The image 
representation can be encoded as a quantum state vector, wherein each element corresponds to an 
image pixel. Within the framework of QCNN, superposition enables concurrent processing of 
information across multiple pixel states, while entanglement facilitates the association of pertinent 
image features. Moreover, QCNN can harness additional quantum principles, such as amplitude 
probability modeling, to ascertain optimal weights during the learning phase [35], [36], [37]. The 
advent of QCNN heralds a significant breakthrough in machine learning, as it integrates quantum 
concepts into a well-established image classification architecture. Despite being in its nascent 
stages of exploration, QCNN holds immense promise in enhancing the efficacy and efficiency of 
classification systems, particularly in managing intricate image datasets such as MNIST. 

In this paper, we introduce the concept of an adaptive Quantum Convolutional Neural 
Network (QCNN) architecture tailored for the classification of the MNIST dataset. A 
distinguishing feature of our research lies in utilizing quantum circuits as the foundational 
framework for our architecture, which seamlessly integrates into the Quantum Machine Learning 
(QML) paradigm. We explore how fundamental quantum principles, including superposition, 
entanglement, and amplitude probability modeling, can be effectively harnessed to enhance the 
task of image classification. Through comprehensive experimentation and analysis, we assess the 
efficacy and practical viability of the adaptive QCNN architecture in effectively handling the 
intricacies of the MNIST dataset. Consequently, this paper endeavors to furnish novel insights 
into the advancement of pioneering and efficient classification algorithms within the realm of 
QML. 
 

2. METHOD 
 

In this work, we implemented the Qiskit module on the IBM Quantum platform to build a 
Python programming language for quantum operations to present experiments conducted on the 
MNIST dataset for binary classification of digits 0 and 1. 
 
1.1. Dataset and pre-processing 

The MNIST (Modified National Institute of Standards and Technology) dataset is a 
comprehensive database of handwritten digits widely utilized for training various image 
processing systems. The MNIST dataset ensures completeness by providing 70,000 images of 
handwritten digits, ranging from 0 to 9 (Figure 1a). Among these, 60,000 images constitute the 
training set, while 10,000 images form the testing set. These images are presented in grayscale 
with a standard resolution of 28×28 pixels. The image pixel values range from 0, representing 
black, to 255, representing white. To enhance computational efficiency, the images in the dataset 
were normalized to pixel values between 0 and 1. Subsequently, the data was filtered to retain 
only images of the digits 0 and 1 for binary classification (Figure 1b). This resulted in a reduced 
subset comprising 8,000 training images and 2,000 testing images [38], [39], [40]. The images 
were further flattened into one-dimensional arrays (equivalent to 768 pixels) to facilitate efficient 
processing by the model. Principal Component Analysis (PCA) is applied to reduce the 
dimensionality of data in optimizing processing by QCNN. In quantum computing, each qubit 
can be seen as a representation of the data dimension. Thus, reducing the dimensionality from 
768 pixels to 4 pixels significantly reduces the number of qubits needed, making quantum 
processing more feasible and efficient. These preprocessing steps ensure the efficient execution 
of code while preserving data integrity, with this focused subset designed to accelerate 
experimental workflows [41], [42], [43]. 
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Figure 1. Examples of dataset before and after pre-processing 
 
1.2. Adaptive QCNN Modeling 

Integrating quantum-based programming into adaptive QCNN requires recalibrating to 
make it executable on a quantum computer. The proposed work aims to investigate the potential 
of QCNN for classification on the MNIST dataset. The suggested QCNN's design is seen in Figure 
1. 
 

 
(a) 

 
(b) 

Figure 2. The architecture of the proposed (a) adaptive QCNN and (b) quantum convolutional-
pooling layers. 

 
From Figure 2a, the proposed QCNN architecture comprises three main layers: encoding, 

ansatz, and decoding. Each layer plays a crucial role in quantum processing. This architecture 
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aims to leverage the principles of convolutional neural networks in the quantum domain to 
provide classification tasks. The encoding layer is responsible for transforming classical data into 
quantum states. This process is known as quantum feature mapping. Classical data is encoded 
into the rotation angles of quantum gates applied to qubits. The encoded quantum state is the input 
for the ansatz layers of the QCNN. The ansatz layer (Figure 2b) consists of quantum convolutional 
layers and quantum pooling layers designed to extract and summarize features from the quantum 
data. Quantum convolutional layers apply parameterized quantum gates to subsets of qubits, 
similar to how convolutional filters operate on local regions of classical data. The goal is to extract 
local features by applying a series of unitary transformations. Quantum pooling layers reduce the 
number of qubits, analogous to pooling layers in classical CNNs that reduce the spatial 
dimensions of data. By stacking multiple convolutional and pooling layers, the QCNN can 
progressively extract higher-level features while reducing the dimensionality of the quantum 
state. The decoding layer transforms the processed quantum state into a form that can be 
interpreted classically. This typically involves measuring the qubits and applying classical post-
processing to the measurement outcomes. 

Assigning qubits to each feature in the data is the initial stage in the QCNN technique. After 
that, each feature is mapped, often known as encoding. In this fundamental stage, a quantum state 
is constructed in the quantum Hilbert space using quantum feature mapping [44], [45]. This 
method entangles and superpositions qubits in a variety of states. By applying it to the ground 
state |0⟩ for each qubit, the quantum feature mapping, E(�⃗�), as given in equation 1, encodes the 
classical input vector �⃗� into the quantum state vector |𝜓(�⃗�)⟩ for each observation. All the classical 
properties are essentially related to a single qubit. 
 
E(�⃗�)|0⟩ = |𝜓(�⃗�)⟩         (1) 
 
The QCNN performs classification by assessing the degree of similarity between data vectors in 
the quantum feature space using an ansatz denoted by A(𝜃) in equation 2, following the initial 
encoding of classical properties into quantum states [46], [47]. 
 
A(𝜃)|𝜓(�⃗�)⟩ = |𝜓(𝜃, 𝑥)⟩        (2) 
 
After the classifier has been trained, binary value encodings convert quantum state data into 
conventional values of 0 and 1 [48], [49]. Additionally, parameterized (𝜃) are altered to lower 
the loss function. 
 
1.3. Model Assessment 

ROC curves, recall, F1-score, accuracy, and precision are crucial when evaluating classifier 
models. Accuracy is defined as the ratio of precise forecasts to overall predictions. While accuracy 
calculates the proportion of true positive forecasts among all positive forecasts, recall assesses the 
percentage of true positive predictions among all real positives. The F1-score balances these two 
metrics, the harmonic mean of recall and accuracy. ROC curves plot the true positive rate against 
the false positive rate, showing performance across thresholds [50], [51]. 
 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
(்ା்ே)

(்ା்ேାிାிே)
× 100       (3) 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
்

(்ାி)
× 100        (4) 

 

𝑅𝑒𝑐𝑎𝑙𝑙 (𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦) =
்

(்ାிே)
× 100      (5) 

 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =
ଶ×௦×ோ

(௦ାோ )
       (6) 
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Here, TP stands for true positives, TN for true negatives, FP for false positives, and FN for false 
negatives. These metrics provide vital information about how effectively the model can reliably 
classify examples. They do this by extensively evaluating the model's functionality and 
anticipated accuracy inside a classification framework. 
 
1.4. Parameter Optimization 

QCNN adaptively develops encoding and ansatz parameters to maximize data processing 
using unique circuit architectures. This method improves data categorization and strengthens the 
model's learning and classification skills by assessing the similarity between data pairs in the 
quantum feature space. Gradient optimization uses methods like ADAM, COBYLA, and AQGD 
to modify the model parameters and minimize the loss function. Quantum models improve their 
performance in classification problems by iterative computing and updating the gradient, which 
results in more informative encodings and ideal ansatz structures. 
 
 

3. RESULTS and DISCUSSION 
 

In the initial phase of our investigation, we employed simple quantum operations for 
encoding and constructing the quantum convolutional and pooling layers. Based on Figure 3, we 
utilized the rotation gate Rx for the encoding layer. The choice of this gate for encoding was 
driven by its simplicity and effectiveness in transforming classical data into a quantum state. By 
applying the Rx gate to each qubit, we encoded the normalized pixel values of the MNIST images 
into rotation angles, thereby embedding the classical data into the quantum domain. The quantum 
convolutional and quantum pooling layers were constructed using a combination of one_unitary 
and two_unitary circuits. Figure X depicts the one_unitary circuit consisting of a sequence of 
single-qubit rotations, Rx, Ry, and Rz gates. Combining these gates, the one_unitary circuit 
allows for flexible and comprehensive manipulation of single-qubit states. The two_unitary 
circuit builds on the one_unitary circuit by incorporating controlled-NOT (CX) and controlled-Z 
gates. This enhancement enables entanglement between qubits, which is crucial for capturing 
correlations within the data. The quantum convolutional layers applied these circuits to subsets 
of qubits, effectively extracting local features from the quantum state. Integrating one_unitary 
and two_unitary circuits provided a balance between single-qubit operations and entanglement, 
enhancing the convolutional layers' expressive power. The quantum pooling layer was designed 
to reduce the dimensionality of the quantum state while retaining essential information. 
Measurements followed this reduction to determine the significant qubits, ensuring the retention 
of critical data features. 

 

 
(a) 

 
(b) 

 
 

 
(c) 

Figure 3. Simple circuit example of (a) encoding, (b) one_unitary, and (c) two_unitary  
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The expressibility value quantifies how effectively the circuit can generate diverse quantum 
states across its parameter space. To evaluate the expressibility of quantum circuits, the Haar 
measure must define a uniform distribution across unitary operators. A maximally expressible 
Haar random state evenly samples the Hilbert space. The efficiency of quantum circuits in 
navigating the quantum state space is measured by comparing them to the Haar measure. 
Therefore, we tested the combination of gate sequences that make up the one_unitary circuit, 
considering that this circuit is the main basis for forming the entire QCNN circuit. Table 1 shows 
that (a) Rz, Ry, and Rz combination gates are the most powerful; they produce a wide state 
distribution similar to Haar random states, which makes them the best choice for variational 
quantum algorithms. The expressibility values across different one_unitary circuits (a) to (f) vary 
significantly, indicating differences in their ability to explore quantum state space. Higher 
expressibility values suggest that the circuit can access a broader range of quantum states, which 
can be advantageous in capturing complex features in quantum data. In the context of QCNNs, 
choosing one_unitary circuit directly influences the network's capability to extract and process 
features from quantum data. Circuits with lower expressibility values (such as (a) Rx, Ry, Rz with 
0.09228) may offer enhanced representational power, potentially improving classification 
accuracy and robustness. Figure 4 shows that (a) Rx, Ry, and Rz combinations are perfect for 
one_unitary circuits because they offer a uniform state distribution on the Bloch sphere and best 
resemble the Haar measure, comparing diverse combinations. 
 

Table 1. Expressibilty value of one_unitary circuits 
One_unitary circuit Expressibility 

(a) Rx, Ry, Rz 0.09228 
(b) Rx, Rz, Ry 0.11508 
(c) Ry, Rx, Rz 0.09238 
(d) Ry, Rz, Rx 0.12227 
(e) Rz, Rx, Ry 0.18761 
(f) Rz, Ry, Rx 0.18918 

 

    
(a) (b) (c) Haar 

 
  

 

(d) (e) (f)  
Figure 4. Bloch's expressibility representation based on Haar measurement for variational 

circuits 
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The performance metrics of the QCNN model, as summarized in Table 2, exhibit strong 
capabilities in classification tasks. The model achieves an accuracy of 95.98%, indicating its 
proficiency in correctly predicting both positive and negative classes. Precision, measuring the 
proportion of correctly predicted positive instances among all predicted positives, is 94.44%, 
underscoring the model's precision in positive predictions. Moreover, the recall metric, reflecting 
the proportion of actual positives correctly identified by the model, demonstrates a high value of 
96.59%, highlighting the model's ability to capture true positive instances effectively. The F1-
score, which harmonizes precision and recall into a single metric, is calculated at 0.9551, 
suggesting a balanced performance in achieving precision and recall objectives. Furthermore, the 
Area Under the Curve (AUC) score of 0.9604 indicates the excellent discriminatory ability of the 
model in distinguishing between positive and negative classes based on its predicted probabilities. 
The QCNN model exhibits robust performance across various evaluation metrics, affirming its 
suitability for classification tasks. These metrics underscore the model's reliability in practical 
applications in this work. 
 

Table 2. QCNN model performances  
Model Accuracy Precision Recall F1-score AUC 

QCNN 0.9598 0.9444 0.9659 0.9551 0.9604 

 
Figure 5a is an example of the predicted results given the actual values. The confusion 

matrix (Figure 5b) summarizes these results, showing the number of TP, FP, TN, and FN. The 
confusion matrix is crucial for understanding a classification model's performance. It quantifies 
prediction outcomes relative to class labels, detailing model accuracy and errors. In the matrix, 
rows represent true classes, and columns represent predicted instances. Correctly classified 
instances are off-diagonal, where predictions match actual outcomes, while misclassifications 
appear on the diagonal. Metrics like TP, TN, FP, and FN are delineated. For example, a matrix 
shows 1060 TP, 50 FP, 30 FN, and 850 TN. Perfect classification is indicated by only diagonal 
elements, suggesting accurate performance across classes. This tool not only clarifies alignment 
between predictions and outcomes but also identifies areas for model improvement, enhancing 
overall effectiveness. 
 

 
(a) 
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(b) 

Figure 5. (a) Examples of prediction values and (b) confusion matrix of QCNN 
 

The convergence analysis depicted in Figure 6 illustrates the onset of the convergence phase 
of the model around iteration 150, providing insights into the QCNN’s optimization process and 
its efficacy in minimizing the objective function (or cost function). Initially, the QCNN undergoes 
an exploratory phase exploring diverse parameter configurations and settings. The objective 
function values exhibit notable fluctuations during this stage as the model adjusts to varying 
inputs and weight distributions. As the iterations progress into the later phases, there is a 
discernible trend toward stabilization and reduction in the objective function values. Importantly, 
the absence of prolonged plateau periods suggests a continuous, smooth decline in the objective 
function values, indicative of consistent progress and steady convergence. This observation 
underscores the QCNN's ability to systematically refine its parameters and optimize them to 
achieve lower objective function values, enhancing its performance in quantum machine learning 
applications. 
 

 
Figure 6. A plot of the objective function value (cost function) of QCNN 

 
The internal quantum circuit architecture will determine how well the learning model 

performs in performance evaluation. Although the simulations in the experimental findings are 
microscopic, we would like to use the QCNN model on more complex data for future work. More 
comprehensive QCNN techniques and implementations. Furthermore, by encoding more 
information into a single qubit using the QCNN model, much more effective learning can be 
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achieved in image processing. In the future, we will use various simulation techniques to examine 
the QCNN model, which is more effective and has superior learning performance. 
 

4. CONCLUSION 
 

Our study began with simple quantum operations like the Rx gate for encoding MNIST 
image data into quantum states. We constructed quantum convolutional and pooling layers using 
one_unitary and two_unitary circuits, enabling effective feature extraction and dimensionality 
reduction while preserving critical information. Analysis of expressibility across different 
one_unitary circuits highlighted variations in their ability to explore quantum state spaces, with 
Rx, Ry, and Rz combinations showing promising results akin to Haar random states. The proposed 
QCNN model demonstrated strong performance metrics (accuracy: 95.98%, precision: 94.44%, 
recall: 96.59%, F1-score: 0.9551, AUC: 0.9604) in classification tasks, supported by effective 
convergence during optimization. Looking forward, our focus remains on expanding QCNN 
applications to complex datasets and refining architectures for enhanced quantum machine 
learning performance, particularly in image processing. 
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