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 In this study, we compare the performance of the XGBoost model 

with a Support Vector Machine (SVM) model from the literature in 

predicting a given task. Performance metrics such as the coefficient 

of determination (R2), root mean squared error (RMSE), and mean 

absolute error (MAE) were utilized to evaluate and compare the 

models. The XGBoost model achieved an R² of 0.99, an RMSE of 

2.54, and an MAE of 1.96, significantly outperforming the SVM 

model, which recorded an R² of 0.96 and an RMSE of 6.79. The 

scatter plot for the XGBoost model further illustrated its superior 

performance, showing a tight clustering of points around the ideal 

line (y = x), indicating high accuracy and low prediction errors. These 

findings suggest that the XGBoost model is highly effective for the 

given prediction task, likely due to its ability to capture complex 

patterns and interactions within the data. 
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1. INTRODUCTION 
Since material corrosion causes significant losses in various areas, including economics, the 

environment, society, industry, security, and safety, it is a major problem for both the industrial and 

academic worlds. [1], [2], [3]. Using inhibitor technology to manage corrosion is one of the easiest, most 

efficient, and least expensive approaches [4], [5], [6]. The capacity of inhibitor chemicals to create an 

adsorbed or protective layer on the metal surface, which can prevent mass transfer and charge transfer and 

shield the metal from corrosive environments, determines how successful they are [7], [8], [9]. Extensive 

expenses, time, and resources are needed for experimental research assessing different inhibitor chemical 

possibilities [10], [11], [12]. 

The quantitative structure-property relationship (QSPR) model based on the machine learning (ML) 

approach can be used further in investigating different candidate inhibitor compounds because electronic 

properties and chemical reactivity can be quantified against the chemical structure of compounds [13], [14], 

[15]. Density functional theory (DFT) calculations of quantum chemical descriptors (QCD) are an 

important component in creating accurate and dependable QSPR models. Typically, feature selection is 

done to extract pertinent quantum chemical descriptors that are then utilized in the QSPR model's 

construction [16], [17], [18], [19], [20]. Numerous reports on QSPR modeling of several quantum chemical 

descriptors are available. Furthermore, to attain performance efficacy and efficiency, inhibitor synthesis 

performance may be optimized through machine learning techniques before experimental analysis. 

To assess inhibitor performance, a variety of machine learning (ML) algorithms have been combined 

and widely used, including genetic algorithms (GA), multiple linear regressions (MLR), partial least 

squares (PLS), ordinary least squares regressions (OLS), artificial neural networks (ANN), adaptive neural 

fuzzy inference systems (ANFIS), and autoregressive with exogenous inputs (ARX). Support vector 

machine (SVM), an ML algorithm, was utilized by Lu Li et al. [21] to investigate the potential of 
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benzimidazole as a corrosion inhibitor. The results show that the SVM model has a coefficient of 

determination (R2) of 0.96 and an average root mean square error (RMSE) of 6.79. In this work, we 

implemented an XGBoost model to assess how well benzimidazole compounds suppress corrosion. 

 

2. METHODS 

2.1. Dataset 

In this study, the dataset used was extracted from published literature and consisted of 20 

benzimidazole sensitivities with 12 features and 1 target [21]. The features that are used are the senyawa 

molecular structure of benzimidazole; these include the energy of the highest occupied molecular orbital 

(E-HOMO), the energy of the lowest unoccupied molecular orbital (E-LUMO), polarizability (α), total 

natural charges (Qtotal), molar volume (Vi), the adiabatic ionization potential (Ia), the adiabatic electron 

affinity (Aa), electrophilicity (ωa), the fraction electron shared (∆N), indexes of aromaticity in the benzene 

(ΛNICS(1)B) and indexes of aromaticity in the imidazole (ΛNICS(1)I) that are variable independent. The 

dependent variable of interest is the corrosion inhibition efficiency (CIE). 

 

2.2. ML Modeling 

During the preprocessing stage, the data normalization procedure is carried out using the MinMax 

scaling technique to reduce the data's sensitivity to the particular feature. The k-fold technique is used as a 

cross-validation (CV) model to account for bias and variance in data by training the model in a stepwise 

manner until the lowest statistical significance is reached [22], [23]. We use the k = 10 nilai, with 1 fold 

used as the test set and the remaining 9 folds as the training set (train). The k-fold nilai is sensitive to the 

data used; nonetheless, k = 5 or k = 10 are commonly used [24], [25]. The regression metrics root mean 

square error (RMSE), mean absolute error (MAE), and coefficient of determination (R2) are used to assess 

the performance of the prediction model. The best models have values for MSE, RMSE, and MAE 

regularly, along with R2 being less than 1. 

 

3. RESULTS and DISCUSSIONS 
Table 1 provides a comparative analysis of the performance measures between the XGBoost model 

developed in this work and an SVM model from the literature. 

 

Table 1. Model prediction performance 

Model R2 RMSE MAE Ref. 

XGBoost 0.99 2.54 1.96 This work 

SVM 0.96 6.79 - [20] 

 

R2 metric indicates the proportion of the variance in the dependent variable that is predictable from 

the independent variables. RMSE is the square root of the average of squared differences between predicted 

and observed values. It provides a measure of the magnitude of the prediction error. MAE represents the 

average of the absolute differences between predicted and observed values, providing a measure of the 

average prediction error [26], [27], [28]. The XGBoost model explains 99% (R2 = 0.99) of the variance in 

the data, indicating an excellent fit. The relatively low RMSE (2.54%) value suggests that the XGBoost 

model has a small prediction error, reflecting high accuracy. MAE = 1.96 value shows that the average 

prediction error is 1.96 units, further supporting the model's high accuracy. The SVM model explains 96% 

(R2 = 0.96) of the variance, which is still very good but slightly lower than the XGBoost model. 

The higher RMSE (6.96) value indicates that the SVM model has a larger prediction error compared 

to the XGBoost model. The XGBoost model shows a marginally higher R² value, suggesting that it has a 

slightly better ability to explain the variance in the dataset compared to the SVM model. The XGBoost 

model has a significantly lower RMSE, indicating much smaller prediction errors and thus higher precision 

in its predictions compared to the SVM model. While the SVM's MAE is not available for direct 

comparison, the provided RMSE values already suggest that the XGBoost model is superior in terms of 

prediction accuracy. The XGBoost model outperforms the SVM model from the literature based on the 

provided metrics. The higher R² and lower RMSE values indicate that XGBoost provides more accurate 

and reliable predictions. The absence of the MAE value for the SVM model slightly limits the depth of 

comparison, but the substantial difference in RMSE is a strong indicator of XGBoost's superior 

performance.  

XGBoost, being an ensemble learning method based on decision trees, can capture complex patterns 

and interactions in the data more effectively than SVMs, which rely on a single decision boundary. 
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XGBoost has several hyperparameters that can be fine-tuned to optimize performance, potentially giving it 

an edge over SVM if both models are not equally well-tuned. XGBoost can handle non-linear relationships 

better due to its tree-based structure, whereas SVM may require kernel tricks to achieve similar 

performance. 

Scatter plots are essential tools for visualizing the performance of predictive models. They allow us to 

examine the relationship between the predicted and actual values, providing insights into the model's 

accuracy and potential biases. In a perfect model, all points would lie on the line (y = x), indicating that the 

predicted values are equal to the actual values. Data points should be closely clustered around the line (y = 

x). The closer the points are to this line, the more accurate the predictions are. A uniform spread of points 

around the (y = x) line indicates that the model performs consistently across the range of actual values. 

Points that deviate significantly from the line indicate potential outliers or areas where the model performs 

poorly. If points systematically deviate above or below the (y = x) line, it suggests a bias in the model. For 

example, if points consistently fall below the line, the model tends to underpredict. Variability in the spread 

of points, such as a fan shape where spread increases with actual values, indicates heteroscedasticity. This 

means prediction errors vary with the magnitude of the actual values [29], [30]. 

 

 
Figure 1. Scatter plot of data points from XGBoost performance 

 

From Figure 1, the scatter plot of the XGBoost model performance shows points tightly clustered 

around the (y = x) line, reflecting the high proportion of variance explained by the model. The points have 

a minimal deviation from the (y = x) line, indicating low prediction errors. The spread of points is relatively 

uniform across the range of actual values, suggesting consistent model performance without significant 

biases or heteroscedasticity. The visual representation in the scatter plot validates the high R², low RMSE, 

and MAE values. It confirms that the numerical metrics accurately reflect the model's strong predictive 

performance. 

 

4. CONCLUSION 

The XGBoost model demonstrates superior performance compared to the SVM model from the 

literature in terms of R² and RMSE. This suggests that XGBoost is more effective for the given prediction 

task in this work, likely due to its ability to handle complex patterns and interactions within the data. The 

scatter plot for the XGBoost model shows a tight clustering of points around the ideal line (y = x), indicating 

high accuracy and low prediction errors. These results confirm that XGBoost not only provides a better fit 

but also maintains consistent prediction accuracy, making it a highly suitable choice for the given prediction 

task. 
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