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 This study investigates machine learning-based quantitative 

structure-property relationship (QSPR) models for predicting the 

thermal stability of zinc metal-organic frameworks (Zn-MOF). 

Utilizing a dataset comprising 151 Zn-MOF compounds with 

relevant molecular descriptors, ridge (R) and kernel ridge (KR) 

regression models were developed and evaluated. The results 

demonstrate that the R model outperforms the KR model in terms of 

prediction accuracy, with the R model exhibiting exceptional 

performance (R2 = 0.999, RMSE = 0.0022). While achieving high 

accuracy, opportunities for further improvement exist through 

hyperparameter optimization and exploration of polynomial 

functions. This research underscores the potential of ML-based 

QSPR models in predicting the thermal stability of Zn-MOF 

compounds and highlights avenues for future investigation to 

enhance model accuracy and applicability in materials science. 
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1. INTRODUCTION 
Thermal stability denotes the inherent ability of a material to withstand exposure to elevated 

temperatures [1]. This facet of material science garners significant research attention due to the prevalent 

use of Zinc (Zn) as a primary constituent in articles susceptible to high-temperature environments [2]. The 

resilience of metallic substances against structural deterioration is contingent upon factors such as linker 

composition, metal-ligand interactions, and the structural configuration of Metal-organic frameworks 

(MOFs) [3]. MOFs represent a class of hybrid materials that have gained prominence in recent years. These 

frameworks manifest as three-dimensional structures wherein metal ions (clusters) are coordinated with 

organic linkers (ligands) [4]. The constituent clusters encompass diverse transition metals or metal clusters, 

while the ligands typically comprise organic molecules endowed with multiple coordinating groups. This 

amalgamation of varied clusters and ligands facilitates the tailored design of MOFs endowed with specific 

attributes and functionalities [5]. MOFs are distinguished by their pronounced porosity and expansive 

surface area, rendering them versatile across manifold applications [6]. 

A notable advancement in MOF research entails the comprehensive elucidation of Zn metal-based 

MOFs (Zn-MOFs), with a concerted emphasis on enhancing their stability, delineating their properties, 

exploring novel applications, and broadening their intriguing structural repertoire [7]. Despite strides in this 

domain, the thermal stability of Zn-MOFs remains a prominent concern across diverse application realms. 

Thermal stability fundamentally hinges upon the resilience of cluster-ligand bonds and the integrity of the 

Zn-MOF framework. The robustness of cluster-ligand bonds dictates the resistance of Zn-MOFs against 

thermal degradation or structural alterations under elevated temperatures [8].  

In assessing thermal stability, conventional experimental methodologies such as thermogravimetric 

analysis (TGA), differential scanning calorimetry (DSC), and powder X-ray diffraction (PXRD) serve as 
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indispensable tools [9]. However, the execution of experimental investigations entails substantial temporal 

and fiscal investments. Consequently, researchers are actively pursuing innovative strategies to probe 

thermal stability, encompassing the design of novel cluster-ligand configurations, integration of sturdier 

ligands, and refinement of post-synthetic modification techniques aimed at bolstering the performance 

metrics of Zn-MOFs. This collective endeavor aims to augment the practical applicability of Zn-MOFs 

across multifarious domains. 

In recent times, machine learning (ML) has emerged as a rapid, dependable, and cost-effective 

approach within the domain of materials informatics research. Leveraging ML methodologies, molecular 

properties can be quantified, establishing direct correlations with the chemical structure of compounds. 

Consequently, quantitative structure-property relationship (QSPR) techniques have garnered widespread 

adoption in materials informatics endeavors [10]. 

Primarily, ML-driven investigations endeavor to construct prediction models characterized by high 

precision, thereby facilitating optimal observation of the material attributes under scrutiny. Thus, in this 

investigation, our focus is directed toward identifying the most efficacious QSPR-based ML model for 

predicting the thermal stability of Zn-MOFs. Through rigorous exploration and evaluation, our objective is 

to ascertain a model that not only demonstrates robust predictive capabilities but also enhances our 

understanding of the intricate interplay between molecular structure and thermal stability in Zn-MOFs. 

 

2. METHODS 

2.1. Dataset  

Our investigation employed a publicly available dataset [11] comprising 151 distinct Zn-MOF 

compounds. This dataset encompasses descriptors including the count of nitrogen atoms (nN), the tally of 

zinc atoms (nZn), the contribution of interactions between connecting heteroatoms and the metal center 

(Het), and the impact of diverse molecular fragments about the ligand (Lig). These descriptors were utilized 

as features in constructing an ML-based quantitative structure-property relationship (QSPR) model. Our 

primary objective was to predict the thermal stability (Log TS) of these Zn-MOF compounds. 

By integrating these descriptive features into our ML-based QSPR framework, we endeavored to 

elucidate the intricate relationship between molecular characteristics and thermal stability in Zn-MOFs. By 

leveraging this dataset and employing advanced ML techniques, we aimed to develop a predictive model 

capable of accurately forecasting the thermal stability of Zn-MOF compounds based on their structural 

attributes. 

 

2.2. ML Model 

 The initial step in constructing our ML model involves preprocessing the data. Here, we employ the 

RobustScaler scaling technique to normalize the data, thereby mitigating the model's sensitivity to specific 

features. Subsequently, the dataset is partitioned into training and testing sets using a k-fold cross-validation 

strategy. This methodology is selected to mitigate data bias and variability by iteratively training the model 

until it achieves minimal statistical error [12], [13], [14]. In this context, we opt for k = 10, dividing the test 

set into one segment while the training set comprises the remaining nine segments. Typically, k = 5 or k = 

10 values are utilized, with the precise choice contingent upon the characteristics of the dataset [15], [16], 

[17].  

 Moving to the modeling stage, we assess and juxtapose the predictive efficacy of two distinct models: 

the ridge-based linear model (R) and the kernel ridge (KR) non-linear model. To gauge the performance of 

these prediction models, we employ regression metrics including the coefficient of determination (R2) and 

root mean square error (RMSE). An optimal model exhibits lower RMSE and MAE values, alongside an 

R2 value approaching unity [18], [19], [20]. Through this comparative evaluation, we aim to discern the 

model that best encapsulates the underlying relationships between the structural features of Zn-MOF 

compounds and their TS. 

 

3. RESULT AND DISCUSSION 
Regression model performance is typically assessed using R2, and RMSE metrics. R2 quantifies the 

proportion of dependent variable variance explained by independent variables, with 1 denoting a perfect 

fit. Higher R2 values indicate better predictive performance. RMSE represents the typical error magnitude, 

with lower values indicating greater prediction accuracy. Table 1 displays R2 and RMSE values for models. 
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Table 1. Model test results 

Data Dividing R KR 

Split (Train-Test) R2 RMSE R2 RMSE 

90:10 0.999 0.0028 0.358 0.0826 

80:20 0.999 0.0024 0.354 0.0821 

70:30 0.999 0.0025 0.355 0.0823 

60:40 0.999 0.0027 0.359 0.0827 

K-Fold CV R2 RMSE R2 RMSE 

3 0.999 0.0024 0.357 0.0823 

5 0.999 0.0022 0.354 0.0821 

7 0.999 0.0025 0.356 0.0825 

10 0.999 0.0023 0.352 0.0820 

 

In the initial phase of the study, a series of data-dividing tests were conducted to identify the model 

exhibiting the most optimal prediction performance on the models, as assessed by R² and RMSE metrics. 

The outcomes of these tests are summarized in Table 1. Based on the results presented in Table 1, it is 

evident that the choice of data division strategy significantly impacts the performance of the regression 

models. The table provides a comparative analysis of two regression models: R and KR, based on different 

data dividing strategies and evaluation metrics such as R2 and RMSE. When considering the performance 

of the R model, it consistently achieves high R² values close to 0.999 across various data dividing strategies 

and outperforms the KR model. Moreover, the R model demonstrates lower RMSE values compared to the 

KR model, indicating superior predictive accuracy. The data dividing strategy, whether through a train-test 

split or k-fold cross-validation, also influences model performance. In general, a train-test split with a larger 

proportion allocated to training data (e.g., 90:10, 80:20) yields better performance for both R and KR 

models in terms of R² and RMSE. However, the R model consistently outperforms the KR model regardless 

of the data-dividing strategy. Overall, these results suggest that the R model is more effective in predicting 

the thermal stability of Zn-MOF compounds compared to the KR model. Additionally, a train-test split with 

a larger proportion allocated to training data tends to yield better predictive performance for both models. 

The R model outperforms the KR model in terms of prediction performance, as indicated by higher R² 

values and lower RMSE values. The superior model exhibits a high R² value approaching 1, coupled with 

the lowest RMSE value, signifying optimal predictive accuracy. 

 

 
(a) 

 
(b) 

Figure 1. Scatter plot of (a) R and (b) KR models 

 

The findings presented in Table 1 are further supported by the distribution plots of data points resulting 

from model predictions (Figure 1). The figure illustrates the predictive performance of the R and the KR 

by plotting the actual thermal stability values against the predicted values for each Zn-MOF compound. In 

Figure 1, the distribution of data points resulting from the R model's predictions closely follows the 

prediction line, indicating a strong alignment between predicted and actual values. This alignment suggests 

that the R model accurately captures the underlying patterns and relationships within the dataset, leading to 

precise predictions of thermal stability for Zn-MOF compounds. Conversely, the distribution of data points 

resulting from the KR model's predictions appears more scattered, indicating less accurate predictions 

compared to the R model. The dispersion of data points around the prediction line suggests that the KR 

model may struggle to capture the complex relationships between molecular descriptors and thermal 
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stability in Zn-MOF compounds, leading to less reliable predictions. Overall, the distribution plots in Figure 

1 provide visual confirmation of the superior predictive performance of the R compared to the KR, as 

observed in the quantitative analysis presented in Table 1. These plots highlight the importance of model 

selection in achieving accurate predictions of material properties and underscore the effectiveness of linear 

regression models in this context. Among the tested models, the R model emerges as the most superior, 

boasting an exceptional R² value of 0.999 and an impressively low RMSE value of 0.0022. This underscores 

the model's adeptness at discerning patterns and characteristics from the Zn-MOF compound dataset under 

evaluation, thereby enabling highly accurate predictions of thermal stability (Log TS) for Zn-MOF 

compounds. 

 

4. CONCLUSION 

The investigation into ML-based QSPR models aimed to identify the optimal approach for predicting 

the thermal stability of Zn-MOF compounds. As evidenced by superior performance in terms of R2 and 

RMSE metrics, R models have demonstrated their efficacy over KR counterparts. Among these models, R 

emerged as the top performer, showcasing remarkable predictive accuracy with an R2 of 0.999 and an 

exceptionally low RMSE of 0.0022. Despite achieving exceedingly high accuracy in predictions, there 

remains ample potential for further exploration and refinement in this research domain. One avenue for 

future investigation involves the implementation of hyperparameter optimization techniques to fine-tune 

model parameters, thereby enhancing model stability and performance. Additionally, the exploration of 

polynomial functions could offer valuable insights into the underlying relationships within the dataset, 

potentially leading to further improvements in predictive accuracy. By continuing to refine and optimize 

the ML-based QSPR model, researchers can advance our understanding of the thermal stability of Zn-MOF 

compounds and facilitate the development of more precise predictive models with broader applicability in 

materials science and related fields. 
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