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1. INTRODUCTION

Thermal stability denotes the inherent ability of a material to withstand exposure to elevated
temperatures [1]. This facet of material science garners significant research attention due to the prevalent
use of Zinc (Zn) as a primary constituent in articles susceptible to high-temperature environments [2]. The
resilience of metallic substances against structural deterioration is contingent upon factors such as linker
composition, metal-ligand interactions, and the structural configuration of Metal-organic frameworks
(MOFs) [3]. MOFs represent a class of hybrid materials that have gained prominence in recent years. These
frameworks manifest as three-dimensional structures wherein metal ions (clusters) are coordinated with
organic linkers (ligands) [4]. The constituent clusters encompass diverse transition metals or metal clusters,
while the ligands typically comprise organic molecules endowed with multiple coordinating groups. This
amalgamation of varied clusters and ligands facilitates the tailored design of MOFs endowed with specific
attributes and functionalities [5]. MOFs are distinguished by their pronounced porosity and expansive
surface area, rendering them versatile across manifold applications [6].

A notable advancement in MOF research entails the comprehensive elucidation of Zn metal-based
MOFs (Zn-MOFs), with a concerted emphasis on enhancing their stability, delineating their properties,
exploring novel applications, and broadening their intriguing structural repertoire [7]. Despite strides in this
domain, the thermal stability of Zn-MOFs remains a prominent concern across diverse application realms.
Thermal stability fundamentally hinges upon the resilience of cluster-ligand bonds and the integrity of the
Zn-MOF framework. The robustness of cluster-ligand bonds dictates the resistance of Zn-MOFs against
thermal degradation or structural alterations under elevated temperatures [8].

In assessing thermal stability, conventional experimental methodologies such as thermogravimetric
analysis (TGA), differential scanning calorimetry (DSC), and powder X-ray diffraction (PXRD) serve as
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indispensable tools [9]. However, the execution of experimental investigations entails substantial temporal
and fiscal investments. Consequently, researchers are actively pursuing innovative strategies to probe
thermal stability, encompassing the design of novel cluster-ligand configurations, integration of sturdier
ligands, and refinement of post-synthetic modification techniques aimed at bolstering the performance
metrics of Zn-MOFs. This collective endeavor aims to augment the practical applicability of Zn-MOFs
across multifarious domains.

In recent times, machine learning (ML) has emerged as a rapid, dependable, and cost-effective
approach within the domain of materials informatics research. Leveraging ML methodologies, molecular
properties can be quantified, establishing direct correlations with the chemical structure of compounds.
Consequently, quantitative structure-property relationship (QSPR) techniques have garnered widespread
adoption in materials informatics endeavors [10].

Primarily, ML-driven investigations endeavor to construct prediction models characterized by high
precision, thereby facilitating optimal observation of the material attributes under scrutiny. Thus, in this
investigation, our focus is directed toward identifying the most efficacious QSPR-based ML model for
predicting the thermal stability of Zn-MOFs. Through rigorous exploration and evaluation, our objective is
to ascertain a model that not only demonstrates robust predictive capabilities but also enhances our
understanding of the intricate interplay between molecular structure and thermal stability in Zn-MOFs.

2. METHODS
2.1. Dataset

Our investigation employed a publicly available dataset [11] comprising 151 distinct Zn-MOF
compounds. This dataset encompasses descriptors including the count of nitrogen atoms (nN), the tally of
zinc atoms (nZn), the contribution of interactions between connecting heteroatoms and the metal center
(Het), and the impact of diverse molecular fragments about the ligand (Lig). These descriptors were utilized
as features in constructing an ML-based quantitative structure-property relationship (QSPR) model. Our
primary objective was to predict the thermal stability (Log TS) of these Zn-MOF compounds.

By integrating these descriptive features into our ML-based QSPR framework, we endeavored to
elucidate the intricate relationship between molecular characteristics and thermal stability in Zn-MOFs. By
leveraging this dataset and employing advanced ML techniques, we aimed to develop a predictive model
capable of accurately forecasting the thermal stability of Zn-MOF compounds based on their structural
attributes.

2.2. ML Model

The initial step in constructing our ML model involves preprocessing the data. Here, we employ the
RobustScaler scaling technique to normalize the data, thereby mitigating the model's sensitivity to specific
features. Subsequently, the dataset is partitioned into training and testing sets using a k-fold cross-validation
strategy. This methodology is selected to mitigate data bias and variability by iteratively training the model
until it achieves minimal statistical error [12], [13], [14]. In this context, we opt for k = 10, dividing the test
set into one segment while the training set comprises the remaining nine segments. Typically, k =5 or k =
10 values are utilized, with the precise choice contingent upon the characteristics of the dataset [15], [16],
[17].

Moving to the modeling stage, we assess and juxtapose the predictive efficacy of two distinct models:
the ridge-based linear model (R) and the kernel ridge (KR) non-linear model. To gauge the performance of
these prediction models, we employ regression metrics including the coefficient of determination (R2) and
root mean square error (RMSE). An optimal model exhibits lower RMSE and MAE values, alongside an
R2 value approaching unity [18], [19], [20]. Through this comparative evaluation, we aim to discern the
model that best encapsulates the underlying relationships between the structural features of Zn-MOF
compounds and their TS.

3. RESULT AND DISCUSSION

Regression model performance is typically assessed using R2, and RMSE metrics. R2 quantifies the
proportion of dependent variable variance explained by independent variables, with 1 denoting a perfect
fit. Higher R2 values indicate better predictive performance. RMSE represents the typical error magnitude,
with lower values indicating greater prediction accuracy. Table 1 displays R2 and RMSE values for models.
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Data Dividing R KR
Split (Train-Test) R2 RMSE R2 RMSE
90:10 0.999 0.0028 0.358 0.0826
80:20 0.999 0.0024 0.354 0.0821
70:30 0.999 0.0025 0.355 0.0823
60:40 0.999 0.0027 0.359  0.0827
K-Fold CV R2 RMSE R2 RMSE
3 0.999 0.0024 0.357 0.0823
5 0.999 0.0022 0.354 0.0821
7 0.999 0.0025 0.356 0.0825
10 0.999 0.0023 0.352  0.0820

In the initial phase of the study, a series of data-dividing tests were conducted to identify the model
exhibiting the most optimal prediction performance on the models, as assessed by Rz and RMSE metrics.
The outcomes of these tests are summarized in Table 1. Based on the results presented in Table 1, it is
evident that the choice of data division strategy significantly impacts the performance of the regression
models. The table provides a comparative analysis of two regression models: R and KR, based on different
data dividing strategies and evaluation metrics such as R2 and RMSE. When considering the performance
of the R model, it consistently achieves high R2 values close to 0.999 across various data dividing strategies
and outperforms the KR model. Moreover, the R model demonstrates lower RMSE values compared to the
KR model, indicating superior predictive accuracy. The data dividing strategy, whether through a train-test
split or k-fold cross-validation, also influences model performance. In general, a train-test split with a larger
proportion allocated to training data (e.g., 90:10, 80:20) yields better performance for both R and KR
models in terms of R2and RMSE. However, the R model consistently outperforms the KR model regardless
of the data-dividing strategy. Overall, these results suggest that the R model is more effective in predicting
the thermal stability of Zn-MOF compounds compared to the KR model. Additionally, a train-test split with
a larger proportion allocated to training data tends to yield better predictive performance for both models.
The R model outperforms the KR model in terms of prediction performance, as indicated by higher R2
values and lower RMSE values. The superior model exhibits a high R2 value approaching 1, coupled with
the lowest RMSE value, signifying optimal predictive accuracy.
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Figure 1. Scatter plot of (a) R and (b) KR models

The findings presented in Table 1 are further supported by the distribution plots of data points resulting
from model predictions (Figure 1). The figure illustrates the predictive performance of the R and the KR
by plotting the actual thermal stability values against the predicted values for each Zn-MOF compound. In
Figure 1, the distribution of data points resulting from the R model's predictions closely follows the
prediction line, indicating a strong alignment between predicted and actual values. This alignment suggests
that the R model accurately captures the underlying patterns and relationships within the dataset, leading to
precise predictions of thermal stability for Zn-MOF compounds. Conversely, the distribution of data points
resulting from the KR model's predictions appears more scattered, indicating less accurate predictions
compared to the R model. The dispersion of data points around the prediction line suggests that the KR
model may struggle to capture the complex relationships between molecular descriptors and thermal
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stability in Zn-MOF compounds, leading to less reliable predictions. Overall, the distribution plots in Figure
1 provide visual confirmation of the superior predictive performance of the R compared to the KR, as
observed in the quantitative analysis presented in Table 1. These plots highlight the importance of model
selection in achieving accurate predictions of material properties and underscore the effectiveness of linear
regression models in this context. Among the tested models, the R model emerges as the most superior,
boasting an exceptional R2 value of 0.999 and an impressively low RMSE value of 0.0022. This underscores
the model's adeptness at discerning patterns and characteristics from the Zn-MOF compound dataset under
evaluation, thereby enabling highly accurate predictions of thermal stability (Log TS) for Zn-MOF
compounds.

4. CONCLUSION

The investigation into ML-based QSPR models aimed to identify the optimal approach for predicting
the thermal stability of Zn-MOF compounds. As evidenced by superior performance in terms of R2 and
RMSE metrics, R models have demonstrated their efficacy over KR counterparts. Among these models, R
emerged as the top performer, showcasing remarkable predictive accuracy with an R2 of 0.999 and an
exceptionally low RMSE of 0.0022. Despite achieving exceedingly high accuracy in predictions, there
remains ample potential for further exploration and refinement in this research domain. One avenue for
future investigation involves the implementation of hyperparameter optimization techniques to fine-tune
model parameters, thereby enhancing model stability and performance. Additionally, the exploration of
polynomial functions could offer valuable insights into the underlying relationships within the dataset,
potentially leading to further improvements in predictive accuracy. By continuing to refine and optimize
the ML-based QSPR model, researchers can advance our understanding of the thermal stability of Zn-MOF
compounds and facilitate the development of more precise predictive models with broader applicability in
materials science and related fields.
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