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 Investigating potential corrosion inhibitors via empirical research is 

a labor- and resource-intensive process. In this work, we evaluated 

various linear and non-linear algorithms as predictive models for 

corrosion inhibition efficiency (CIE) values using a machine 

learning (ML) paradigm based on the quantitative structure-property 

relationship (QSPR) model. In the quinoxaline compound dataset, 

our analysis showed that the XGBoost model performed the best 

predictor of other ensemble-based models. The coefficient of 

determination (R2), mean absolute percentage error (MAPE), and 

root mean squared error (RMSE) metrics were used to objectively 

assess this superiority. To sum up, our study offers a fresh viewpoint 

on the effectiveness of machine learning algorithms in determining 

the ability of organic compounds like quinoxaline to suppress 

corrosion on iron surfaces. 
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1. INTRODUCTION 
Inhibitor technology is a straightforward, practical, and economical way to control corrosion [1], [2]. 

One well-known and efficient method of preventing corrosion damage is to use inhibitors [3], [4]. The 

benefit of corrosion inhibitor chemicals is that they can prevent charge and mass transfer from occurring, 

forming a protective layer on the metal surface that shields the metal from corrosive environmental effects 

[5], [6], [7]. Typically, corrosion inhibitors function by creating a shield to prevent oxidation reactions that 

lead to corrosion on the metal surface [8], [9]. 

Because quinoxaline compounds can inhibit corrosion in a wide range of environments, they have 

drawn a lot of attention in the context of organic inhibitors. The inclusion of functional groups, double 

conjugate bonds, and aromatic rings in the molecular structure of quinoxaline-based corrosion inhibitors 

has been linked to their higher performance. Generally speaking, to determine the electrical and structural 

characteristics pertinent to inhibitory efficacy, researchers have used theoretical methods like quantum 

chemical analyses and atomic simulations [10], [11]. Furthermore, the inhibitor’s inhibitory mechanism has 

been explained by several investigations using the outcomes of theoretical computations such as density 

functional theory (DFT) and molecular simulations [12], [13]. 

Since there is a quantifiable association between a compound's structure and its molecular properties 

and activity, machine learning (ML) can be used to evaluate a compound's performance in inhibiting 

corrosion [14], [15]. Several algorithms, including ensemble methods, Bayesian approaches, decision trees, 

gradient boosting machines, deep learning neural networks, and clustering algorithms, have also been 
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employed and combined in attempts to create machine learning models to assess inhibitor performance 

[16], [17], [18], [19], [20], [21]. 

The main challenge in ML development is developing models that can provide accurate predictions so 

that the results can provide relevant information and describe the actual properties of the material being 

tested. Therefore, in this study, we tested the ML model consisting of the XGBoost model and an ensemble-

based model as validation in predicting the corrosion inhibition efficiency (CIE) value of quinoxaline 

derivative compound inhibitors. 

 

2. METHODS 

2.1. Dataset  

We used a published dataset of quinoxaline chemicals in this investigation [11]. There are forty 

quinoxaline molecules in the data set, with CIE values acting as dependent variables (targets) and quantum 

chemical parameters acting as independent variables (features) [25]. Total energy (TE), HOMO, LUMO, 

gap energy (ΔE), temperature, concentration, dipole moment (μ), ionization potential (IP), electron affinity 

(EA), electronegativity (χ), global softness (σ), global hardness (η), and fraction of electrons transferred 

(ΔN) are among the molecular properties that are utilized as features. 

 

2.2. ML Model 

Preprocessing is the earliest step in creating an ML model. Data normalization using the MinMax 

scaling technique is the first step in the preprocessing stage, which lowers sensitivity to certain features. 

The data is divided using the k-fold cross-validation approach as the following preprocessing step. By 

training the model repeatedly until it finds the lowest possible statistical error, this strategy was chosen to 

overcome bias and variation in the data [26], [27].  As a result, one fold serves as the test set in this study, 

while the remaining nine folds serve as the training set (k = 10). Although the exact value of the k-fold 

relies on the properties of the data being utilized, in general, k = 5 or k = 10 are employed [28], [29]. 

During the modeling phase, we assess and test the prediction performance of the XGBoost model 

against ensemble-based models including bagging (BAG), adaboost (ADA), and random forest (RF). 

Regression measures like mean absolute percentage error (MAPE), coefficient of determination (R2), and 

root mean square error (RMSE) are used to assess the effectiveness of prediction models. The optimal 

model has an R2 value that is near 1 and lower values for RMSE, MAPE, and R2 [30]. 

 

3. RESULT AND DISCUSSION 
The metrics R2, RMSE, and MAPE are commonly used to evaluate the performance of regression 

models. These metrics provide insights into different aspects of the model's predictive accuracy and are 

crucial for comparing different models. R2 measures the proportion of the variance in the dependent variable 

that is predictable from the independent variables. It ranges from 0 to 1, where 1 indicates a perfect fit. 

Higher R2 values imply better predictive performance. RMSE represents the square root of the average 

squared differences between predicted values and observed values. It provides a measure of the average 

magnitude of errors. Lower RMSE values indicate better predictive accuracy. MAPE measures the average 

absolute percentage difference between predicted and observed values. It is expressed as a percentage and 

lower values signify better predictive accuracy. In the context of the analysis provided, Table 1 presents 

the R2, RMSE, and MAPE values for different models, namely XGBoost, ADA, BAG, and RF. These 

values serve as quantitative measures of each model's performance.  

Based on the provided Table 1, showcases the prediction performances of different models using the 

metrics R2, RMSE, and MAPE. The R2 values indicate the proportion of variance in the dependent variable 

that is explained by the independent variables in each model. A higher R2 value suggests that the model 

captures more variance and therefore has better predictive power. In this case, the XGBoost model 

demonstrates the highest R2 value of 0.97, indicating that it explains approximately 97% of the variance in 

the data. ADA follows with 0.88, BAG with 0.86, and RF with 0.83. Thus, XGBoost outperforms the other 

models in terms of explaining the variance in the data. RMSE represents the square root of the average 

squared differences between predicted and observed values. Lower RMSE values indicate better model 

performance, as they suggest smaller prediction errors. In this case, the XGBoost model achieves the lowest 

RMSE of 2.48, followed by ADA with 2.65, BAG with 2.72, and RF with 3.01. This confirms that XGBoost 

has the smallest average prediction error among the models considered. MAPE measures the average 

absolute percentage difference between predicted and observed values. Similarly to RMSE, lower MAPE 

values indicate better predictive accuracy. The XGBoost model achieves the lowest MAPE of 2.87, 
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followed by ADA with 3.23, BAG with 3.56, and RF with 3.79. Again, this confirms that XGBoost yields 

smaller percentage errors on average compared to the other models. 

From the table, it is inferred that the XGBoost model outperforms ADA, BAG, and RF in terms of 

prediction accuracy across all assessment measures. XGBoost yields higher R2 values, lower RMSE values, 

and lower MAPE values compared to the other models. This implies that XGBoost captures more variance 

in the data, produces smaller prediction errors on average, and exhibits lower percentage errors in 

prediction. Additionally, Figure 1 visually supports these findings by illustrating the distribution of data 

points concerning the prediction lines of the models. The data points are closer to the prediction line of the 

XGBoost model compared to the other models, indicating a better fit and alignment with the actual data. 

The analysis reveals that XGBoost consistently outperforms ADA, BAG, and RF models across all 

evaluation metrics (R2, RMSE, and MAPE), indicating superior predictive performance. This reinforces the 

efficacy of XGBoost for the prediction task. 

 

Table 1. Model prediction performances 

Model R2 RMSE MAPE 

XGBoost 0.97 2.48 2.87 

ADA 0.88 2.65 3.23 

BAG 0.86 2.72 3.56 

RF 0.83 3.01 3.79 

 

 
(a) 

 

 
(b) 

Figure 1. Scatter plot of data point model prediction for (a) XGBoost and (b) ADA 

 

4. CONCLUSION 

By contrasting the XGBoost and ensemble-based models, the ML model's ability to predict the CIE 

value of quinoxaline compounds has been investigated. Based on the R2, MAPE, and RMSE measurements, 

it was determined that the XGBoost model was more accurate than the ADA, BAG, and RF models. With 

higher R2 values indicating better variance capture, lower RMSE values reflecting smaller prediction 

errors, and lower MAPE values denoting improved accuracy, XGBoost emerges as the superior model. 

This conclusion is further supported by visual inspection of the data distribution relative to model 

predictions, reaffirming XGBoost's better fit to the actual data. To help the industry create corrosion-

inhibiting materials, this research offers valuable insights into creating practical and efficient material 

exploration techniques. 
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