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 This study uses quantitative structure-property relationship (QSPR)-

based machine learning (ML) to examine the corrosion inhibition 

capabilities of benzimidazole compounds. The primary difficulty in 

ML development is creating a model with high precision so that the 

predictions are correct and pertinent to the material's actual attributes. 

We assess the comparison between the extra trees regressor (EXT) as 

an ensemble model and the decision tree regressor (DT) as a basic 

model. It was discovered that the EXT model had better predictive 

performance in predicting the corrosion inhibition performance of 

benzimidazole compounds based on the coefficient of determination 

(R2) and root mean square error (RMSE) metrics compared DT model. 

This method provides a fresh viewpoint on the capacity of ML models 

to forecast potent corrosion inhibitors. 
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1. INTRODUCTION 
Corrosion The process of material degradation or decay brought on by chemical reactions between 

metal and the environment, where a variety of corrosive chemicals exist, is known as corrosion [1], [2], [3]. 

Oxides, hydroxides, and metal salts are among the corrosion products that are created when oxygen in the air 

or other corrosive materials oxidize metals. This corrosion response can lower the material's service life, 

impair its quality and performance, and result in large financial losses [4], [5], [6]. The kind of metal involved, 

the corrosive environment (such as humidity, pH, temperature, concentration of corrosive chemicals), and 

other elements like mechanical stress or frictional wear are some of the variables that affect the pace of 

corrosion [7], [8], [9]. In addition, stress-induced corrosion, microorganism interaction (such as bacteria), and 

galvanic corrosion (contact between two distinct metals in the electrolyte) can all speed up the corrosion 

process [10], [11], [12]. Understanding corrosion mechanisms, creating corrosion control strategies, and 

assessing material performance in corrosive settings are all part of corrosion studies [7]. Many industries, 

including the oil and gas, chemical, automotive, and construction sectors, benefit greatly from controlling the 

corrosion process [13], [14], [15]. 

The chemical compound known as the benzimidazole compound (C₇H₆N₂) is made up of a heterocyclic 

ring including the main structures of imidazole (C₃H₃N₂) and benzene (C₆H₅). Benzimidazole compounds are 

employed in a variety of industries, such as materials chemistry, agrochemistry, and medicines. Research has 

revealed that their derivatives exhibit a wide range of molecular functions [16], [17], [18]. Chemical synthesis 

uses benzimidazole molecules as organic pigments, corrosion rate regulators, and catalysts. It takes a lot of 

money, time, and resources to research the application of benzimidazole as an experimental corrosion inhibitor 

[19], [20], [21].  
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Presently, it is possible to apply quantum mechanical methods in conjunction with technological 

advancements to expedite the design and search for novel materials. Machine learning (ML) techniques, such 

as grouping, classification, and the creation of predictive models from one of the topics, corrosion, are made 

possible by the study of artificial intelligence. Lately, the investigation of novel materials has made extensive 

use of ML techniques. This is because the quantitative structure-property relationship (QSPR) of a compound 

and its structure are related; so, an ML technique may be used to create the QSPR model and assess the 

effectiveness of corrosion inhibitor compounds [22], [23], [24]. 

In this work, we examined the ML model to predict benzimidazole compounds' corrosion inhibition 

efficiency (CIE). We compared the extra trees regressor (EXT) as an ensemble model and the decision tree 

regressor (DT) as a basic model. It is anticipated that the findings of this study may shed light on how to 

develop ML models for the creation of possible compounds that block corrosion, preventing corrosion damage 

to materials. 

 

2. METHODS 

2.1. Dataset  

A dataset is essential for carrying out research using ML. The dataset used in this work, which comprises 

20 benzimidazole compounds with 12 characteristics and 1 target, was acquired from published literature [24]. 

HOMO, LUMO, polarizability (α), total charge (Q), volume (V), ionization potential (I), electron affinity (A), 

electrophilicity (ω), transferred electron fraction (∆N), benzene aromatic index (ΛNICS(1)B), and imidazole 

aromatic index (ΛNICS(1)I) are among the molecular properties of the benzimidazole compound that are used 

as input features. The dependent variable, CIE, is the target in the interim [25], [26], [27]. 

 

2.2. ML Model 

The objective of this study was to compare EXT as an ensemble model and the DT as a basic model to 

determine the optimal model for benzimidazole compound CIE prediction. Before applying cross-validation 

(CV), data preprocessing is done to remove noise from the data and normalize (scale) it to prevent data 

sensitivity to particular features. The k-fold strategy was selected as a CV model to reduce statistical error by 

repeatedly training the model until bias and variation in the data were eliminated [28], [29]. We utilize k = 10, 

which designates one fold as the test set and the remaining nine as the training set. The data being used 

determines the appropriate k-fold value, however, values of k = 5 or k = 10 are frequently employed [30], [31].  

Regression metrics, such as root mean square error (RMSE) and coefficient of determination (R2), are 

used to assess the performance of the prediction model. The model with the highest R2 and the lowest values 

of RMSE, MAE, and MSE is the best one [32], [33]. 

 

3. RESULT AND DISCUSSION 
The performance of each model is measured by the R2 and RMSE values as denoted in Table 1. From 

Table 1, EXT shows superior prediction performance compared to DT based on the evaluation metrics used 

(R2 and RMSE). These results are also confirmed by the distribution of data points in Figure 1, where the 

distribution is closer to the prediction line for the EXT model than for the DT model. 

 

Table 1. Model prediction performance 

Model R2 RMSE 

Training Testing Training Testing 

EXT 0.97 0.68 0.23 1.76 

DT 0.93 0.51 0.45 2.20 
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(a) 

 

Figure 1. Scatter plot of data point model prediction for (a) EXT and (b) DT 

 

Analysis of the important features in Figure 2 shows that the descriptors total charge (Q) and ionization 

potential (I) respectively appear as the most influential features in determining the prediction results of the 

EXT model. Apart from that, it can also be seen that other features also show a positive correlation with the 

CIE target, this shows that there is a good correlation [32], [33] thus making the EXT model able to predict 

more accurately. 

 

 
Figure 2. Feature importance plot for EXT 

 

4. CONCLUSION 

Investigation of the ML model to predict the CIE value of benzimidazole compounds has been carried 

out by comparing the EXT and DT models. The EXT model was confirmed as a more accurate model than the 

DT model based on the R2 and RMSE metrics. This research provides important insights into developing 

effective and efficient material exploration methods so that they can be taken into consideration by the industry 

in designing corrosion inhibitor materials. 

 

REFERENCES 

[1] V.C. Anadebe, V.I. Chukwuike, S. Ramanathan, and R.C. Barik, Cerium-based metal organic 

framework (Ce-MOF) as corrosion inhibitor for API 5L X65 steel in CO2- saturated brine solution: 

XPS, DFT/MD-simulation, and machine learning model prediction, Process Safety and Environmental 

Protection, 168, 499–512 (2022), https://doi.org/10.1016/J.PSEP.2022.10.016. 

[2] M. Akrom, Investigation of natural extracts as green corrosion inhibitors in steel using density 

functional theory, Jurnal Teori dan Aplikasi Fisika, 10(1), 89-102 (2022), 

https://doi.org/10.23960%2Fjtaf.v10i1.2927. 

[3] M. Akrom, S. Rustad, A.G. Saputro, A. Ramelan, F. Fathurrahman, and H.K. Dipojono, A combination 

of machine learning model and density functional theory method to predict corrosion inhibition 

http://dx.doi.org/10.23960%2Fjtaf.v10i1.2927


A.N. Safitri et al.  Journal of Multiscale Materials Informatics 1(1), 2024, 16-21 

19 

 

performance of new diazine derivative compounds, Mater Today Commun, 35, 106402 (2023), 

https://doi.org/10.1016/J.MTCOMM.2023.106402. 

[4] H. Kumar and V. Yadav, Highly efficient and eco-friendly acid corrosion inhibitor for mild steel: 

Experimental and theoretical study, J Mol Liq, 335, (2021), 

https://doi.org/10.1016/j.molliq.2021.116220. 

[5] M. Akrom, DFT Investigation of Syzygium Aromaticum and Nicotiana Tabacum Extracts as Corrosion 

Inhibitor, Science Tech: Jurnal Ilmu Pengetahuan dan Teknologi, 8(1), 42-48 (2022), 

https://doi.org/10.30738/st.vol8.no1.a11775. 

[6] C. Verma, M.A. Quraishi, and E.E. Ebenso, Quinoline and its derivatives as corrosion inhibitors: A 

review, Surfaces and Interfaces, 21, 100634 (2020), https://doi.org/10.1016/J.SURFIN.2020.100634. 

[7] S.A. Haladu, N.D. Mu’azu, S.A. Ali, A.M. Elsharif, N.A. Odewunmi, and H.M.A. El-Lateef, Inhibition 

of mild steel corrosion in 1 M H2SO4 by a gemini surfactant 1,6-hexyldiyl-bis-

(dimethyldodecylammonium bromide): ANN, RSM predictive modeling, quantum chemical and MD 

simulation studies, J Mol Liq, 350, 118533 (2022), https://doi.org/10.1016/J.MOLLIQ.2022.118533. 

[8] M. Akrom and T. Sutojo, Investigasi Model Machine Learning Berbasis QSPR pada Inhibitor Korosi 

Pirimidin Investigation of QSPR-Based Machine Learning Models in Pyrimidine Corrosion Inhibitors, 

Eksergi, 20(2), 107-111 (2023), https://doi.org/10.31315/e.v20i2.9864.  

[9] F.E. Abeng and V.C. Anadebe, Combined electrochemical, DFT/MD-simulation and hybrid machine 

learning based on ANN-ANFIS models for prediction of doxorubicin drug as corrosion inhibitor for 

mild steel in 0.5 M H2SO4 solution, Comput Theor Chem, 1229, 114334 (2023), 

https://doi.org/10.1016/J.COMPTC.2023.114334. 

[10] M. Akrom, S. Rustad, and H.K. Dipojono, A machine learning approach to predict the efficiency of 

corrosion inhibition by natural product-based organic inhibitors, Phys Scr, 99,(3), 036006 (2024), 

https://doi.org/10.1088/1402-4896/ad28a9. 

[11] T.W. Quadri, L.O. Olasunkanmi, O.E. Fayemi, H. Lgaz, O. Dagdag, E.M. Sherif, A.A. Alrashdi, E.D. 

Akpan, H. Lee, and E.E. Ebenso, Computational insights into quinoxaline-based corrosion inhibitors 

of steel in HCl: Quantum chemical analysis and QSPR-ANN studies, Arabian Journal of Chemistry, 

15(7), 103870 (2022), https://doi.org/10.1016/J.ARABJC.2022.103870. 

[12] R.L. Camacho-Mendoza, L. Feria, L.Á. Zárate-Hernández, J.G. Alvarado-Rodríguez, and J. Cruz-

Borbolla, New QSPR model for prediction of corrosion inhibition using conceptual density functional 

theory, J Mol Model, 28(8), (2022), https://doi.org/10.1007/s00894-022-05240-6. 

[13] H. Lachhab, N. Benzbiria, A. Titi, S. Echihi, M.E. Belghiti, Y. Karzazi, A. Zarrouk, R. Touzani, C. 

Jama, and F. Bentiss, Detailed experimental performance of two new pyrimidine-pyrazole derivatives 

as corrosion inhibitors for mild steel in HCl media combined with DFT/MDs simulations of bond 

breaking upon adsorption, Colloids Surf A Physicochem Eng Asp, 680, 132649 (2024), 

https://doi.org/10.1016/j.colsurfa.2023.132649. 

[14] M. Boudalia, R.M. Fernández-Domene, L. Guo, S. Echihi, M.E. Belghiti, A. Zarrouk, A. Bellaouchou, 

A. Guenbour, and J. García-Antón, Experimental and Theoretical Tests on the Corrosion Protection of 

Mild Steel in Hydrochloric Acid Environment by the Use of Pyrazole Derivative, Materials, 16(2), 

(2023), https://doi.org/10.3390/ma16020678. 

[15] M. Akrom, S. Rustad, and H.K. Dipojono, Machine learning investigation to predict corrosion 

inhibition capacity of new amino acid compounds as corrosion inhibitors, Results Chem, 6, 101126 

(2023), https://doi.org/10.1016/J.RECHEM.2023.101126. 

[16] L.B. Coelho, D. Zhang, Y.V. Ingelgem, D. Steckelmacher, A. Nowé, and H. Terryn, Reviewing 

machine learning of corrosion prediction in a data-oriented perspective, npj Materials Degradation, 

6(1), (2022), https://doi.org/10.1038/s41529-022-00218-4. 

[17] T.W. Quadri, L.O. Olasunkanmi, O.E. Fayemi, E.D. Akpan, H. Lee, H. Lgaz, C. Verma, L. Guo, S. 

Kaya, and E.E. Ebenso, Multilayer perceptron neural network-based QSAR models for the assessment 

https://doi.org/10.1016/J.MTCOMM.2023.106402
https://jurnal.ustjogja.ac.id/index.php/sciencetech/article/view/11775
https://jurnal.ustjogja.ac.id/index.php/sciencetech/article/view/11775
https://doi.org/10.30738/st.vol8.no1.a11775
https://doi.org/10.31315/e.v20i2.9864


A.N. Safitri et al.  Journal of Multiscale Materials Informatics 1(1), 2024, 16-21 

20 

 

and prediction of corrosion inhibition performances of ionic liquids, Comput Mater Sci, 214, (2022), 

https://doi.org/10.1016/j.commatsci.2022.111753. 

[18] M. Akrom, S. Rustad, A.G. Saputro, and H.K. Dipojono, Data-driven investigation to model the 

corrosion inhibition efficiency of Pyrimidine-Pyrazole hybrid corrosion inhibitors, Comput Theor 

Chem, 1229, 114307 (2023), https://doi.org/10.1016/J.COMPTC.2023.114307. 

[19] M. Akrom, S. Rustad, and H.K. Dipojono, Prediction of Anti-Corrosion performance of new triazole 

derivatives via Machine learning, Comp and Theoretical Chem, 1236, 114599 (2024), 

https://doi.org/10.1016/j.comptc.2024.114599. 

[20] C.T. Ser, P. Žuvela, and M.W. Wong, Prediction of corrosion inhibition efficiency of pyridines and 

quinolines on an iron surface using machine learning-powered quantitative structure-property 

relationships, Appl Surf Sci, 512, 145612 (2020), https://doi.org/10.1016/J.APSUSC.2020.145612. 

[21] T.W. Quadri, L.O. Olasunkanmi, E.D. Akpan, O.E. Fayemi, H. Lee, H. Lgaz, C. Verma, L. Guo, S. 

Kaya, and E.E. Ebenso, Development of QSAR-based (MLR/ANN) predictive models for effective 

design of pyridazine corrosion inhibitors, Mater Today Commun, 30, 103163 (2022), 

https://doi.org/10.1016/J.MTCOMM.2022.103163. 

[22] C. Beltran-Perez, A.A.A. Serrano, G. Solís-Rosas, A. Martínez-Jiménez, R. Orozco-Cruz, A. Espinoza-

Vázquez, and A. Miralrio,  A General Use QSAR-ARX Model to Predict the Corrosion Inhibition 

Efficiency of Drugs in Terms of Quantum Mechanical Descriptors and Experimental Comparison for 

Lidocaine, Int J Mol Sci, 23(9), (2022), https://doi.org/10.3390/ijms23095086. 

[23] M. Akrom, S. Rustad, and H.K. Dipojono, Variational quantum circuit-based quantum machine 

learning approach for predicting corrosion inhibition efficiency of pyridine-quinoline compounds, 

Mater Today Quantum, (2024), https://doi.org/10.1016/j.mtquan.2024.100007. 

[24] L. Li et al., “The discussion of descriptors for the QSAR model and molecular dynamics simulation of 

benzimidazole derivatives as corrosion inhibitors,” Corrosion Science, vol. 99, p. 76–88, Oct 2015, doi: 

10.1016/j.corsci.2015.06.003. 

[25] M. Akrom, T. Sutojo, A. Pertiwi, S. Rustad, and H.K. Dipojono, Investigation of Best QSPR-Based 

Machine Learning Model to Predict Corrosion Inhibition Performance of Pyridine-Quinoline 

Compounds, J Phys Conf Ser, 2673 (1), 012014 (2023), https://doi.org/10.1088/1742-

6596/2673/1/012014. 

[26] S. Budi, M. Akrom, H. Al Azies, U. Sudibyo, T. Sutojo, G.A. Trisnapradika, A.N. Safitri, A. Pertiwi, 

and S. Rustad, Implementation of Polynomial Functions to Improve the Accuracy of Machine Learning 

Models in Predicting the Corrosion Inhibition Efficiency of Pyridine-Quinoline Compounds as 

Corrosion Inhibitors, KnE Engineering, 78-87 (2024), https://doi.org/10.18502/keg.v6i1.15351. 

[27] M. Akrom, A.G. Saputro, A.L. Maulana, A. Ramelan, A. Nuruddin, S. Rustad, and H.K. Dipojono, 

“DFT and microkinetic investigation of oxygen reduction reaction on corrosion inhibition mechanism 

of iron surface by Syzygium Aromaticum extract, Appl Surf Sci, 615, 156319 (2023), 

https://doi.org/10.1016/j.apsusc.2022.156319. 

[28] T.W. Quadri, L.O. Olasunkanmi, O.E. Fayemi, H. Lgaz, O. Dagdag, E.M. Sherif, E.D. Akpan, H. Lee, 

and E.E. Ebenso, Predicting protection capacities of pyrimidine-based corrosion inhibitors for mild 

steel/HCl interface using linear and nonlinear QSPR models, J Mol Model, 28, (2022), 

https://doi.org/10.1007/s00894-022-05245-1. 

[29] N. Arrousse, R. Salim, Y. Kaddouri, A. Zarrouk, D. Zahri, F. El Hajjaji, R. Touzani, M. Taleb, and S. 

Jodeh, The inhibition behavior of two pyrimidine-pyrazole derivatives against corrosion in hydrochloric 

solution: Experimental, surface analysis and in silico approach studies, Arabian Journal of Chemistry, 

13(7), 5949–5965 (2020), https://doi.org/10.1016/j.arabjc.2020.04.030.  

[30] W. Herowati, W.A.E. Prabowo, M. Akrom, T. Sutojo, N.A. Setiyanto, A.W. Kurniawan, N.N. Hidayat, 

and S. Rustad, Prediction of Corrosion Inhibition Efficiency Based on Machine Learning for Pyrimidine 

Compounds: A Comparative Study of Linear and Non-linear Algorithms, KnE Engineering, 68-77 

(2024), https://doi.org/10.18502/keg.v6i1.15350. 

https://www.sciencedirect.com/science/article/pii/S2210271X24001385
https://www.sciencedirect.com/science/article/pii/S2210271X24001385
https://doi.org/10.1016/j.comptc.2024.114599
https://doi.org/10.1016/j.mtquan.2024.100007


A.N. Safitri et al.  Journal of Multiscale Materials Informatics 1(1), 2024, 16-21 

21 

 

[31] M. Akrom, S. Rustad, A.G. Saputro, A. Ramelan, F. Fathurrahman, and H.K. Dipojono, A combination 

of machine learning model and density functional theory method to predict corrosion inhibition 

performance of new diazine derivative compounds, Mater Today Commun, 35, 106402 (2023), 

https://doi.org/10.1016/J.MTCOMM.2023.106402. 

[32] M. Akrom, S. Rustad, and H.K. Dipojono, Development of quantum machine learning to evaluate the 

corrosion inhibition capability of pyrimidine compounds, Mater Today Comm, 39, 108758 (2024), 

https://doi.org/10.1016/j.mtcomm.2024.108758. 

[33] M. Akrom, S. Rustad, and H.K. Dipojono, SMILES-based machine learning enables the prediction 

of corrosion inhibition capacity, MRS Comm, (2024), https://doi.org/10.1557/s43579-024-00551-

6. 

 

https://doi.org/10.1016/J.MTCOMM.2023.106402
https://doi.org/10.1016/j.mtcomm.2024.108758
https://doi.org/10.1557/s43579-024-00551-6
https://doi.org/10.1557/s43579-024-00551-6

