Journal of Computing Theories and Applications https://publikasi.dinus.ac.id/jcta <div style="border: 3px #086338 Dashed; padding: 10px; background-color: #ffffff; text-align: left;"> <ol> <li><strong>Journal Title </strong>: Journal of Computing Theories and Applications</li> <li><strong>Online ISSN </strong>: <a href="https://portal.issn.org/resource/ISSN/3024-9104">3024-9104</a> </li> <li><strong>Frequency </strong>: Quarterly (February, May, August, and November) </li> <li><strong>DOI Prefix</strong>: 10.62411/jcta</li> <li><strong>Publisher </strong>: Universitas Dian Nuswantoro</li> </ol> </div> <div id="focusAndScope"> <p><strong data-start="133" data-end="190">Journal of Computing Theories and Applications (JCTA)</strong> is a peer-reviewed international journal that covers all aspects of foundations, theories, and practical applications in computer science. All accepted articles are published online, assigned a <strong data-start="527" data-end="547">DOI via Crossref</strong>, and made <strong data-start="558" data-end="593" data-is-only-node="">freely accessible (Open Access)</strong>. The journal follows a <strong>rapid peer-review</strong> process, with the first decision typically provided within two to four weeks. JCTA welcomes original research papers in, but not limited to:</p> <p>Artificial Intelligence<br />Big Data<br />Bioinformatics<br />Biometrics<br />Cloud Computing<br />Computer Graphics<br />Computer Vision<br />Cryptography<br />Data Mining<br />Fuzzy Systems<br />Game Technology<br />Image Processing<br />Information Security<br />Internet of Things<br />Intelligent Systems<br />Machine Learning<br />Mobile Computing<br />Multimedia Technology<br />Natural Language Processing<br />Network Security<br />Pattern Recognition<br />Quantum Informatics<br />Signal Processing<br />Soft Computing<br />Speech Processing</p> <p><br />Special emphasis is given to recent trends related to cutting-edge research within the domain.</p> </div> <div id="peerReviewProcess"> </div> <div id="sponsors"> <p> </p> </div> en-US editorial.jcta@dinus.id (JTCA Editorial) editorial.jcta@gmail.com (JTCA Editorial Support Team) Sat, 28 Feb 2026 00:00:00 +0000 OJS 3.2.1.4 http://blogs.law.harvard.edu/tech/rss 60 The Llama–ARCS Adaptive Learning framework: AI–VR Integration System for Real-Time Motivational Feedback in Higher Education https://publikasi.dinus.ac.id/jcta/article/view/15031 <p>This study developed and evaluated an AI-integrated Virtual Reality (VR) system designed to enhance personalized learning in higher education. While VR improves engagement, existing systems often lack adaptivity or experience high latency during AI interactions. To address these limitations, this research introduces a novel integration of a cache-optimized Llama 2 Large Language Model (LLM) that delivers real-time, motivationally grounded feedback. The system was implemented using Unity 3D and validated with 50 undergraduate students. Technical validation showed that the cache layer reduced interaction latency from 17.7 ms to 14.2 ms and maintained zero system crashes throughout the pilot. Learner motivation was assessed using Keller’s ARCS model, yielding mean scores ranging from 4.08 to 4.69 across all dimensions. Independent t-tests (p &gt; 0.05) and negligible effect sizes (Cohen’s d &lt; 0.2) revealed no significant difference between technical (ICT) and non-technical (Physics) students. These findings confirm that the proposed system effectively bridges technological and motivational gaps, providing a robust model for adaptive, immersive education.</p> Abraham Eseoghene Evwiekpaefe, Darius Tienhus Chinyio, Loreta Katok Tohomdet Copyright (c) 2025 Abraham Eseoghene Evwiekpaefe, Darius Tienhus Chinyio, Loreta Katok Tohomdet https://creativecommons.org/licenses/by/4.0 https://publikasi.dinus.ac.id/jcta/article/view/15031 Sun, 14 Dec 2025 00:00:00 +0000