

Journal of Computing Theories and Applications ISSN:3024-9104

DOI : 10.62411/jcta.9929 publikasi.dinus.ac.id/index.php/jcta/

Research Article

Exploring DQN-Based Reinforcement Learning in
Autonomous Highway Navigation Performance Under High-
Traffic Conditions

Sandy Nugroho1, De Rosal Ignatius Moses Setiadi1,*, and Hussain Md Mehedul Islam2

1 Faculty of Computer Science, Dian Nuswatoro University, Semarang, Indonesia;
e-mail: sandynugroho214@gmail.com, moses@dsn.dinus.ac.id

2 Software Engineer, The Mathworks, Inc., United States; e-mail: mehadi.cuet@gmail.com
* Corresponding Author : De Rosal Ignatius Moses Setiadi

Abstract: Driving in a straight line is one of the fundamental tasks for autonomous vehicles, but it can

become complex and challenging, especially when dealing with high-speed highways and dense traffic

conditions. This research aims to explore the Deep-Q Networking (DQN) model, which is one of the

reinforcement learning (RL) methods, in a highway environment. DQN was chosen due to its profi-

ciency in handling complex data through integrated neural network approximations, making it capable

of addressing high-complexity environments. DQN simulations were conducted across four scenarios,

allowing the agent to operate at speeds ranging from 60 to nearly 100 km/h. The simulations featured

a variable number of vehicles/obstacles, ranging from 20 to 80, and each simulation had a duration of

40 seconds within the Highway-Env simulator. Based on the test results, the DQN method exhibited

excellent performance, achieving the highest reward value in the first scenario, 35.6117 out of a maxi-

mum of 40, and a success rate of 90.075%.

Keywords: Autonomous Highway Navigation; Autonomous Vehicle Navigation; Crowded Traffic

Autonomous; Deep-Q Networking; Reinforcement Learning.

1. Introduction

Autonomous vehicles, commonly referred to as self-driving cars, represent a concept in
which vehicles can operate without human intervention. Incorporating this technology into
cars and other small vehicles can potentially reduce accident rates, energy consumption, and
pollution levels. According to data presented by the World Health Organization (WHO) in
December 2023[1], approximately 1.19 million people die each year due to accidents, with
human error being a major contributing factor. The implementation of autonomy is believed
to potentially reduce accident rates by up to 90% if properly executed[2]. The Society of
Automotive Engineers (SAE) International has designed a classification system for autono-
mous vehicles consisting of six levels, with Level 0 denoting vehicles without automation
systems, requiring human control, and Level 5 representing the highest level where vehicles
can operate autonomously without human intervention and perform critical safety tasks ac-
curately. At Level 4, vehicles are expected to perform all driving tasks and monitor the driving
environment under specific conditions, eliminating the need for drivers to pay attention.

The driving tasks that autonomous vehicles must perform include various basic maneu-
vers such as straight-line driving, overtaking, lane changing, and entering lanes[3]. These tasks
are relatively easier to execute in light traffic and at low speeds. However, special handling is
required when implemented on highways with high relative speeds. In the past decade, rein-
forcement learning (RL) has emerged as a favored method for solving problems in various
domains, including video games, robotics, and intelligent transportation systems[4]. RL is an
approach in which artificial intelligence, known as an agent, operates in an environment,
whether known or unknown, to adapt and learn based on the points provided[5]. These
points can be positive, such as rewards, or negative, such as punishments. The agent decides
its actions by considering the values it can obtain. The concept of rewards can be used as a

Received: January, 11th 2024

Revised: February, 12th 2024

Accepted: February, 13th 2024

Published: February, 13th 2024

Copyright: © 2024 by the authors.

Submitted for possible open access

publication under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/licen

ses/by/4.0/).

https://publikasi.dinus.ac.id/index.php/jcta/index
http://dx.doi.org/10.62411/jcta.9929
https://publikasi.dinus.ac.id/index.php/jcta/index
mailto:sandynugroho214@gmail.com
mailto:moses@dsn.dinus.ac.id
mailto:mehadi.cuet@gmail.com

Journal of Computing Theories and Applications 2024(February), vol. 1, no. 3, Nugroho, et al. 275

performance assessment benchmark in reinforcement learning because higher reward values
are directly proportional to the model's performance when executing a task[6].

RL can be a solution for addressing behavioral planning in the context of autonomous
driving, where much of it relies on hard-coded rules like Finite State Machines[7]. Thus, agents
in autonomous driving vehicles have very limited options and are confined to specific situa-
tions. Research in the field of autonomous vehicles is divided into several subcategories that
align with the steps and conditions experienced by the agent, including intersection condi-
tions[8], trajectory calculations[9], lane merging[10], and straight-line driving[11]. This re-
search primarily focuses on straight-line driving because it is a fundamental driving maneuver
commonly encountered on highways. Additionally, performance during high-traffic situations
is also analyzed.

Methods commonly used in the RL domain are divided into two categories: model-free
reinforcement learning (MFRL), including Deep-Q Networking (DQN), Soft Actor-Critic
(SAC)[10] and Deep Reinforcement Learning (DRL) [12] and model-based reinforcement
learning (MBRL), including Dyna-style Algorithm[13] and Model Predictive Control
(MPC)[14]. MBRL is a model in which a cognitive map or model of the environment is
formed, which describes how different "states" in the environment are connected to each
other so that it can calculate the value that will be obtained from all the available steps[15].
However, MBRL is susceptible to errors if the provided environment is not well-structured.
On the other hand, MFRL is a model that directly learns action values through trial and error,
without explicitly constructing a model of the environment, and thus lacks explicit estimates
of the probabilities governing state transitions[16]. Models can handle complex environments
and adapt to different situations using these methods.

This research will employ the MFRL method with the DQN model. The choice of the
DQN model as the primary approach in this research is based on careful consideration of
various methods in the field of reinforcement learning. The first consideration is the ad-
vantage of DQN in performing calculations using an experience replay mechanism. This fea-
ture allows the model to reuse past experiences, enhancing learning efficiency and stability.
In this regard, DQN outperforms some other MFRL methods that may be less efficient in
utilizing prior experiences. Additionally, DQN has an advantage in processing complex data
through integrated neural network approximations within the model. This enables DQN to
handle environments with high levels of complexity, which may be challenging for some other
MFRL methods[17]. However, it is acknowledged that there are weaknesses in previous meth-
ods, such as SAC, which may not be as efficient as DQN in utilizing prior experiences, and
MBRL, which is prone to errors if the environment is not well-structured. In summary, this
research contributes to analyzing the performance and simulation of the DQN model in the
Highway-Env simulator environment [24], ranging from light to heavy traffic, to determine
the maximum performance achievable by DQN.

2. Literature Review

2.1 Related Works

Several related studies were also reviewed before finalizing the research design. In a study
[18], three models, named Policy Gradient (PG) models, Advantage Actor-Critic (A2C), and
Dueling DQN (DDQN), were employed and compared for their performance. These models
were trained using video feeds with RCNN under three conditions: straight roads during day-
light, curved roads during daylight, and curved roads at night. The rewards were based on the
model's ability to detect lanes and obstacles in the videos. Notably, these models were de-
signed to replicate driving behavior and maneuvers using videos and The Open Racing Car
Simulator (TORCS) environment, with a total of 1500 training episodes.

In another study [19], the DDQN model underwent modifications incorporating addi-
tional reward algorithms to regulate optimal actions. This model was trained in the Highway-
Env environment with three lanes, where the model predominantly used the leftmost lane.
The model received a reward of 0.8 for each step, and the training included 2000 episodes.
Furthermore, this study quantified the model's maximum speed and distance traveled before
potential collisions with other vehicles, demonstrating speeds of up to 36 m/s and covering
distances of up to 3000 meters.

https://publikasi.dinus.ac.id/index.php/jcta/issue/view/374

Journal of Computing Theories and Applications 2024(February), vol. 1, no. 3, Nugroho, et al. 276

In a distinct study [20], the Deep Deterministic Policy Gradient (DDPG) algorithm was
utilized with modified reward functions to attain an optimal reward value of 6000. The train-
ing consisted of 2000 episodes, and the model was subject to speed limits ranging from 17-
40 m/s and acceleration limits of -2 to 2 m/s2. The environment used was IPG CarMaker,
and each training episode lasted for 5 minutes or until a collision occurred. The model also
had an additional safety cage algorithm to control braking levels.

In a separate study [21], the Proximal Policy Optimization (PPO) algorithm was used
with the AutomotiveDrivingModels environment. The study encompassed scenarios with ve-
hicle quantities ranging from 1 to 100, with desired speeds maintained between 2 and 5 m/s.
The reward value reached 120, with a timestep of 1,000,000 steps. Reward measurements
included evaluating lane changes and the model's capability to change lanes behind other ve-
hicles within specified time frames. In addition to reward-based evaluations, the study used a
success rate criterion, where the model had to change lanes within a designated time and
remain in that lane for at least 5 seconds without colliding.

Most of the studies mentioned above-utilized models falling under the MFRL category,
but the testing was primarily based on the models' ability to achieve predefined rewards. How-
ever, MFRL offers other advantages, such as adaptation to changing conditions. This research
employs the DQN model within the MFRL category, and the evaluation is based on the re-
wards obtained and the model's adaptability to various levels of traffic density.

2.2. Deep-Q Networking (DQN)

The Deep Q-Network (DQN) is a prominent MFRL algorithm that combines the Q-
learning algorithm with deep neural networks [22]. DQN possesses essential features like ex-
perience replay and deep learning (DL). Experience replay involves the storage of an agent's
experiences within a designated memory, enabling the reuse of these experience samples dur-
ing training. This approach seeks to minimize the dependence on sequential experiences and
enhance the efficiency of training data utilization. The aspect of DL is found in the Deep
Neural Network (DNN), serving as an approximator for action-value functions.

Consequently, DQN can model complex relationships between states and Q-values, ef-
fectively addressing more intricate problems. In the domain of reinforcement learning, the
concept of reward is a feedback value to the agent as an evaluation when making deci-
sions[23]. Rewards are provided when the agent or model takes a specific action or step in a
task. In this case, rewards are given when the agent can pass other vehicles and maintain the
speed limit. Typically, rewards can be defined using the Equation (1).

𝑟𝑡 = 𝑅(𝑠, 𝑎, 𝑠′) (1)

Where 𝑟𝑡 represents the reward value obtained at each timestep, 𝑠 and 𝑠′ denotes the

state in the environment, and 𝑎 represents the action chosen by the agent. The transition

involves the action that leads to a transition from the initial state (𝑠) to the next state (𝑠′).

3. Proposed Method

This research aims to test the performance of the DQN model in a case study of straight
roads on highways, and Figure 1 shows the research stages that will be carried out in this
research. The research object used is the Highway-Env environment[24]. Next, arrangements
were made for an environment with three-lane roads with the dominant lane on the right.
Then, the duration is 40 seconds for each episode, and as obstacles, 20-80 vehicles are used,
which will then be rendered simultaneously.

3.1. Model and Environment Preparation

At this stage, the first step is to set up the environment so that it can be understood and
studied by the DQN agent. This setting involves two main aspects, namely the form of ob-
servation that the model uses and the action space available for the model. This observation

takes the form of kinematics arranged in the form of a 2-dimensional array with size 𝑉 × 𝐹.

Here, 𝑉 refers to the number of vehicles observed, while 𝐹 represents the number of fea-
tures or attributes observed on each vehicle. To provide a clearer illustration, refer to Table
1.

https://publikasi.dinus.ac.id/index.php/jcta/issue/view/374

Journal of Computing Theories and Applications 2024(February), vol. 1, no. 3, Nugroho, et al. 277

Figure 1. Research stages

Table 1. Examples of Agent Observations in the Environment.

Vehicle Position 𝑿(𝒙) Position 𝒀(𝒚) Velocity 𝑿(𝒗𝒙) Velocity 𝒀(𝒗𝒚)

Ego-vehicle 6.0 5.0 14.0 0

Vehicle 1 -11.0 5.0 12.0 0

Vehicle 2 12.0 7.0 11.5 0

Table 1 illustrates the kinematic observations used by the agent, formatted as a 2-dimen-

sional array with dimensions 𝑉 × 𝐹. The observations include positions and velocities of ve-
hicles within the simulation environment, with 'Ego-vehicle' indicating the vehicle is directly
controlled by the agent. Where position 𝑋(𝑥) and 𝑌(𝑦) are the vehicle position based on

the x-axis and y-axis, respectively. Velocity 𝑋(𝑣𝑥) and 𝑌(𝑣𝑦) is the vehicle velocity along

the x-axis and y-axis, respectively. Ego-vehicle refers to a vehicle controlled by an agent.
Action space is an array consisting of a collection of actions that agents provided by the

environment can take. Several action space options are available in a selected environment,
such as continuous actions and discrete meta-actions. Continuous action encompasses the
agent's ability to adjust steering angle and throttle control. However, these continuous action
space options are deemed less optimal due to the limited control over crucial actions such as
braking and maintaining speed. On the other hand, discrete meta-actions present a predefined
set of actions for the agent to select from, including changing lanes to the left, changing lanes
to the right, idling, increasing speed, and reducing speed. For this research, the discrete meta-
action in the form of action space will be used primarily due to its advantages in facilitating
rapid decision-making and expediting training processes [25].

Moreover, adjustments can be applied within the reward section, commonly referred to
as reward shaping, The aim is to influence the agent's behavior, specifically in aspects such as
the agent's intensity in overtaking and the agent's speed limit. Some common reward-shaping
parameters are:
• 'collision reward': This parameter penalizes the agent with a negative reward in the event

of collisions, thus incentivizing collision avoidance.
• 'right lane reward': This reward assigns a reward value to the agent when it chooses to

move to the right lane. This parameter is particularly relevant in the context of highways,
where the right lane is often used for overtaking other vehicles and typically maintains
higher speeds.

• 'high-speed reward': This reward is intended to motivate the agent to use high-speed
following the specified speed limit. The agent receives a positive reward when maintain-
ing or exceeding the desired speed limit.

• 'lane change reward': This parameter incentivizes the agent to execute lane changes judi-
ciously by providing a reward when the agent performs such maneuvers to overtake
other vehicles.

Evaluating

Model evaluation with congestion level parameter

Training

tuning hyperparameter

Preprocessing Data

Set Up Environment Preparing Model

https://publikasi.dinus.ac.id/index.php/jcta/issue/view/374

Journal of Computing Theories and Applications 2024(February), vol. 1, no. 3, Nugroho, et al. 278

• 'reward speed range': This reward sets the minimum and maximum speed limits allowed
for the agent. The agent should strive to adhere to these speed limits, and rewards will
be given if the agent stays within the desired speed range.

3.2. Model Training

The model used in this research is DQN based on MFRL. DQN incorporates several
techniques to stabilize training with neural networks, such as replay buffers, target networks,
and gradient cutting. Given its support for box-shaped observations and discrete-shaped ac-
tions, DQN aligns well with the selected environment.. Figure 2 shows the structure of rein-
forcement learning, namely the relationship between the agent and the environment. The
agent will provide an action for each state the agent receives from the environment. The
action given by the agent will be assessed, and the agent will be given feedback in the form
of a reward as an evaluation value for the action chosen.

Figure 2. This Reinforcement Learning System Framework

Then hyperparameter tuning is carried out on the model, some of the hyperparameters
that are set include:
• ‘MlpPolicy’ : Policy is a rule that guides agents to make decisions within a given environ-

ment. In the realm of reinforcement learning, policies are divided based on the type of
observation environment, including MLPpolicy and CNNpolicy. MLPpolicy will be used
in this research because it uses box type observations. MLP (multi-layer perceptron) is

represented as a function that is useful for mapping state(𝑠) to probability distribu-

tions(𝑎) of actions taken by the agent. Using a deterministic policy, agents can choose
certain actions without requiring probability calculations. So, the agent can provide op-
timal value in selecting actions.

• ‘net_arch’: This is an additional parameter in the DQN algorithm that functions to create
a neural network that resembles deep learning.

• ‘Buffer_size’: This parameter sets the size of the replay buffer or the stored agent expe-
rience. Agents can use these saved experiences to speed up the training process. At the
beginning of training, the 'learning_starts' parameter is trying various exploratory actions
to understand the environment and provide experience to the replay buffer. So, the
model does not experience stabilization problems and lacks experience data.

• ‘batch_size’: The batch size represents the number of data samples used in one training
iteration, so it can speed up the training process.

• ‘gamma’: gamma is a parameter that determines the value for the discount factor. The
discount factor functions to determine how important rewards obtained in the future
are compared to rewards obtained now. Calculations are carried out using Equation (2).

Q(𝑠, 𝑎) = R + γ ⋅ max𝑎′Q(𝑠′, 𝑎′) (2)

Where

Q(𝑠, 𝑎): Q values for state (𝑠) and action (𝑎).

𝑅: reward received after taking action 𝑎 in state 𝑠.

γ: Discount factor measures the degree to which an agent considers future rewards. γ
ranges from 0 to 1, where 0 means the agent only considers current rewards, while one
means the agent fully considers future rewards.

Agent Environment

Action

State

reward

https://publikasi.dinus.ac.id/index.php/jcta/issue/view/374

Journal of Computing Theories and Applications 2024(February), vol. 1, no. 3, Nugroho, et al. 279

max𝑎′Q(𝑠′, 𝑎′): The maximum Q value for the next state (𝑠′) and all possible actions

(𝑎′). It describes the best-expected value that the agent can achieve in the next state.

3.3. Model Evaluation

The trained model was evaluated using the random sampling method. Evaluation criteria
included the model's ability to accumulate reward value and its endurance within the environ-
ment. Rewards served as the primary metric for assessing model performance. Testing is car-
ried out using the following parameters:
• ‘n_eval_episodes’: This parameter specifies the number of episodes for evaluation. The

assessment was iterated across multiple runs to reduce bias. ‘return_episode_rewards’:
This parameter sets the function to display a list of rewards obtained during the ongoing
evaluation and the time the agent can survive the evaluation.

• ‘Deterministic’: This parameter sets the agent to map each state (𝑠) directly into action

(𝑎) without using randomness calculation elements. This ensured that, under specific
circumstances, the agent's actions remained consistent. The use of deterministic is in-
tended if the task requires the agent to take actions with high precision.
The obtained reward value is calculated using Equation (3).

R(𝑠, 𝑎) = 𝑎
𝑣 − 𝑣min

𝑣max − 𝑣min

− 𝑏 collision (1)

Where 𝑣 , 𝑣max , 𝑣min which is agent speed, minimum agent speed, and maximum

agent speed, respectively; 𝑎 and 𝑏 represent the coefficients of the amount of reward given
when the environment is set.

In addition to the parameters mentioned, the assessment involves extracting the 'info'
variable at every step the agent executes. Within the 'info' variable, q_values for each action
are available, guiding the agent's decision-making process by prioritizing actions with the
highest q_values. Furthermore, the 'info' variable encompasses the reward value assigned to
the agent for each step, including rewards for collisions, adherence to a prioritized path,
speed-related achievements, and maintaining lane position.

4. Results and Discussion

4.1. Preprocessing Environment

In the preprocessing stage, the environmental configuration is tailored to replicate high-
way conditions, particularly those characterized by high-density traffic as found in Indonesia.
Furthermore, reward-shaping adjustments are also applied to regulate the model's behavior
during training. Table 2 presents the configuration implemented in the environment.

Table 2. Environment Configuration.

Parameter Value Description

Action type DiscreteMetaAction Type of action to be used by the model

target_speeds [11,19,27] (m/s) Speed limits to be used by the agent

Lanes count 3 Number of lanes in the environment

Duration 40 (seconds) Duration of one iteration of the environment

Vehicle count 20 until 80 Number of vehicles to be used as observations

Vehicle density 1 Number of vehicles generated as other vehicles
based on the vehicle count parameter

Collision reward -1 Reward obtained by the agent if it collides

Right lane reward 0.1 Reward obtained by the agent when it is in the
right lane

High-speed reward 0.3 Reward is obtained when the agent is at the speci-
fied speed

Lane change reward 0.2 Reward obtained when the agent changes lanes

Reward speed range [16, 27] (m/s) Specified speed range that the agent must achieve

https://publikasi.dinus.ac.id/index.php/jcta/issue/view/374

Journal of Computing Theories and Applications 2024(February), vol. 1, no. 3, Nugroho, et al. 280

In the action type parameter, the actions used are discrete in the form of an array con-
taining a list of actions that the model will learn. This environment has five actions in one
array, namely [idle, increase speed, decrease speed, turn left, turn right]. The model selects its
actions from this array. In a simulation lasting 40 seconds that incorporates 40 vehicles across
three lanes, the traffic density effectively translates to a 'vehicle density' of 1, considering the
multi-lane setup. This configuration aims to simulate realistic traffic conditions by evenly dis-
tributing the vehicles across the available lanes, as illustrated in Figure 4.

The traffic density serves as a metric for congestion level and is incorporated into the
model's evaluation criteria. The environmental setup not only mirrors highway conditions but
also incorporates reward shaping to guide the model's behavior toward optimal outcomes.
The reward structure encompasses penalties for collisions, incentives for maintaining appro-
priate speeds, and bonuses for preferred lane usage, thereby aligning the model's actions with
desired driving behaviors.The Collisions are assigned a negative reward, as they represent
critical events that the model must learn to avoid. A modest positive reward value (0.1) is
designated for traveling in the rightmost lane, encouraging the model to favor this lane. To
ensure adherence to speed regulations, rewards are assigned for high-speed travel and lane
changes, with a greater emphasis placed on maintaining and achieving the speed limit rather
than on lane-switching maneuvers. The speed range for which the model receives rewards is
set between 16 m/s (approximately 60 km/h, the minimum speed limit) and 27 m/s (approx-
imately 97 km/h, the maximum speed limit), aligning with the speed restrictions of Indone-
sian toll roads. The high-speed reward value given is greater because, in the context of auton-
omous vehicles, the time aspect is the main priority, so the model must deliver passengers to
their destination quickly.

Figure 3. Example of the configured environment (40 vehicles).

4.2. Training Model

In the training phase, the model's performance is evaluated based on reward values,
which are quantified as points reflecting the efficacy of actions taken by the agent within the
simulation environment. These points are awarded based on specific criteria such as the
agent's ability to avoid collisions, maintain optimal speeds, and adhere to preferred lanes,
thereby aligning the model's learning objectives with desirable driving behaviors. The pro-
posed model is trained using several hyperparameters that determine the model training pro-
cess. The use of the MLPpolicy parameter at this stage is due to the type of observation in
the form of a vector. The learning rate of the model is set to 0.0005, and the buffer size is set
to 15000. Both buffer size and learning rate parameters significantly influence the stability of
the training process.

The 'learning start' parameter represents the initial point at which the agent begins the
learning process after conducting a certain number of exploration iterations in the environ-
ment. The value of 'learning start' determines how many exploration iterations are carried out
before learning commences, measured in terms of iteration count. During this exploration
phase, the agent gathers experiences that aid in the initialization process and help avoid insta-
bility in the early stages of learning. Learning begins at the 100th iteration. The batch size is
set to 32, while gamma is assigned a value of 0.7. The batch size represents the amount of
memory available to the agent during training, accelerating the learning process. Gamma plays
a crucial role in the model's short-term and long-term rewards decision-making. Table 3 dis-
plays the parameter values used during the model training.

https://publikasi.dinus.ac.id/index.php/jcta/issue/view/374

Journal of Computing Theories and Applications 2024(February), vol. 1, no. 3, Nugroho, et al. 281

Table 3. Parameter and Value for Models training.

Parameter Value

Policy MLP Policy

Learning rate 0.0005

Buffer size 15000

Learning starts 100

Batch size 32

gamma 0.7

Train frequency 1

Gradient steps 1

Target update interval 50

Verbose 1

The model is trained in 20,000 timesteps, and the training process is saved using the
tensorboard logging feature, see Figure 4. The log captures vital parameters, including episode
duration, accrued rewards, and training loss.

Figure 4. Tensorboard logging feature.

In the diagram stored in the logging file, the 'ep_len_mean' metric in the log charts the
average duration of episodes throughout training. During the initial 0 to 2000 steps, the
average model can operate for less than 15 seconds, with the rewards obtained being below
a certain threshold value rather than time duration. Then, at steps 2000-4000, the model be-
gins to understand and adapt to the environment so that in the diagram, the model can survive
in the environment with a value of 14 seconds to 27 seconds, and the model can get a reward
of 14 to 24 points. Up to timestep 8000, the model can adapt to the environment and maintain
the reward obtained above 25 points for each iteration.

https://publikasi.dinus.ac.id/index.php/jcta/issue/view/374

Journal of Computing Theories and Applications 2024(February), vol. 1, no. 3, Nugroho, et al. 282

4.3. Evaluation Model

The trained model is assessed using the evaluate_policy function from the stable baseline
library. The evaluation employs a random seed method, repeated 20 times, as specified by the
n_eval_episodes parameter. Furthermore, the return_episode_reward parameter is set to true,
allowing the display of both reward values and the duration taken by the agent for each iter-
ation. The evaluation also employs the deterministic attribute, which is set to true. This means
that the agent is obligated to map each action without introducing random elements, ensuring
that the agent's decisions align with its predictions. The model undergoes evaluation four
times, each involving an escalating vehicle density scenario. Tables 4, 5, 6, and 7 present the
results of each scenario tested.

Table 4. First Scenario Results (using 20 /vehicles).

Test No. Reward Duration (Seconds)

1 39.8092 40

2 39.4899 40

3 39.6555 40

4 38.8546 40

5 12.9577 14

6 39.8794 40

7 37.9800 40

8 29.7185 31

9 24.2757 26

10 39.7398 40

11 13.7755 15

12 39.5981 40

13 38.9948 40

14 39.7179 40

15 39.5961 40

16 39.8471 40

17 39.9910 40

18 38.7287 40

19 39.7767 40

20 39.8481 40

Average 35.6117 36.3 success rate (90.075%)

In Table 4, in the first scenario where there are 20 vehicles, the model smoothly navigates

past other cars, with most tests achieving a maximum duration of 40 seconds. The agent can
maintain its maximum speed of 27 m/s, with an average reward value obtained for each step
being 1. The success rate of the model is also still very high, namely 90.075%.

Table 5. Second Scenario Results (using 40 obstacles/vehicles).

Test No. Reward Duration (Seconds)

1 35.0472 40

2 25.9574 29

3 36.0744 40

4 36.3061 40

5 34.5682 40

6 37.3809 40

7 36.7206 40

8 36.9120 40

9 36.9202 40

10 37.7678 40

11 37.6310 40

https://publikasi.dinus.ac.id/index.php/jcta/issue/view/374

Journal of Computing Theories and Applications 2024(February), vol. 1, no. 3, Nugroho, et al. 283

12 35.4174 40

13 37.3294 40

14 37.1676 40

15 36.1953 40

16 13.1944 15

17 35.0669 40

18 34.9520 40

19 35.7802 40

20 32.7443 35

Average 34.4567 37.95 success rate (94.875%)

In Table 5, the number of vehicles is increased to 40, the model can still pass other cars

smoothly, and the success rate is even better than the first scenario, namely 94.875%, and the
duration reaches 37.95 seconds. However, there is a slight decrease in the average reward to
34.4567. In this scenario the agent is still able to accelerate to a maximum speed of 27m/s.

Table 7. Third Scenario Results (using 60 obstacles/vehicles).

Test No. Reward Duration (Seconds)

1 30.9687 40

2 31.8669 40

3 31.7298 40

4 31.9541 40

5 24.3245 32

6 10.5865 14

7 32.9552 40

8 32.8557 40

9 22.8038 30

10 30.6021 40

11 31.7992 40

12 30.7320 40

13 30.9346 39

14 17.1827 23

15 30.5704 40

16 24.1935 31

17 14.7175 20

18 5.4038 8

19 33.0354 40

20 31.3056 40

Average 26.5261 33.85 success rate (84.625%)

In Table 6, the number of vehicles increases to 60. The model can still pass other cars

smoothly, but there is a noticeable decline in both the average duration, at 22.85 seconds, and
the success rate, at 84.625%. The average reward also decreases to 26.5261. Despite this, the
model maintains a high average speed of 21 m/s, which occasionally results in insufficient
braking distance to prevent collisions.

Table 6. Third Scenario Results (using 80 obstacles/vehicles).

Test No. Reward Duration (Seconds)

1 30.4366 40

2 33.0515 40

3 5.4125 8

4 33.5156 40

https://publikasi.dinus.ac.id/index.php/jcta/issue/view/374

Journal of Computing Theories and Applications 2024(February), vol. 1, no. 3, Nugroho, et al. 284

5 32.7335 40

6 4.2284 6

7 7.6440 11

8 34.5674 40

9 31.3138 40

10 2.5056 4

11 3.5760 5

12 9.1004 12

13 28.9950 38

14 23.8914 31

15 3.7068 5

16 32.8471 40

17 12.1257 16

18 24.1116 30

19 0.9923 2

20 31.2931 40

Average 19.3024 24.4 (success rate (61%)

The fourth scenario, depicted in Table 7 with 80 vehicles, presents significant challenges

for the model due to the limited space for maneuvers at high speeds, leading to frequent
crashes. The average duration sharply falls to under 25 seconds, and the average reward drops
below 20. Notably, in all scenarios, the model tends to prioritize actions that sustain high
speed over braking and changing lanes, attributed to the higher rewards associated with speed.

4.4 Discussion

In this experiment, we used four scenarios representing different levels of traffic density
on a straight road. The first scenario has 20 vehicles, and the number of vehicles increases
gradually until it reaches 80 in the fourth scenario. The aim of using these four scenarios is to
understand the extent of the model's adaptability to increasing traffic density on toll roads.
Thus, the model was tested where the number of obstructing vehicles continued to increase
until the model could no longer function effectively. The model's performance was evaluated
based on the rewards obtained and the time duration for each iteration.

After going through training, the model can successfully pass scenarios 1 to 2 with an
average reward above 30 out of a maximum total reward of 40 points. Suboptimal results
were observed when vehicles spawned randomly in the simulation, appeared too close to the
model, thus impeding its ability to avoid them effectively.

In the final scenario, where the number of vehicles reached 80, the model struggled to
navigate the environment effectively., The diminished reward values and the considerable
variation in the duration of each experiment evidenced this. The compromised performance
is attributed to the excessive density of vehicles, which were randomly distributed within the
simulation environment, constraining the model's ability to make effective maneuvering de-
cisions. Furthermore, the vehicles were often positioned parallel to one another across all
lanes, as depicted in Figure 5, forcing the model to decelerate to the minimum speed limit of
11 m/s.

Figure 5. Example of road conditions in scenario 4

https://publikasi.dinus.ac.id/index.php/jcta/issue/view/374

Journal of Computing Theories and Applications 2024(February), vol. 1, no. 3, Nugroho, et al. 285

5. Conclusions

Based on the above evaluations, we can infer that the DQN model can effectively navi-
gate environments with traffic densities of up to 60 vehicles, maintaining high speeds that
conform to the standard regulations for toll roads (especially in Indonesia). However, when
the number of vehicles reached 80, the model's performance decreased with shorter durations
and some iterations with braking problems. These findings suggest a potential limitation of
DQN model's ability to handle high traffic volumes at elevated speeds in simulated highway
conditions. It is important to note that these results only reflect the model performance under
simulation conditions to determine the performance limits of the DQN model facing high
traffic at high speeds. The actual implementation of autonomous cars on real roads will in-
volve more complex factors. Therefore, further testing and development of this DQN model
must be carried out in more adaptive real-world situations. In further research, the environ-
mental configuration can be carried out by providing a minimum and maximum speed model
over a distance that is not too far away. Enhancements to the model's performance may also
be achieved through refined reward shaping strategies or by optimizing hyperparameters such
as gamma and batch size prior to training. Such advancements are anticipated to refine the
model's decision-making capabilities, leveraging deep reinforcement learning techniques to
adapt more effectively to diverse and dynamic driving environments.

Author Contributions: Conceptualization: S.N. and D.R.I.M.S.; methodology, S.N. and
D.R.I.M.S.; software: S.N.; validation: S.N. and D.R.I.M.S.; formal analysis: S.N. and
D.R.I.M.S.; investigation: S.N. and D.R.I.M.S.; resources: S.N.; data curation: X.X.; writing—
original draft preparation: S.N.; writing—review and editing: D.R.I.M.S and H.M.M.I.; visu-
alization: S.N.; supervision: D.R.I.M.S. and H.M.M.I.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References

[1] World Health Organisation, “Road traffic injuries,” 2023. https://www.who.int/news-room/fact-sheets/detail/road-traffic-inju-
ries (accessed Jan. 30, 2024).

[2] M. Bertoncello and D. Wee, “Ten ways autonomous driving could redefine the automotive world,” McKinsey, 2015. https://mckin-
sey.com/industries/automotive-and-assembly/our-insights/ten-ways-autonomous-driving-could-redefine-the-automotive-world
(accessed Jan. 30, 2024).

[3] H. Detjen, S. Geisler, and S. Schneegass, “Maneuver-based Driving for Intervention in Autonomous Cars,” in CHI’19 Workshop on
“Looking into the Future: Weaving the Threads of Vehicle Automation,” 2020.

[4] S. Zhang, L. Wen, H. Peng, and H. E. Tseng, “Quick Learner Automated Vehicle Adapting its Roadmanship to Varying Traffic
Cultures with Meta Reinforcement Learning,” in 2021 IEEE International Intelligent Transportation Systems Conference (ITSC), Sep. 2021,
pp. 1745–1752. doi: 10.1109/ITSC48978.2021.9564972.

[5] A. Nandy and M. Biswas, Reinforcement Learning. Berkeley, CA: Apress, 2018. doi: 10.1007/978-1-4842-3285-9.
[6] J. Xie, Z. Shao, Y. Li, Y. Guan, and J. Tan, “Deep Reinforcement Learning With Optimized Reward Functions for Robotic Trajec-

tory Planning,” IEEE Access, vol. 7, pp. 105669–105679, 2019, doi: 10.1109/ACCESS.2019.2932257.
[7] B. Paden, M. Cap, S. Z. Yong, D. Yershov, and E. Frazzoli, “A Survey of Motion Planning and Control Techniques for Self-Driving

Urban Vehicles,” IEEE Trans. Intell. Veh., vol. 1, no. 1, pp. 33–55, Mar. 2016, doi: 10.1109/TIV.2016.2578706.
[8] E. Leurent and J. Mercat, “Social Attention for Autonomous Decision-Making in Dense Traffic,” Nov. 2019, doi:

10.48550/arXiv.1911.12250.
[9] N. Carrara, E. Leurent, R. Laroche, T. Urvoy, O.-A. Maillard, and O. Pietquin, “Budgeted Reinforcement Learning in Continuous

State Space,” in Proceedings of the 33rd International Conference on Neural Information Processing Systems, 2019, pp. 9299–9309. [Online].
Available: http://arxiv.org/abs/1903.01004

[10] B. Brito, A. Agarwal, and J. Alonso-Mora, “Learning Interaction-Aware Guidance for Trajectory Optimization in Dense Traffic
Scenarios,” IEEE Trans. Intell. Transp. Syst., vol. 23, no. 10, pp. 18808–18821, Oct. 2022, doi: 10.1109/TITS.2022.3160936.

[11] S. Glaser, B. Vanholme, S. Mammar, D. Gruyer, and L. Nouveliere, “Maneuver-Based Trajectory Planning for Highly Autonomous
Vehicles on Real Road With Traffic and Driver Interaction,” IEEE Trans. Intell. Transp. Syst., vol. 11, no. 3, pp. 589–606, Sep. 2010,
doi: 10.1109/TITS.2010.2046037.

[12] A. Kusari, “Assessing and Accelerating Coverage in Deep Reinforcement Learning,” Dec. 2020, doi: 10.48550/arXiv.2012.00724.
[13] Y. Pan et al., “Understanding and Mitigating the Limitations of Prioritized Experience Replay,” Jul. 2020, doi:

10.48550/arXiv.2007.09569.
[14] E. Leurent, D. Efimov, and O.-A. Maillard, “Robust-Adaptive Interval Predictive Control for Linear Uncertain Systems,” in 2020

59th IEEE Conference on Decision and Control (CDC), Dec. 2020, pp. 1429–1434. doi: 10.1109/CDC42340.2020.9304308.

https://publikasi.dinus.ac.id/index.php/jcta/issue/view/374

Journal of Computing Theories and Applications 2024(February), vol. 1, no. 3, Nugroho, et al. 286

[15] J. Gläscher, N. Daw, P. Dayan, and J. P. O’Doherty, “States versus Rewards: Dissociable Neural Prediction Error Signals Underlying
Model-Based and Model-Free Reinforcement Learning,” Neuron, vol. 66, no. 4, pp. 585–595, May 2010, doi: 10.1016/j.neu-
ron.2010.04.016.

[16] N. D. Daw, Y. Niv, and P. Dayan, “Uncertainty-based competition between prefrontal and dorsolateral striatal systems for behav-
ioral control,” Nat. Neurosci., vol. 8, no. 12, pp. 1704–1711, Dec. 2005, doi: 10.1038/nn1560.

[17] V. Mnih et al., “Playing Atari with Deep Reinforcement Learning,” Dec. 2013, [Online]. Available: http://arxiv.org/abs/1312.5602
[18] A. Amballa, A. P., P. Sasmal, and S. Channappayya, “Discrete Control in Real-World Driving Environments using Deep Reinforce-

ment Learning,” Nov. 2022, [Online]. Available: http://arxiv.org/abs/2211.15920
[19] J. Liao, T. Liu, X. Tang, X. Mu, B. Huang, and D. Cao, “Decision-Making Strategy on Highway for Autonomous Vehicles Using

Deep Reinforcement Learning,” IEEE Access, vol. 8, pp. 177804–177814, 2020, doi: 10.1109/ACCESS.2020.3022755.
[20] S. Kuutti, R. Bowden, and S. Fallah, “Weakly Supervised Reinforcement Learning for Autonomous Highway Driving via Virtual

Safety Cages,” Sensors, vol. 21, no. 6, p. 2032, Mar. 2021, doi: 10.3390/s21062032.
[21] D. M. Saxena, S. Bae, A. Nakhaei, K. Fujimura, and M. Likhachev, “Driving in Dense Traffic with Model-Free Reinforcement

Learning,” in 2020 IEEE International Conference on Robotics and Automation (ICRA), May 2020, pp. 5385–5392. doi:
10.1109/ICRA40945.2020.9197132.

[22] V. Mnih et al., “Human-level control through deep reinforcement learning,” Nature, vol. 518, no. 7540, pp. 529–533, Feb. 2015, doi:
10.1038/nature14236.

[23] Y. Li, “Deep Reinforcement Learning,” Oct. 2018, [Online]. Available: http://arxiv.org/abs/1810.06339
[24] E. Leurent, “An Environment for Autonomous Driving Decision-Making,” GitHub repository. GitHub, 2018.
[25] G. Dulac-Arnold et al., “Deep Reinforcement Learning in Large Discrete Action Spaces,” Dec. 2015, [Online]. Available:

http://arxiv.org/abs/1512.07679

https://publikasi.dinus.ac.id/index.php/jcta/issue/view/374

