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Abstract: Driving in a straight line is one of the fundamental tasks for autonomous vehicles, but it can 

become complex and challenging, especially when dealing with high-speed highways and dense traffic 

conditions. This research aims to explore the Deep-Q Networking (DQN) model, which is one of the 

reinforcement learning (RL) methods, in a highway environment. DQN was chosen due to its profi-

ciency in handling complex data through integrated neural network approximations, making it capable 

of addressing high-complexity environments. DQN simulations were conducted across four scenarios, 

allowing the agent to operate at speeds ranging from 60 to nearly 100 km/h. The simulations featured 

a variable number of vehicles/obstacles, ranging from 20 to 80, and each simulation had a duration of 

40 seconds within the Highway-Env simulator. Based on the test results, the DQN method exhibited 

excellent performance, achieving the highest reward value in the first scenario, 35.6117 out of a maxi-

mum of 40, and a success rate of 90.075%. 

Keywords: Autonomous Highway Navigation; Autonomous Vehicle Navigation; Crowded Traffic 

Autonomous; Deep-Q Networking; Reinforcement Learning. 

 

1. Introduction 

Autonomous vehicles, commonly referred to as self-driving cars, represent a concept in 
which vehicles can operate without human intervention. Incorporating this technology into 
cars and other small vehicles can potentially reduce accident rates, energy consumption, and 
pollution levels. According to data presented by the World Health Organization (WHO) in 
December 2023[1], approximately 1.19 million people die each year due to accidents, with 
human error being a major contributing factor. The implementation of autonomy is believed 
to potentially reduce accident rates by up to 90% if properly executed[2]. The Society of 
Automotive Engineers (SAE) International has designed a classification system for autono-
mous vehicles consisting of six levels, with Level 0 denoting vehicles without automation 
systems, requiring human control, and Level 5 representing the highest level where vehicles 
can operate autonomously without human intervention and perform critical safety tasks ac-
curately. At Level 4, vehicles are expected to perform all driving tasks and monitor the driving 
environment under specific conditions, eliminating the need for drivers to pay attention. 

The driving tasks that autonomous vehicles must perform include various basic maneu-
vers such as straight-line driving, overtaking, lane changing, and entering lanes[3]. These tasks 
are relatively easier to execute in light traffic and at low speeds. However, special handling is 
required when implemented on highways with high relative speeds. In the past decade, rein-
forcement learning (RL) has emerged as a favored method for solving problems in various 
domains, including video games, robotics, and intelligent transportation systems[4]. RL is an 
approach in which artificial intelligence, known as an agent, operates in an environment, 
whether known or unknown, to adapt and learn based on the points provided[5]. These 
points can be positive, such as rewards, or negative, such as punishments. The agent decides 
its actions by considering the values it can obtain. The concept of rewards can be used as a 
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performance assessment benchmark in reinforcement learning because higher reward values 
are directly proportional to the model's performance when executing a task[6]. 

RL can be a solution for addressing behavioral planning in the context of autonomous 
driving, where much of it relies on hard-coded rules like Finite State Machines[7]. Thus, agents 
in autonomous driving vehicles have very limited options and are confined to specific situa-
tions. Research in the field of autonomous vehicles is divided into several subcategories that 
align with the steps and conditions experienced by the agent, including intersection condi-
tions[8], trajectory calculations[9], lane merging[10], and straight-line driving[11]. This re-
search primarily focuses on straight-line driving because it is a fundamental driving maneuver 
commonly encountered on highways. Additionally, performance during high-traffic situations 
is also analyzed. 

Methods commonly used in the RL domain are divided into two categories: model-free 
reinforcement learning (MFRL), including Deep-Q Networking (DQN), Soft Actor-Critic 
(SAC)[10] and Deep Reinforcement Learning (DRL) [12] and model-based reinforcement 
learning (MBRL), including Dyna-style Algorithm[13] and Model Predictive Control 
(MPC)[14]. MBRL is a model in which a cognitive map or model of the environment is 
formed, which describes how different "states" in the environment are connected to each 
other so that it can calculate the value that will be obtained from all the available steps[15]. 
However, MBRL is susceptible to errors if the provided environment is not well-structured. 
On the other hand, MFRL is a model that directly learns action values through trial and error, 
without explicitly constructing a model of the environment, and thus lacks explicit estimates 
of the probabilities governing state transitions[16]. Models can handle complex environments 
and adapt to different situations using these methods. 

This research will employ the MFRL method with the DQN model. The choice of the 
DQN model as the primary approach in this research is based on careful consideration of 
various methods in the field of reinforcement learning. The first consideration is the ad-
vantage of DQN in performing calculations using an experience replay mechanism. This fea-
ture allows the model to reuse past experiences, enhancing learning efficiency and stability. 
In this regard, DQN outperforms some other MFRL methods that may be less efficient in 
utilizing prior experiences. Additionally, DQN has an advantage in processing complex data 
through integrated neural network approximations within the model. This enables DQN to 
handle environments with high levels of complexity, which may be challenging for some other 
MFRL methods[17]. However, it is acknowledged that there are weaknesses in previous meth-
ods, such as SAC, which may not be as efficient as DQN in utilizing prior experiences, and 
MBRL, which is prone to errors if the environment is not well-structured. In summary, this 
research contributes to analyzing the performance and simulation of the DQN model in the 
Highway-Env simulator environment [24], ranging from light to heavy traffic, to determine 
the maximum performance achievable by DQN. 

2. Literature Review 

2.1 Related Works 

Several related studies were also reviewed before finalizing the research design. In a study  
[18], three models, named Policy Gradient (PG) models, Advantage Actor-Critic (A2C), and 
Dueling DQN (DDQN), were employed and compared for their performance. These models 
were trained using video feeds with RCNN under three conditions: straight roads during day-
light, curved roads during daylight, and curved roads at night. The rewards were based on the 
model's ability to detect lanes and obstacles in the videos. Notably, these models were de-
signed to replicate driving behavior and maneuvers using videos and The Open Racing Car 
Simulator (TORCS) environment, with a total of 1500 training episodes.  

In another study [19], the DDQN model underwent modifications incorporating addi-
tional reward algorithms to regulate optimal actions. This model was trained in the Highway-
Env environment with three lanes, where the model predominantly used the leftmost lane. 
The model received a reward of 0.8 for each step, and the training included 2000 episodes. 
Furthermore, this study quantified the model's maximum speed and distance traveled before 
potential collisions with other vehicles, demonstrating speeds of up to 36 m/s and covering 
distances of up to 3000 meters. 
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In a distinct study [20], the Deep Deterministic Policy Gradient (DDPG) algorithm was 
utilized with modified reward functions to attain an optimal reward value of 6000. The train-
ing consisted of 2000 episodes, and the model was subject to speed limits ranging from 17-
40 m/s and acceleration limits of -2 to 2 m/s2. The environment used was IPG CarMaker, 
and each training episode lasted for 5 minutes or until a collision occurred. The model also 
had an additional safety cage algorithm to control braking levels. 

In a separate study [21], the Proximal Policy Optimization (PPO) algorithm was used 
with the AutomotiveDrivingModels environment. The study encompassed scenarios with ve-
hicle quantities ranging from 1 to 100, with desired speeds maintained between 2 and 5 m/s. 
The reward value reached 120, with a timestep of 1,000,000 steps. Reward measurements 
included evaluating lane changes and the model's capability to change lanes behind other ve-
hicles within specified time frames. In addition to reward-based evaluations, the study used a 
success rate criterion, where the model had to change lanes within a designated time and 
remain in that lane for at least 5 seconds without colliding. 

Most of the studies mentioned above-utilized models falling under the MFRL category, 
but the testing was primarily based on the models' ability to achieve predefined rewards. How-
ever, MFRL offers other advantages, such as adaptation to changing conditions. This research 
employs the DQN model within the MFRL category, and the evaluation is based on the re-
wards obtained and the model's adaptability to various levels of traffic density. 

2.2. Deep-Q Networking (DQN) 

The Deep Q-Network (DQN) is a prominent MFRL algorithm that combines the Q-
learning algorithm with deep neural networks [22]. DQN possesses essential features like ex-
perience replay and deep learning (DL). Experience replay involves the storage of an agent's 
experiences within a designated memory, enabling the reuse of these experience samples dur-
ing training. This approach seeks to minimize the dependence on sequential experiences and 
enhance the efficiency of training data utilization. The aspect of DL is found in the Deep 
Neural Network (DNN), serving as an approximator for action-value functions. 

Consequently, DQN can model complex relationships between states and Q-values, ef-
fectively addressing more intricate problems. In the domain of reinforcement learning, the 
concept of reward is a feedback value to the agent as an evaluation when making deci-
sions[23]. Rewards are provided when the agent or model takes a specific action or step in a 
task. In this case, rewards are given when the agent can pass other vehicles and maintain the 
speed limit. Typically, rewards can be defined using the Equation (1). 

𝑟𝑡 =  𝑅(𝑠, 𝑎, 𝑠′) (1) 

Where 𝑟𝑡  represents the reward value obtained at each timestep, 𝑠 and 𝑠′ denotes the 

state in the environment, and 𝑎 represents the action chosen by the agent. The transition 

involves the action that leads to a transition from the initial state (𝑠) to the next state (𝑠′). 

3. Proposed Method 

This research aims to test the performance of the DQN model in a case study of straight 
roads on highways, and Figure 1 shows the research stages that will be carried out in this 
research. The research object used is the Highway-Env environment[24]. Next, arrangements 
were made for an environment with three-lane roads with the dominant lane on the right. 
Then, the duration is 40 seconds for each episode, and as obstacles, 20-80 vehicles are used, 
which will then be rendered simultaneously. 

3.1. Model and Environment Preparation 

At this stage, the first step is to set up the environment so that it can be understood and 
studied by the DQN agent. This setting involves two main aspects, namely the form of ob-
servation that the model uses and the action space available for the model. This observation 

takes the form of kinematics arranged in the form of a 2-dimensional array with size 𝑉 × 𝐹. 

Here, 𝑉 refers to the number of vehicles observed, while 𝐹 represents the number of fea-
tures or attributes observed on each vehicle. To provide a clearer illustration, refer to Table 
1.  
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Figure 1. Research stages 

Table 1. Examples of Agent Observations in the Environment. 

Vehicle Position 𝑿(𝒙) Position 𝒀(𝒚) Velocity 𝑿(𝒗𝒙) Velocity 𝒀(𝒗𝒚) 

Ego-vehicle 6.0 5.0 14.0 0 

Vehicle 1 -11.0 5.0 12.0 0 

Vehicle 2 12.0 7.0 11.5 0 

 
Table 1 illustrates the kinematic observations used by the agent, formatted as a 2-dimen-

sional array with dimensions 𝑉 × 𝐹. The observations include positions and velocities of ve-
hicles within the simulation environment, with 'Ego-vehicle' indicating the vehicle is directly 
controlled by the agent. Where position 𝑋(𝑥) and 𝑌(𝑦) are the vehicle position based on 

the x-axis and y-axis, respectively. Velocity 𝑋(𝑣𝑥) and 𝑌(𝑣𝑦) is the vehicle velocity along 

the x-axis and y-axis, respectively. Ego-vehicle refers to a vehicle controlled by an agent. 
Action space is an array consisting of a collection of actions that agents provided by the 

environment can take. Several action space options are available in a selected environment, 
such as continuous actions and discrete meta-actions. Continuous action encompasses the 
agent's ability to adjust steering angle and throttle control.  However, these continuous action 
space options are deemed less optimal due to the limited control over crucial actions such as 
braking and maintaining speed. On the other hand, discrete meta-actions present a predefined 
set of actions for the agent to select from, including changing lanes to the left, changing lanes 
to the right, idling, increasing speed, and reducing speed. For this research, the discrete meta-
action in the form of action space will be used primarily due to its advantages in facilitating 
rapid decision-making and expediting training processes [25]. 

Moreover, adjustments can be applied within the reward section, commonly referred to 
as reward shaping, The aim is to influence the agent's behavior, specifically in aspects such as 
the agent's intensity in overtaking and the agent's speed limit. Some common reward-shaping 
parameters are: 
• 'collision reward': This parameter penalizes the agent with a negative reward in the event 

of collisions, thus incentivizing collision avoidance. 
• 'right lane reward': This reward assigns a reward value to the agent when it chooses to 

move to the right lane. This parameter is particularly relevant in the context of highways, 
where the right lane is often used for overtaking other vehicles and typically maintains 
higher speeds. 

• 'high-speed reward': This reward is intended to motivate the agent to use high-speed 
following the specified speed limit. The agent receives a positive reward when maintain-
ing or exceeding the desired speed limit. 

• 'lane change reward': This parameter incentivizes the agent to execute lane changes judi-
ciously by providing a reward when the agent performs such maneuvers to overtake 
other vehicles. 

Evaluating

Model evaluation with congestion level parameter

Training

tuning hyperparameter

Preprocessing Data

Set Up Environment Preparing Model
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• 'reward speed range': This reward sets the minimum and maximum speed limits allowed 
for the agent. The agent should strive to adhere to these speed limits, and rewards will 
be given if the agent stays within the desired speed range. 

3.2. Model Training 

The model used in this research is DQN based on MFRL. DQN incorporates several 
techniques to stabilize training with neural networks, such as replay buffers, target networks, 
and gradient cutting. Given its support for box-shaped observations and discrete-shaped ac-
tions, DQN aligns well with the selected environment.. Figure 2 shows the structure of rein-
forcement learning, namely the relationship between the agent and the environment. The 
agent will provide an action for each state the agent receives from the environment. The 
action given by the agent will be assessed, and the agent will be given feedback in the form 
of a reward as an evaluation value for the action chosen. 

 

Figure 2. This Reinforcement Learning System Framework 

Then hyperparameter tuning is carried out on the model, some of the hyperparameters 
that are set include: 
• ‘MlpPolicy’ : Policy is a rule that guides agents to make decisions within a given environ-

ment. In the realm of reinforcement learning, policies are divided based on the type of 
observation environment, including MLPpolicy and CNNpolicy. MLPpolicy will be used 
in this research because it uses box type observations. MLP (multi-layer perceptron) is 

represented as a function that is useful for mapping state(𝑠) to probability distribu-

tions(𝑎) of actions taken by the agent. Using a deterministic policy, agents can choose 
certain actions without requiring probability calculations. So, the agent can provide op-
timal value in selecting actions. 

• ‘net_arch’: This is an additional parameter in the DQN algorithm that functions to create 
a neural network that resembles deep learning. 

• ‘Buffer_size’: This parameter sets the size of the replay buffer or the stored agent expe-
rience. Agents can use these saved experiences to speed up the training process. At the 
beginning of training, the 'learning_starts' parameter is trying various exploratory actions 
to understand the environment and provide experience to the replay buffer. So, the 
model does not experience stabilization problems and lacks experience data. 

• ‘batch_size’: The batch size represents the number of data samples used in one training 
iteration, so it can speed up the training process. 

• ‘gamma’: gamma is a parameter that determines the value for the discount factor. The 
discount factor functions to determine how important rewards obtained in the future 
are compared to rewards obtained now. Calculations are carried out using Equation (2). 

Q(𝑠, 𝑎) = R + γ ⋅ max𝑎′Q(𝑠′, 𝑎′) (2) 

Where 

Q(𝑠, 𝑎): Q values for state (𝑠) and action (𝑎). 

𝑅: reward received after taking action 𝑎 in state 𝑠. 

γ: Discount factor measures the degree to which an agent considers future rewards. γ 
ranges from 0 to 1, where 0 means the agent only considers current rewards, while one 
means the agent fully considers future rewards. 

 

 

Agent Environment 

Action 

State 

reward 
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max𝑎′Q(𝑠′, 𝑎′): The maximum Q value for the next state (𝑠′) and all possible actions 

(𝑎′). It describes the best-expected value that the agent can achieve in the next state. 

3.3. Model Evaluation 

The trained model was evaluated using the random sampling method. Evaluation criteria 
included the model's ability to accumulate reward value and its endurance within the environ-
ment. Rewards served as the primary metric for assessing model performance. Testing is car-
ried out using the following parameters: 
• ‘n_eval_episodes’: This parameter specifies the number of episodes for evaluation. The 

assessment was iterated across multiple runs to reduce bias. ‘return_episode_rewards’: 
This parameter sets the function to display a list of rewards obtained during the ongoing 
evaluation and the time the agent can survive the evaluation. 

• ‘Deterministic’: This parameter sets the agent to map each state (𝑠) directly into action 

(𝑎) without using randomness calculation elements. This ensured that, under specific 
circumstances, the agent's actions remained consistent. The use of deterministic is in-
tended if the task requires the agent to take actions with high precision. 
The obtained reward value is calculated using Equation (3). 

R(𝑠, 𝑎) = 𝑎
𝑣 − 𝑣min

𝑣max − 𝑣min

− 𝑏 collision (1) 

Where 𝑣 , 𝑣max , 𝑣min  which is agent speed, minimum agent speed, and maximum 

agent speed, respectively; 𝑎 and 𝑏 represent the coefficients of the amount of reward given 
when the environment is set. 

In addition to the parameters mentioned, the assessment involves extracting the 'info' 
variable at every step the agent executes. Within the 'info' variable, q_values for each action 
are available, guiding the agent's decision-making process by prioritizing actions with the 
highest q_values. Furthermore, the 'info' variable encompasses the reward value assigned to 
the agent for each step, including rewards for collisions, adherence to a prioritized path, 
speed-related achievements, and maintaining lane position. 

4. Results and Discussion 

4.1. Preprocessing Environment 

In the preprocessing stage, the environmental configuration is tailored to replicate high-
way conditions, particularly those characterized by high-density traffic as found in Indonesia.  
Furthermore, reward-shaping adjustments are also applied to regulate the model's behavior 
during training. Table 2 presents the configuration implemented in the environment. 

Table 2. Environment Configuration. 

Parameter Value Description 

Action type DiscreteMetaAction Type of action to be used by the model 

target_speeds [11,19,27] (m/s) Speed limits to be used by the agent 

Lanes count 3 Number of lanes in the environment 

Duration 40 (seconds) Duration of one iteration of the environment 

Vehicle count 20 until 80 Number of vehicles to be used as observations 

Vehicle density 1 Number of vehicles generated as other vehicles 
based on the vehicle count parameter 

Collision reward -1 Reward obtained by the agent if it collides 

Right lane reward 0.1 Reward obtained by the agent when it is in the 
right lane 

High-speed reward 0.3 Reward is obtained when the agent is at the speci-
fied speed 

Lane change reward 0.2 Reward obtained when the agent changes lanes 

Reward speed range [16, 27] (m/s) Specified speed range that the agent must achieve 
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In the action type parameter, the actions used are discrete in the form of an array con-
taining a list of actions that the model will learn. This environment has five actions in one 
array, namely [idle, increase speed, decrease speed, turn left, turn right]. The model selects its 
actions from this array. In a simulation lasting 40 seconds that incorporates 40 vehicles across 
three lanes, the traffic density effectively translates to a 'vehicle density' of 1, considering the 
multi-lane setup. This configuration aims to simulate realistic traffic conditions by evenly dis-
tributing the vehicles across the available lanes, as illustrated in Figure 4. 

The traffic density serves as a metric for congestion level and is incorporated into the 
model's evaluation criteria. The environmental setup not only mirrors highway conditions but 
also incorporates reward shaping to guide the model's behavior toward optimal outcomes. 
The reward structure encompasses penalties for collisions, incentives for maintaining appro-
priate speeds, and bonuses for preferred lane usage, thereby aligning the model's actions with 
desired driving behaviors.The Collisions are assigned a negative reward, as they represent 
critical events that the model must learn to avoid. A modest positive reward value (0.1) is 
designated for traveling in the rightmost lane, encouraging the model to favor this lane. To 
ensure adherence to speed regulations, rewards are assigned for high-speed travel and lane 
changes, with a greater emphasis placed on maintaining and achieving the speed limit rather 
than on lane-switching maneuvers. The speed range for which the model receives rewards is 
set between 16 m/s (approximately 60 km/h, the minimum speed limit) and 27 m/s (approx-
imately 97 km/h, the maximum speed limit), aligning with the speed restrictions of Indone-
sian toll roads. The high-speed reward value given is greater because, in the context of auton-
omous vehicles, the time aspect is the main priority, so the model must deliver passengers to 
their destination quickly.  

 

Figure 3. Example of the configured environment (40 vehicles). 

4.2. Training Model 

In the training phase, the model's performance is evaluated based on reward values, 
which are quantified as points reflecting the efficacy of actions taken by the agent within the 
simulation environment. These points are awarded based on specific criteria such as the 
agent's ability to avoid collisions, maintain optimal speeds, and adhere to preferred lanes, 
thereby aligning the model's learning objectives with desirable driving behaviors. The pro-
posed model is trained using several hyperparameters that determine the model training pro-
cess. The use of the MLPpolicy parameter at this stage is due to the type of observation in 
the form of a vector. The learning rate of the model is set to 0.0005, and the buffer size is set 
to 15000. Both buffer size and learning rate parameters significantly influence the stability of 
the training process. 

The 'learning start' parameter represents the initial point at which the agent begins the 
learning process after conducting a certain number of exploration iterations in the environ-
ment. The value of 'learning start' determines how many exploration iterations are carried out 
before learning commences, measured in terms of iteration count. During this exploration 
phase, the agent gathers experiences that aid in the initialization process and help avoid insta-
bility in the early stages of learning. Learning begins at the 100th iteration. The batch size is 
set to 32, while gamma is assigned a value of 0.7. The batch size represents the amount of 
memory available to the agent during training, accelerating the learning process. Gamma plays 
a crucial role in the model's short-term and long-term rewards decision-making. Table 3 dis-
plays the parameter values used during the model training. 
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Table 3. Parameter and Value for Models training. 

Parameter Value 

Policy MLP Policy 

Learning rate 0.0005 

Buffer size 15000 

Learning starts 100 

Batch size 32 

gamma 0.7 

Train frequency 1 

Gradient steps 1 

Target update interval 50 

Verbose 1 

The model is trained in 20,000 timesteps, and the training process is saved using the 
tensorboard logging feature, see Figure 4. The log captures vital parameters, including episode 
duration, accrued rewards, and training loss. 

 

Figure 4. Tensorboard logging feature. 

In the diagram stored in the logging file, the 'ep_len_mean' metric in the log charts the 
average duration of episodes throughout training.  During the initial 0 to 2000 steps, the 
average model can operate for less than 15 seconds, with the rewards obtained being below 
a certain threshold value rather than time duration. Then, at steps 2000-4000, the model be-
gins to understand and adapt to the environment so that in the diagram, the model can survive 
in the environment with a value of 14 seconds to 27 seconds, and the model can get a reward 
of 14 to 24 points. Up to timestep 8000, the model can adapt to the environment and maintain 
the reward obtained above 25 points for each iteration. 
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4.3. Evaluation Model 

The trained model is assessed using the evaluate_policy function from the stable baseline 
library. The evaluation employs a random seed method, repeated 20 times, as specified by the 
n_eval_episodes parameter. Furthermore, the return_episode_reward parameter is set to true, 
allowing the display of both reward values and the duration taken by the agent for each iter-
ation. The evaluation also employs the deterministic attribute, which is set to true. This means 
that the agent is obligated to map each action without introducing random elements, ensuring 
that the agent's decisions align with its predictions. The model undergoes evaluation four 
times, each involving an escalating vehicle density scenario. Tables 4, 5, 6, and 7 present the 
results of each scenario tested. 

Table 4. First Scenario Results (using 20 /vehicles). 

Test No. Reward Duration (Seconds) 

1 39.8092 40 

2 39.4899 40 

3 39.6555 40 

4 38.8546 40 

5 12.9577 14 

6 39.8794 40 

7 37.9800 40 

8 29.7185 31 

9 24.2757 26 

10 39.7398 40 

11 13.7755 15 

12 39.5981 40 

13 38.9948 40 

14 39.7179 40 

15 39.5961 40 

16 39.8471 40 

17 39.9910 40 

18 38.7287 40 

19 39.7767 40 

20 39.8481 40 

Average 35.6117 36.3 success rate (90.075%) 

 
In Table 4, in the first scenario where there are 20 vehicles, the model smoothly navigates 

past other cars, with most tests achieving a maximum duration of 40 seconds. The agent can 
maintain its maximum speed of 27 m/s, with an average reward value obtained for each step 
being 1. The success rate of the model is also still very high, namely 90.075%. 

Table 5. Second Scenario Results (using 40 obstacles/vehicles). 

Test No. Reward Duration (Seconds) 

1 35.0472 40 

2 25.9574 29 

3 36.0744 40 

4 36.3061 40 

5 34.5682 40 

6 37.3809 40 

7 36.7206 40 

8 36.9120 40 

9 36.9202 40 

10 37.7678 40 

11 37.6310 40 
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12 35.4174 40 

13 37.3294 40 

14 37.1676 40 

15 36.1953 40 

16 13.1944 15 

17 35.0669 40 

18 34.9520 40 

19 35.7802 40 

20 32.7443 35 

Average 34.4567 37.95 success rate (94.875%) 

 
In Table 5, the number of vehicles is increased to 40, the model can still pass other cars 

smoothly, and the success rate is even better than the first scenario, namely 94.875%, and the 
duration reaches 37.95 seconds. However, there is a slight decrease in the average reward to 
34.4567. In this scenario the agent is still able to accelerate to a maximum speed of 27m/s. 

Table 7. Third Scenario Results (using 60 obstacles/vehicles). 

Test No. Reward Duration (Seconds) 

1 30.9687 40 

2 31.8669 40 

3 31.7298 40 

4 31.9541 40 

5 24.3245 32 

6 10.5865 14 

7 32.9552 40 

8 32.8557 40 

9 22.8038 30 

10 30.6021 40 

11 31.7992 40 

12 30.7320 40 

13 30.9346 39 

14 17.1827 23 

15 30.5704 40 

16 24.1935 31 

17 14.7175 20 

18 5.4038 8 

19 33.0354 40 

20 31.3056 40 

Average 26.5261 33.85 success rate (84.625%) 

 
In Table 6, the number of vehicles increases to 60. The model can still pass other cars 

smoothly, but there is a noticeable decline in both the average duration, at 22.85 seconds, and 
the success rate, at 84.625%. The average reward also decreases to 26.5261. Despite this, the 
model maintains a high average speed of 21 m/s, which occasionally results in insufficient 
braking distance to prevent collisions. 

Table 6. Third Scenario Results (using 80 obstacles/vehicles). 

Test No. Reward Duration (Seconds) 

1 30.4366 40 

2 33.0515 40 

3 5.4125 8 

4 33.5156 40 
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5 32.7335 40 

6 4.2284 6 

7 7.6440 11 

8 34.5674 40 

9 31.3138 40 

10 2.5056 4 

11 3.5760 5 

12 9.1004 12 

13 28.9950 38 

14 23.8914 31 

15 3.7068 5 

16 32.8471 40 

17 12.1257 16 

18 24.1116 30 

19 0.9923 2 

20 31.2931 40 

Average 19.3024 24.4 (success rate (61%) 

 
The fourth scenario, depicted in Table 7 with 80 vehicles, presents significant challenges 

for the model due to the limited space for maneuvers at high speeds, leading to frequent 
crashes. The average duration sharply falls to under 25 seconds, and the average reward drops 
below 20. Notably, in all scenarios, the model tends to prioritize actions that sustain high 
speed over braking and changing lanes, attributed to the higher rewards associated with speed.  

4.4 Discussion  

In this experiment, we used four scenarios representing different levels of traffic density 
on a straight road. The first scenario has 20 vehicles, and the number of vehicles increases 
gradually until it reaches 80 in the fourth scenario. The aim of using these four scenarios is to 
understand the extent of the model's adaptability to increasing traffic density on toll roads. 
Thus, the model was tested where the number of obstructing vehicles continued to increase 
until the model could no longer function effectively. The model's performance was evaluated 
based on the rewards obtained and the time duration for each iteration. 

After going through training, the model can successfully pass scenarios 1 to 2 with an 
average reward above 30 out of a maximum total reward of 40 points. Suboptimal results 
were observed when vehicles spawned randomly in the simulation, appeared too close to the 
model, thus impeding its ability to avoid them effectively. 

In the final scenario, where the number of vehicles reached 80, the model struggled to 
navigate the environment effectively., The diminished reward values and the considerable 
variation in the duration of each experiment evidenced this. The compromised performance 
is attributed to the excessive density of vehicles, which were randomly distributed within the 
simulation environment, constraining the model's ability to make effective maneuvering de-
cisions. Furthermore, the vehicles were often positioned parallel to one another across all 
lanes, as depicted in Figure 5, forcing the model to decelerate to the minimum speed limit of 
11 m/s. 

 

Figure 5. Example of road conditions in scenario 4 
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5. Conclusions 

Based on the above evaluations, we can infer that the DQN model can effectively navi-
gate environments with traffic densities of up to 60 vehicles, maintaining high speeds that 
conform to the standard regulations for toll roads (especially in Indonesia). However, when 
the number of vehicles reached 80, the model's performance decreased with shorter durations 
and some iterations with braking problems. These findings suggest a potential limitation of 
DQN model's ability to handle high traffic volumes at elevated speeds in simulated highway 
conditions. It is important to note that these results only reflect the model performance under 
simulation conditions to determine the performance limits of the DQN model facing high 
traffic at high speeds. The actual implementation of autonomous cars on real roads will in-
volve more complex factors. Therefore, further testing and development of this DQN model 
must be carried out in more adaptive real-world situations. In further research, the environ-
mental configuration can be carried out by providing a minimum and maximum speed model 
over a distance that is not too far away. Enhancements to the model's performance may also 
be achieved through refined reward shaping strategies or by optimizing hyperparameters such 
as gamma and batch size prior to training. Such advancements are anticipated to refine the 
model's decision-making capabilities, leveraging deep reinforcement learning techniques to 
adapt more effectively to diverse and dynamic driving environments. 
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