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Abstract: The rapidly evolving landscape of cryptanalysis necessitates an urgent and detailed explora-

tion of the high-degree non-linear functions that govern the relationships between plaintext, key, and 

encrypted text. Historically, the complexity of these functions has posed formidable challenges to 

cryptanalysis. However, the advent of deep learning, supported by advanced computational resources, 

has revolutionized the potential for analyzing encrypted data in its raw form. This is a crucial develop-

ment, given that the core principle of cryptosystem design is to eliminate discernible patterns, thereby 

necessitating the analysis of unprocessed encrypted data. Despite its critical importance, the integration 

of machine learning, and specifically deep learning, into cryptanalysis has been relatively unexplored. 

Deep learning algorithms stand out from traditional machine learning approaches by directly pro-

cessing raw data, thus eliminating the need for predefined feature selection or extraction. This research 

underscores the transformative role of neural networks in aiding cryptanalysts in pinpointing vulnera-

bilities in ciphers by training these networks with data that accentuates inherent weaknesses alongside 

corresponding encryption keys. Our study represents an investigation into the feasibility and effective-

ness of employing machine learning, deep learning, and innovative random optimization techniques in 

cryptanalysis. Furthermore, it provides a comprehensive overview of the state-of-the-art advancements 

in this field over the past few years. The findings of this research are not only pivotal for the field of 

cryptanalysis but also hold significant implications for the broader realm of data security. 

Keywords: Block Ciphers; Cryptographic Algorithms Identification; Deep Learning; Machine Intelli-

gence; Neural Cryptanalysis; Stream Ciphers. 

 

1. Introduction 

Cryptography largely deals with the algorithms and protocols that safeguard the privacy 
and integrity of data. Typically, cryptographic procedures are characterized as software or 
Turing machines, and attackers are also defined in these terms, constrained by their complex-
ity (for example, restricted to polynomial time) and their likelihood of success (such as con-
fined to an insignificant probability). A system is considered secure if it can successfully de-
fend against all types of attackers. For example, an encryption algorithm is regarded as secure 
if no attacker can retrieve information about the original text from the encrypted text. The 
cryptanalysis of both block and stream ciphers has consistently been a focus of considerable 
interest. Many ciphertexts are still unsolved, and we have no idea what sort of cipher was 
employed to encode them. Each cryptanalyst begins by attempting to determine their cipher 
types using various (statistical) approaches. In principle and practice, cryptographic differen-
tiating attacks allow for sophisticated cryptanalysis, in which an attacker extracts enough "in-
formation" from an encrypted message to differentiate it from random data. Deep learning, 
Machine Learning, and other statistical approaches have significantly impacted various 
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disciplines[1], [2]. It has a lot of possibilities for cryptanalysis as well. Traditional cryptanalysis 
approaches demand a thorough examination of non-linear functions that define the correla-
tions among plaintext, key, and ciphertext [3]. These functions contain exceptionally high 
degree terms, making cryptanalysis exceedingly difficult. In 1991, Rivest [4] highlighted the 
interconnection between cryptography and machine learning, focusing on how these two 
fields have exchanged ideas and methodologies with each other. The introduction of deep 
learning methods, together with more powerful and efficient computing resources, has 
opened up new avenues for analysing encrypted data in its raw form. The fundamental con-
cept behind creating a cipher involves injecting randomness into it, ensuring that there are no 
discernible patterns in the encrypted data. 

Machine Learning (ML) and Deep Learning (DL) based cryptanalysis represent a cutting-
edge intersection of cybersecurity and artificial intelligence, where these computational tech-
niques are applied to the analysis and breaking of encrypted information. This modern ap-
proach to cryptanalysis leverages ML and DL algorithms' pattern recognition and predictive 
capabilities to detect underlying structures and vulnerabilities within cryptographic systems 
that traditional methods may overlook. In real-time problem-solving, ML and DL can signif-
icantly accelerate the decryption process, handling vast and complex datasets efficiently, 
which is crucial in a landscape where encryption algorithms are increasingly sophisticated. 
The significance of ML and DL in cryptanalysis is profound in various real-world applications. 
For instance, in cybersecurity, they can be used to test the strength of encryption algorithms 
by attempting to find weaknesses or potential backdoors. In digital forensics, these methods 
can assist in uncovering hidden information [5] in large sets of data, which might be critical 
in solving crimes. Furthermore, in the realm of secure communications, understanding the 
potential vulnerabilities of cryptographic techniques through ML and DL helps in enhancing 
security measures to counter advanced cyber threats. Moreover, the threat to current crypto-
graphic standards is imminent as the world moves towards quantum computing. ML and DL-
based cryptanalysis play a pivotal role in preparing for post-quantum cryptography by evalu-
ating which algorithms could withstand quantum attacks. This preemptive analysis is vital for 
ensuring the future security of digital infrastructure, financial systems, and sensitive commu-
nication channels. Thus, ML and DL-based cryptanalysis is not only significant for solving 
current encryption-related challenges but also indispensable for anticipating and mitigating 
the cybersecurity threats of tomorrow. The main contribution highlights of this paper are as 
follows: 
• This paper investigates the scope and feasibility of machine learning, deep learning, and 

some other stochastic optimization methods for cryptanalysis. This study also looks into 
state-of-the-art advances in this field during the last few years. 

• Some experimental results of the discussed computational intelligence methods are also 
summarised in later sections of this paper.  
The remaining paper is structured as follows: Section 2 discusses the impact of stochastic 

optimization methods in ciphertext-only cryptanalysis. The neural distinguisher is described 
in section 3. Various approaches for machine learning and deep learning-based cryptanalysis 
are summarized in section 4. Some experimental scenarios are given in section 5. In conclu-
sion, section 6 wraps up the paper. 

2. Impact of Stochastic Optimization Methods in Ciphertext only Cryptanaly-
sis 

This section discusses the impact of stochastic optimization methods in ciphertext only 
cryptanalysis. 

2.1. Generalized and Slippery Hill Climbing 

Essential Primitives: 

Some of the essential primitives i.e., N-Gram Statistics, Cost Function, and Index of Coinci-
dence, are summarized here. 
 

N-Gram Statistics and Cost Function:  

An n-gram refers to a continuous series of n elements from a specific text sample. The Fitness 
Function, sometimes called the Evaluation Function or Cost Function, assesses the proximity 
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of a particular solution to the optimal solution of the intended problem, thereby determining 
the solution's suitability. Every computational problem possesses its unique fitness function, 
and the choice of which fitness function to use is dictated by the specific problem at hand. 
Designing an appropriate fitness function for a given problem stands as the most challenging 
aspect in framing a problem through the use of genetic algorithms.  
 

Index of Coincidence (IoC): 

The period of the polyalphabetic cipher can be ascertained using the index of coincidence 
(IoC), which gauges the likelihood that any two characters in a text will match. Owing to the 
absence of randomness in natural languages, the IoC for meaningful texts is noticeably higher 

compared to that of random strings. English text has an IoC ≈1.75. 
 

Methodology:  

T. Kaeding, in his work[6], has discussed the slippery Hill-climbing technique for ciphertext-
only cryptanalysis of periodic polyalphabetic substitution ciphers. In a stochastic ciphertext-
only attack on a monoalphabetic substitution cipher, a child key is created from a parent key 
by randomly exchanging elements. The child takes the parent's place if the decrypted text's 
fitness is an improvement, with fitness being a gauge of how closely the text mirrors a specific 
language. After many child candidate evaluations, this process continues until no further en-
hancement is observed. The periodic polyalphabetic substitution cipher is an extension of the 
monoalphabetic cipher involving several key alphabets. During encryption, the selection of 
the key alphabet rotates through them, with the key choice determined by the text position 
modulo the total number of keys. To prevent being stuck at a local peak of textual fitness, 
keys are sporadically randomized, and the hill is ascended again, a step referred to as “slip-
pery”. The total number of key alphabets can often be found by dividing the ciphertext into 

parts of every 𝑛𝑡ℎ character and computing the index of coincidence (IoC) for each frag-

ment. The average IoC is taken over slices for each 𝑛, and the smallest 𝑛 close to the IoC of 
English text is used to determine the number of key alphabets. After setting the keys to initial 
values, the process loops through them, randomizing each one before using the stochastic 
method to climb back up. Figure 1 depicts example pseudocode instance of a genetic algo-
rithm for decrypting a cipher using fitness evaluation to select optimal character mappings. 

 

Figure 1. Pseudocode of genetic algorithm for decrypting a cipher using fitness evaluation to select 
optimal character mappings 

The entire decrypted text's fitness is utilized, not just that of the individual slice. This 
looping continues until no improvement is seen over a substantial number of steps. To assess 
whether one decryption is superior to another, there must be a method to evaluate the de-
cryption quality. A fitness function is defined for this purpose, providing a numerical value 
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to indicate how closely a text resembles English. Various definitions are possible for this 
function. The chosen approach in this instance is to use the average of the logarithms of the 
tetragram (four-letter) frequencies, calculated from a significant corpus of English text. Con-
sider a standard periodic polyalphabetic substitution cipher. The process starts by utilizing 
the index of coincidence to identify the period, followed by selecting an initial set of key 
alphabets. The discovery is that the running time is reduced, and the likelihood of a successful 
decryption is augmented if the initial keys are configured to align as closely as possible with 
the single-letter frequencies of English text. For instance, if 'M' is the most frequent character 
in a section of the text, the corresponding key element that encrypts 'E' (the most common 
letter in English) would be assigned to 'M'. Next, the process enters a loop where each key 
alphabet is randomized, and the hill-climbing method is applied as in the monoalphabetic 
ciphers, but with a modification: the fitness is computed for the entire plaintext, not just the 
specific slice the key relates to. This looping through the set of key alphabets continues until 
there is no improvement in fitness over a certain number of iterations. The decrypted 
plaintext with the highest fitness is then selected.   

2.2. Particle Swarm Optimization 

Particle swarm optimization (PSO) is a self-adaptive optimization strategy based on pop-
ulations. Similar to genetic algorithms, PSO begins with a randomly initialized population of 
solutions in the search space and iteratively refines them to locate the optimal solution. Within 
PSO, each possible solution is termed a particle. 

Every particle maintains its coordinates in the search space, which correlate with its best-
found solution, referred to as the particle best or 𝑝𝑏𝑒𝑠𝑡. Additionally, the population's overall 

best value is recorded, known as the global best or 𝑔𝑏𝑒𝑠𝑡. After these two values are identi-

fied, each particle's velocity (𝑣𝑖,𝑗 )and position (𝑃𝑖,𝑗 ) are updated towards its 𝑝𝑏𝑒𝑠𝑡 and 

𝑔𝑏𝑒𝑠𝑡 using the Equations (1). 

𝑣𝑖,𝑗 = 𝑐0𝑣𝑖,𝑗 + 𝑐1𝑟1(𝑃𝑝𝑏𝑒𝑠𝑡𝑖,𝑗 − 𝑝𝑖,𝑗) + 𝑐2𝑟2(𝑃𝑔𝑏𝑒𝑠𝑡𝑖,𝑗 − 𝑃𝑖,𝑗), 

𝑃𝑖,𝑗 = 𝑃𝑖,𝑗 + 𝑣𝑖,𝑗 
(1) 

Where 𝑃𝑝𝑏𝑒𝑠𝑡𝑖,𝑗 and 𝑃𝑔𝑏𝑒𝑠𝑡𝑖,𝑗 signify the particle best and global best positions, re-

spectively, and 1 ≤ 𝑟1, 𝑟2 ≤  0  are randomly distributed variables. The learning factors 

𝑐0, 𝑐1, 𝑐2 to PSO's appeal, as adjusting these allows for diverse applications. 
In classic PSO, particles are encoded as strings of positions representing multidimen-

sional space, with each dimension acting independently. But in the context of cryptanalysis[7], 
each solution in the parameter space symbolizes a permutation of alphabetic characters cor-
responding to a key, and thus the elements are interdependent. 

2.3. Cryptanalysis using Phantom Gradient Attack 

A.A. Sommervoll [8] proposed a novel cryptanalytical assault known as the phantom 
gradient attack. This technique, rooted in machine learning and backpropagation, seeks to 
recover the encryption key. While traditional neural networks depend on differentiable func-
tion gradients, encryption and decryption rely on discrete functions. The unique contribution 
of this work is to substitute these discrete functions with piecewise differentiable ones, facil-
itating neural network-based key recovery. 

In 2015, Google's DeepDream made the concept of input "training" famous using a 
pretrained network. The phantom gradient attack extends this idea, modeling a cryptosystem 
as a neural network. It substitutes the original discrete functions with piecewise differentiable 
ones that have gradients, termed the phantom gradients. 

In symmetric key encryption, a secret key (𝑘) is employed for both encryption and de-
cryption (shown as Equation (2)). The encryption function is symbolized as 𝑓𝑘, and its in-

verse, used for decryption, as𝑓𝑘
−1. Though easy to find when 𝑘 is known, uncovering 𝑓𝑘

−1 

is deliberately challenging when 𝑘 is concealed. The phantom gradient attack aims to retrieve 

this hidden 𝑘, or more specifically, an input 𝑥∗ for a known function 𝑓 and output 𝑦, so 
that 𝑓(𝑥∗) = 𝑦. 

𝐸𝑛𝑐𝑘(𝑝) = 𝑓𝑘(𝑝) = 𝑓(𝑘, 𝑝) = 𝑐 (2) 

https://publikasi.dinus.ac.id/index.php/jcta/issue/view/374


Journal of Computing Theories and Applications 2024(February), vol. 1, no. 3, Singh, et al. 261 
 

 

Here, both 𝑘∗ and 𝑝∗ must be recovered, though the recovered 𝑘∗ is likely to differ 

from 𝑘 since |𝑘| + |𝑝| is usually much larger than |𝑐|. The authors represent the function 

𝑓𝑝 as a neural network by replacing the functions involved in the encryption with piecewise 
differentiable ones. These substitutes are crucial, as their derivatives are utilized to retrieve 
the key. The loss function serves as a critical indicator of the fidelity between the model's 
predictions and the actual target values during training. However, it does not inherently ac-
count for the validity of the predicted values with respect to the desired range, which is par-
ticularly crucial in scenarios like bit recovery, where the expected outputs are binary. Predic-
tions that fall outside the binary threshold of 0 to 1 hold no practical relevance. To address 
this, an enhanced loss function is implemented, which integrates a penalization term, referred 
to as the "confinement penalty." This term imposes an increasing penalty on predictions as 
they deviate further below 0 or rise above 1, effectively steering the model's outputs towards 
the acceptable binary range. The mathematical representation of this concept introduces a 
penalty ridge in the loss landscape, penalizing out-of-bound values to ensure the fidelity of 
the model’s predictions not just in accuracy but also in adherence to the defined binary con-
straints. This is encapsulated by Equation (3), which quantifies the additional penalty for pre-
dictions situated outside the [0,1] interval. 

punishridge(𝑥) =

{
 
 

 
 
1

2
(𝑥 − 1)2    , for 𝑥 > 1        

0                     , for 0 ≤ 𝑥 ≤ 1
1

2
𝑥2               , for x < 0         

 (3) 

This extra punishment helps in keeping the values within the desired range. 

3. Neural Distinguisher (ND) 

In the field of machine learning, the practice of including additional features is often 
employed to enhance the precision of neural networks. This idea is particularly pertinent to 
the complex domain of neural-aided cryptanalysis, where the ND plays a crucial role. The 
underlying motivation is that the distinguishing accuracy can be increased by utilizing features 
obtained from several ciphertext pairs. The efficacy of the ND is pivotal for the success of 
neural-aided cryptanalysis[5], [9]. A neural network is considered a valid ND if it can achieve 
a distinguishing accuracy greater than 0.5 with randomly chosen ciphertext pairs. An ND that 

processes only a single ciphertext pair can be used to identify 𝑘 incorrectly classified pairs, a 
method that is considered acceptable based on the following rationale: 

• In constructing 𝑁𝐷𝑘, all the ciphertext pairs are generated from different keys, guaran-
teeing the availability of only two kinds of features: those hidden within a single cipher-
text pair and those derived from numerous ciphertext pairs. 

• Suppose the ND, when given a single ciphertext pair, demonstrates high accuracy. In 
that case, this implies that the concealed features within the ciphertext pair offer sub-
stantial evidence that can lead to incorrect classifications. If the new 𝑁𝐷𝑘 continues to 

classify such 𝑘 pairs accurately, it lends credence to the idea that this effectiveness is 
attributable to features extracted from multiple ciphertext pairs. 

4. Machine Learning and Deep Learning based Cryptanalysis 

The scope of Machine Learning and Deep Learning based cryptanalysis is summarized 
here in the perspectives of Block Ciphers and Stream Ciphers. 

4.1. In the perspective of Block Ciphers 

In principle and practise, cryptographic differentiating attacks allow for sophisticated 
cryptanalysis, in which an attacker extracts enough "information" from an encrypted message 
to differentiate it from random data. Expertise using cutting-edge machine learning algo-
rithms to launch cryptographic distinguishing attacks on a variety of public datasets is de-
scribed by Chou et al. [10]. On these datasets, authors test a variety of current and novel 
characteristics and discover that the ciphers' "modes of operation" influence classification 
task performance. When CBC mode is used with a random starting vector for each plaintext, 
performance is quite poor, however when ECB mode is used, performance is relatively 
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excellent for specific datasets. Finally, authors conclude that, contrary to previous research, 
current machine learning approaches cannot extract valuable information from ciphertexts 
generated by modern ciphers running in a sufficiently safe mode, such as CBC, much alone 
distinguish them from random data. 

Danziger et al. [11], explore the use of a neural cryptanalysis method on S-DES input-
output-key data to examine its ability to understand the connections between these compo-
nents. Their findings reveal that the neural network successfully mapped the relationship be-
tween inputs, keys, and outputs, managing to ascertain the correct values for the key bits even 
with a small sample size (approximately 0.8% of the total data). By employing differential 
cryptanalysis on the key space, the authors were able to rationalize the neural network's partial 
success with specific key bits. However, after introducing new s-boxes that were more resili-
ent to the differential attack, the neural network lost the ability to identify any parts of the 
key. 

With the advancement of neural networks in increasingly intricate tasks, they are being 
trained for end-to-end objectives that transcend mere functional specifications. Generally, 
neural networks aren't designed to excel in cryptography, as evidenced by the fact that even 
the simplest ones can't compute XOR, a fundamental component in many cryptographic al-
gorithms. However, as presented by Martin A. et al. (2016). [12], neural networks are capable 
of learning encryption and decryption methods to protect the confidentiality of their data 
against other neural networks, even without explicit instructions for these specific tasks. This 
work not only shows the ability of neural networks to comprehend and selectively apply en-
cryption and decryption but also posits that, although neural networks may never become 
exceptional at cryptanalysis, they could prove to be valuable in interpreting metadata and 
traffic analysis. 

Cryptanalysis focuses on finding and evaluating the vulnerabilities of ciphers and ex-
plores ways to utilize these weaknesses to decipher the plaintext or reveal the concealed cipher 
key. Taking advantage of these weaknesses is often complex and, in numerous instances, has 
proven to be effective only on diminished versions of the ciphers. Focardi et al. [13] employ 
artificial neural networks to augment the cryptanalysts' efforts in exploiting these cipher frail-
ties automatically. By training the networks with data that highlights the weaknesses alongside 
the corresponding encryption key, the network eventually learns to predict or assess the like-
lihood of the key for any given ciphertext. Through the utilization of simple classical ciphers, 
this research introduces the first ciphertext-only attack on substitution ciphers using neural 
networks, thereby demonstrating the efficacy of this novel approach. 

Aidan N. Gomez et al. [14] introduce CipherGAN, an innovative architecture modeled 
on CycleGAN designed to deduce the underlying cipher mapping from unpaired ciphertext 
and plaintext collections. This work illustrates the ability of CipherGAN to successfully deci-
pher language data encoded with shift and Vigenere ciphers, achieving a high level of accuracy 
and handling vocabularies of sizes previously unattained. The authors also outline how to 
adapt CycleGAN for compatibility with discrete data and how to stabilize its training process. 
Furthermore, they establish that the methodology employed in CipherGAN effectively cir-
cumvents the typical issue of uninformative discrimination that often plagues GANs when 
applied to discrete data. 

Mello D. et al. [15] investigated the use of machine learning approaches for identifying 
encryption schemes based only on ciphertexts. The experiment included plain text corpora in 
seven distinct languages, seven encryption techniques, each in ECB and CBC modes, and six 
categorization algorithms. Each cryptographic technique was used to encrypt plain text files 
in both cipher modes. The ciphertexts were then processed to provide metadata, which the 
classification algorithms subsequently employed. The total experiment included not just a 
large number of ciphertexts but also time-consuming metadata compilation and identification 
methods. 

The examination of block ciphers has been a continual focus of interest. In Crypto 2019, 
Gohr [16] put forth a multiple differential cryptanalysis of the SPECK cipher, centering on 
the input difference ∆in= 0x0040/0000. This concept is centered on converting a distin-
guishing challenge into a classification task. The goal here is to differentiate genuine pairs, 

specifically encryptions of plaintext pairs 𝑃, 𝑃′ where 𝑃⨁𝑃′ = ∆in, from arbitrary pairs en-
crypted with no consistent input difference. Gohr contrasted a conventional differential dis-
tinguisher with a deep neural network (DNN)-based distinguisher for 5 to 8 rounds of 
SPECK-32/64 [17], demonstrating that the DNN approach was superior. Gohr calculated 

https://publikasi.dinus.ac.id/index.php/jcta/issue/view/374


Journal of Computing Theories and Applications 2024(February), vol. 1, no. 3, Singh, et al. 263 
 

 

the full DDT for the input difference ∆in, based on the Markov assumption, and subse-

quently used probabilities to classify a ciphertext pair (𝐶, 𝐶′). The following classification 
scheme in form of Equation (4) was adopted. 

classification/categorization = {real,            if DDT
(∆in→ ∆out) >

1

232 − 1
random,    otherwise                                     

 (4) 

Here, reduced-round SPECK-32/64 distinguishers are symbolized as 𝐷𝑛𝑟, and the neu-

ral distinguishers as 𝑁𝑛𝑟 , with 𝑛𝑟 ∈ {5, 6, 7, 8 }  indicating the number of rounds. The 
DNN, illustrated in Figures 2 to 4, is composed of: 
• Block 1: A one-dimensional convolutional neural network (1D-CNN) that employs a 

kernel of size 1, utilizes batch normalization, and incorporates a ReLU activation func-
tion. 

• Blocks 2: From one to ten layers, each consisting of two 1D-CNN with a kernel size of 
3, followed by batch normalization and a ReLU activation function. 

• Block 3: A complex final classification block made up of three perceptron layers, inter-
spersed with two batch normalization and ReLU functions and capped with a Sigmoid 
function. 

 

Figure 2. Gohr's deep neural network's entire pipeline consists of different blocks. Block 1 is the 
starting convolution block. Blocks 2-1 to 2-10 correspond to the residual block, and Block 3 is desig-

nated as the classification block. 

 

Figure 3. Initial convolution block (Block 1). 

 

Figure 4. The residual block (Blocks 2-i). 
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The neural distinguishers produce a real-valued score ranging from 0 to 1 for every pair. 
If the score is 0.5 or higher, the sample is identified as a real pair; if it's less than 0.5, it is 
classified as a random pair. 

Jaewoo So[2] introduces a universal cryptanalysis model that leverages DL to uncover 
the keys of block ciphers using known plaintext-ciphertext pairs. By attacking lightweight 
block ciphers like simplified DES, Simon, and Speck, he demonstrates the viability of em-
ploying DL for cryptanalysis. The outcomes reveal that the DL-based method can effectively 
retrieve key bits if the keyspace is limited to 64 ASCII characters. While traditional cryptanal-
ysis typically occurs without restricting the keyspace, only reduced-round versions of Simon 
and Speck have been successfully assailed in this way. Even when a text-based key is utilized, 
the suggested DL-driven cryptanalysis can successfully breach the full rounds of Simon32/64 
and Speck32/64. These findings suggest that DL technology may serve as a valuable instru-
ment in the cryptanalysis of block ciphers, especially when the keyspace is confined 

Kopal et al. [9] built a preliminary version of an artificial neural network capable of dis-
tinguishing between five classic ciphers: basic monoalphabetic substitution, Vigenere, Play-
fair, Hill, and transposition. The network is built using Keras and Google's TensorFlow 
framework. The current state of research into utilizing such networks to detect encryption 
type is presented in this publication. Stamp launched a new MysteryTwister C3 challenge 
named "Cipher ID" in 2019, and they tried to categorize all of the ciphers in it. About 90% 
of the ciphertexts in the challenge are properly classified by the network. In addition, the 
study discusses the current state of encryption type detection. 

A. Baksi et al. [1] find that all-in-one differential cryptanalysis is typically more effective 
than utilizing just a single differential trail. However, it often becomes incredibly challenging 
to completely compute when the cipher is non-Markov or possesses a large block size. Draw-
ing inspiration from Gohr's work, the authors attempt to imitate the all-in-one differentials 
for non-Markov ciphers in their research by employing machine learning. They gauge the 
results using the 8-round distinguisher of GIMLI-PERMUTATION as a standard. For the 
training process, 218 data samples were utilized, and the number of epochs was capped at 20 
to prevent overfitting with higher numbers. The authors explored various neural network 
architectures, encompassing the basic Multi-layer Perceptron (MLP), Convolutional Neural 
Network (CNN), and Long Short-Term Memory Network (LSTM). 

Benamira A. et al. [5] provide an in-depth analysis and comprehensive elucidation of the 
neural distinguisher's inner mechanics, as initially proposed by [16]. They begin by examining 
the classified sets, attempting to discern patterns that might lead to a better comprehension 
of Gohr's findings. Through experimental evidence, they demonstrate that the neural distin-
guisher's reliance is predominantly on the differential distribution concerning the ciphertext 
pairs. It also depends on the differential distribution in both the penultimate and antepenul-
timate rounds. To corroborate these insights, the authors create a distinguisher for the 
SPECK cipher relying purely on cryptanalysis without utilizing any neural network. This ap-
proach essentially achieves the same accuracy and efficiency as Gohr's neural distinguisher, 
as referenced in [16]. 

Yi Chen et al. [18] discuss the ND introduced by Gohr at CRYPTO'19 [16], which is 
founded on plaintext difference. The ND evaluates a ciphertext pair, classifying it as either a 
real or random pair. While Benamira et al. offered a more detailed examination of how two 
specific NDs function against Speck32/64 [5], three significant research questions remain, 
sparking interest among researchers. These questions concern (i) the characteristics of a ci-
phertext pair that the ND learns, (ii) the way to elucidate various phenomena connected to 
NDs, and (iii) other potential applications of machine learning within traditional cryptanalysis. 
In their work, the authors address some of these research gaps. They first introduce the Ex-
tended Differential-Linear Connectivity Table (EDLCT), a universal tool that characterizes a 
cipher. They then design features that correspond to the EDLCT to describe a ciphertext 
pair. Based on these features, they construct different machine learning-based distinguishers, 
including the ND. Additionally, the authors employ the EDLCT to clarify the phenomena 
associated with NDs. 

The usage of deep learning (DL) models in a known-plaintext context is investigated in 
B.Y.Chong et al.[19]. The models' purpose is to use DL approaches to forecast a cipher's 
secret key. Simplified Data Encryption Standard (S-DES), Speck, Simeck, and Katan are used 
to test the DL approaches against different cyphers. The authors look at the categorization 
of the entire key set in S-DES, and the results are better than a random guess. However, 
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authors discovered that applying the same categorization approach beyond the 2-round Speck 
is problematic. They also show that deep learning models trained on known-plaintext data 
can recover the S-DES random key effectively. However, the same strategy has had less suc-
cess when used with newer ciphers such as Speck, Simeck, and Katan. 

Zezhou Hou et al. [20] outline a method for constructing the ciphertext pairs needed for 
differential cryptanalysis using deep learning. Utilizing this approach, they develop differential 
distinguishers for SIMON32 with deep residual neural networks for both 9-round and 8-
round configurations. Furthermore, they investigate how the input difference patterns influ-
ence the accuracy of the deep learning-based distinguisher. Specifically, they find that for 
input differences with a Hamming weight of 1, the accuracy of the 9-round distinguisher 
varies between the first 16 bits and the last 16 bits when dealing with non-zero bit positions. 

Jain et al. [3] construct a Deep Neural Network-based differential distinguisher for the 
round reduced lightweight block ciphers PRESENT and Simeck, which is influenced by pre-
vious work on differential distinguishers. The state-of-the-art technique is improved and used 
to two fundamentally dissimilar block ciphers, i.e., PRESENT-80 and Simeck64/128. The 
acquired findings show that our cryptanalysis approach is ubiquitous. With excellent accuracy, 
the suggested approach can differentiate random data from encrypted data acquired after 6 
rounds of PRESENT and 7 rounds of Simeck encryption. In addition, we investigate a novel 
strategy for selecting excellent input differentials that, to our knowledge, has never been in-
vestigated before. 

In the study by Kimura et al. [21], deep learning-based output prediction attacks are 
introduced in a blackbox setting. The researchers considered two toy Substitution-Permuta-
tion Network (SPN) block ciphers (small PRESENT and small AES) and one toy Feistel 
block cipher (small TWINE) as part of their preliminary investigation. Deep learning models 
can be constructed using the maximum amount of plaintext/ciphertext pairs, allowing for the 
precise calculation of the rounds where full diffusion occurs. Subsequently, the paper explores 
whether the evaluation results obtained from attacks against these three toy block ciphers can 
be generalized to block ciphers with larger block sizes, such as 32 and 64 bits, building on the 
initial investigations. 

Tarun Y. et al. [22] reveal how machine learning applications offer favorable outcomes 
for differential cryptanalysis. The authors introduce a novel method that enhances the tradi-
tional differential distinguisher by incorporating machine learning (ML). They utilize an r-
round classical differential distinguisher to form an s-round ML-based differential distin-
guisher. This newly devised s-round ML distinguisher aids in the creation of an (r+s)-round 
differential-ML distinguisher. Notably, this approach achieves a more complex distinguisher 
while simultaneously reducing the data complexity. 

Wenqiang T. et al., [23], examined the safety of the SIMON cipher under neural differ-
ential cryptanalysis. They first show that SIMON is a non-Markov cypher theoretically, im-
plying that typical differential cryptanalysis conclusions may be erroneous. Then, for SI-
MON32/64, we train a residual neural network to generate the 7, 8, and 9-round neural dis-
tinguishers. Furthermore, authors briefly discussed the effect of different residual network 
structures on the training results of neural distinguishers. 

Chen et al. [24] present a novel Neural Distinguisher (ND) that takes into account several 
ciphertext pairings at the same time. Furthermore, separate keys are used to create several 
ciphertext pairings. The idea is that using characteristics acquired from several ciphertext pair-
ings can increase distinguishing accuracy. This work used this novel ND on five different 
cyphers to validate this motivation. Experiments have shown that using numerous ciphertext 
pairs as input improves accuracy. 

On Speck32/64 and Simon32/64, Bao et al. [25] designed the first practical 13-round 
and enhanced 12-round neural-distinguisher-based key-recovery attacks, as well as 16-round 
key-recovery assaults. The findings support the use of machine-learning methods in crypta-
nalysis. The major reason, however, is due to the enhancements made to the original compo-
nents. The output difference of a differential route is important to the ND, whereas the input 
difference is unimportant. As a result, several differentials can be prepended to ND as long 
as the output difference is the same. Surprisingly, many such differentials can share some 
neutral bits. Using such differentials might allow data to be reused, reducing data complexity 
marginally. 

Against Simon and Simeck, Jinyu et al. [26] created neural distinguishers (NDs) and re-
lated-key neural distinguishers (RKNDs). Simon32/64's ND and RKND achieve 11-, and 11-
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round accuracy of 59.55 percent and 97.90 percent, respectively. The ND achieves 60.32 per-
cent accuracy in 13 rounds for Simon64/128, whereas the RKND achieves 95.49 percent. 
Simeck32/64 produces ND and RKND of 11- and 14-round, with accuracy of 63.32 percent 
and 87.06 percent, respectively. For Simeck64/128, authors create 17-round ND and 21-
round RKND with accuracy of 64.24 percent and 62.96 percent, respectively. For Si-
mon32/64, Simon64/128, Simeck32/64, and Simeck64/128, these are currently the longest 
(related-key) neural distinguishers with better precision. 

Zhang et al.,[27] employed multiple parallel convolutional layers at the core of their net-
work structure to train a neural distinguisher. This approach was inspired by the Inception 
Blocks in GoogLeNet and aimed to capture higher dimensional information. Through this 
method, they enhanced the accuracy of the (5-8)-round neural distinguisher and developed a 
new 9-round neural distinguisher specifically for Speck32/64. They also increased the accu-
racy of the (7-11)-round neural distinguisher and trained a new 12-round neural distinguisher 
for Simon32/64. In addition, the authors extended Gohr's concept of neutral bits. This ex-
tension was implemented to meet the need for a uniform distribution among various plaintext 
pairings, particularly in key recovery attacks. 

Traditional symmetric cryptanalysis has seen incremental gains over time, prompting in-
dividuals to examine other options. Nicoleta-Norica et al., (2022) [28] investigates Gohr's[16] 
depth-10 and depth-1 neural distinguishers in order to see if smaller or better-performing 
distinguishers for Speck32/64 exist. Authors investigate if the performance of a smaller net-
work that accomplishes the same results may be enhanced as well. They also investigate if 
manipulating the input prior to feeding it to the pruned depth-1 network improves its perfor-
mance. Convolutional autoencoders were discovered to be capable of effectively reconstruct-
ing the ciphertext pairs, and their trained encoders were utilized as a preprocessor before 
training the pruned depth-1 network. 

4.2. In the perspective of Stream Ciphers 

Girish M. et al. [28] developed a deep learning-based technique for detecting biases in 
stream ciphers in the black-box analysis model with the idea that deep learning algorithms 
would be suitable for cipher data. The goal of the suggested approach is to forecast the ap-
pearance of an output bit/byte at a specified place in the keystream created by a stream cipher. 
The authors tested their approach on the RC4 stream cipher and its upgraded form RC4A 
and then went over the findings in depth. The approach is also applied to two other stream 
ciphers, Trivium and TRIAD. The suggested approach can detect bias in RC4 and demon-
strate that it does not exist in its enhanced counterpart or the other two ciphers. Focusing on 
RC4, the authors compare methodology and observations with various current approaches, 
demonstrating that their procedure is clearer and less difficult than the others. 

As this domain being an emergent and challenging interdisciplinary research field, the 
substantial body of significant scholarly work in the area of ML-based cryptanalysis began to 
emerge prominently around 2019. Since that juncture, a significant amount of the research 
has been oriented toward ML applications within the realm of block cipher cryptanalysis. 
Conversely, the literature concerning the application of ML to stream cipher cryptanalysis 
remains relatively sparse. The application of Machine Learning (ML) to the cryptanalysis of 
stream ciphers, as opposed to block ciphers, encounters distinct obstacles arising from the 
fundamental structural variances between these two cipher categories. A technical exposition 
of the computational challenges and analysis is presented as follows: 
• Stream ciphers operate on the principle of encrypting plaintext sequentially - bit by bit 

or byte by byte - thereby producing a keystream of equivalent length to the plaintext. 
This continuous output stream lacks the block-wise structure that might provide discrete 
and consistent patterns for ML models to learn and exploit. 

• The security of stream ciphers is highly contingent on initial conditions, such as the 
secret key and initialization vector. Even minute alterations in these initial parameters 
can result in a drastically altered keystream, a phenomenon analogous to the 'butterfly 
effect' in chaos theory. This sensitivity introduces an additional layer of complexity for 
ML models, which would require an enormous amount of data to learn the nuances of 
such a highly dynamic system. 

• Stream ciphers are designed to generate highly complex keystreams that approximate the 
properties of a random sequence. The high entropy of the output - intended to ensure 
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cryptographic security - poses a significant challenge for ML algorithms, which typically 
require discernible patterns or statistical anomalies to make accurate predictions. The 
apparent randomness of the keystream complicates the task of identifying features that 
are indicative of the underlying encryption process. 
These computational idiosyncrasies of stream ciphers make them a less tractable target 

for ML-based cryptanalysis compared to block ciphers, whose fixed-size blocks and iterative 
rounds of well-defined transformations present a more patterned and structured environment 
for ML algorithms to analyze and learn from. 

5. Some Experimental Scenarios 

Experimental scenarios on some state-of-the-art methodologies are provided in this sec-
tion. The experiments are performed in perspectives of Monoalphabetic ciphers' cryptanalysis 
and polyalphabetic ciphers' cryptanalysis using slippery hill climbing, Particle Swarm Optimi-
zation (PSO) based cryptanalysis, and Deep Neural Networks. 

5.1. Monoalphabetic ciphers' cryptanalysis 

The frequency distribution of individual characters remains constant, meaning that a 
specific letter in the ciphertext appears the same number of times as it does in the corre-
sponding plaintext. Repeated patterns in the plaintext also show up in the ciphertext. Often, 
the cryptanalyst combines two approaches, i.e. (Statistical analysis and Pattern Recognition), 
and supplements them with systematic guesses. One of such experimental scenarios is de-
picted below.  

 
# Message 
0 Hwduythzwwjshnjx wzs ts f inxywngzyji uzgqnh qjiljw hfqqji gqthphmfns 
1 Gvctxsgyvvirgmiw vyr sr e hmwxvmfyxih tyfpmg pihkiv geppih fpsgoglemr 
2 Fubswrfxuuhqflhv uxq rq d glvwulexwhg sxeolf ohgjhu fdoohg eorfnfkdlq 
3 Etarvqewttgpekgu twp qp c fkuvtkdwvgf rwdnke ngfigt ecnngf dnqemejckp 
4 Dszqupdvssfodjft svo po b ejtusjcvufe qvcmjd mfehfs dbmmfe cmpdldibjo 
5 Cryptocurrencies run on a distributed public ledger called blockchain 
6 Bqxosnbtqqdmbhdr qtm nm z chrsqhatsdc otakhb kdcfdq bzkkdc aknbjbgzhm 
7 Apwnrmasppclagcq psl ml y bgqrpgzsrcb nszjga jcbecp ayjjcb zjmaiafygl 
8 Zovmqlzroobkzfbp ork lk x afpqofyrqba mryifz ibadbo zxiiba yilzhzexfk 
9 Ynulpkyqnnajyeao nqj kj w zeopnexqpaz lqxhey hazcan ywhhaz xhkygydwej 
10 Xmtkojxpmmzixdzn mpi ji v ydnomdwpozy kpwgdx gzybzm xvggzy wgjxfxcvdi 
11 Wlsjniwollyhwcym loh ih u xcmnlcvonyx jovfcw fyxayl wuffyx vfiwewbuch 
12 Vkrimhvnkkxgvbxl kng hg t wblmkbunmxw inuebv exwzxk vteexw uehvdvatbg 
13 Ujqhlgumjjwfuawk jmf gf s vakljatmlwv hmtdau dwvywj usddwv tdgucuzsaf 
14 Tipgkftliivetzvj ile fe r uzjkizslkvu glsczt cvuxvi trccvu scftbtyrze 
15 Shofjeskhhudsyui hkd ed q tyijhyrkjut fkrbys butwuh sqbbut rbesasxqyd 
16 Rgneidrjggtcrxth gjc dc p sxhigxqjits ejqaxr atsvtg rpaats qadrzrwpxc 
17 Qfmdhcqiffsbqwsg fib cb o rwghfwpihsr dipzw zsrusf qozzsr pzcqyqvowb 
18 Pelcgbpheerapvrf eha ba n qvfgevohgrq choyvp yrqtre pnyyrq oybpxpunva 
19 Odkbfaogddqzouqe dgz az m puefdungfqp bgnxuo xqpsqd omxxqp nxaowotmuz 
20 Ncjaeznfccpyntpd cfy zy l otdectmfepo afmwtn wporpc nlwwpo mwznvnslty 
21 Mbizdymebboxmsoc bex yx k nscdbsledon zelvsm vonqob mkvvon lvymumrksx 
22 Lahycxldaanwlrnb adw xw j mrbcarkdcnm ydkurl unmpna ljuunm kuxltlqjrw 
23 Kzgxbwkczzmvkqma zcv wv i lqabzqjcbml xcjtqk tmlomz kittml jtwkskpiqv 
24 Jyfwavjbyylujplz ybu vu h kpzaypibalk wbispj slknly jhsslk isvjr johpu 
25 Ixevzuiaxxktioky xat ut g joyzxohazkj vahroi rkjmkx igrrkj hruiqingot 
26 Hwduythzwwjshnjx wzs ts f inxywngzyji uzgqnh qjiljw hfaqji gathphmfns 

5.2. Polyalphabetic ciphers' cryptanalysis using slippery hill climbing 

T. Kaeding[6], discussed slippery Hill-climbing technique for ciphertext-only cryptanal-
ysis of periodic polyalphabetic substitution ciphers. The explanation of this approach is given 
in section 2.1. The obtained experimental results are shown as follows. 

 
Input Message String: 
CILPUOYGKEQXLACGYVNATJCWIVFDELUKGICXMDMXNULIULQHGEJIPMLPLYRQEKLR 
WAISGXUMZVYYIALNOCELTWAMFNRGBMOCWCSITYVPKKIMUYPAHUFFTLBEJGIRTWDC 
UGDMKXAFHORITKZLDOVNATACDPUBGBSJWIVPTBAUDUASHMHQZGCIWXKGGVYCSXTM 
OKKGDGIFDTXCLTZILPBCSMVYZGSMUFLAKCEGRTSBHVFLPMVPVCEBPETMVVRLNHAF 
HTKMLTYBVYFSAWOYYGUGHMBPEGUYIELYVVFLTHMRKGDRWXTYFJZLTKFUDUFJSTUB 
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WIVQPIWCUUNCGXURKCGNNPVPNKEELBAFLVSSIFLAKCEGRTSKHEYYCBZKVERLQXLY 
VKVPIHDMUMNGIAAFDPVITVAPRPZAHTZWRWTYCLLCKQNCKXYWWIZLVBZARPECRMLB 
DLLBXVPMXUUMHXVDVWGCGZSSHHZVTWTMVVFDIALKHEYYCBZKVKENATJCMWIRAXHT 
LPXSHPPRKVYCEKVZOGDMUPOYWVFBDPPRKCYCPIVDRNUYCWBLVVRZAXLVSNFQXOLQ 
QQIKPESWZGNMIEKFDXVNATJCGQECDKAURQWMIKVUQFVRDGHRRTJYCWWYFMVBDNAR 
KGGIPVLULVYQPGKZDIJYCWIPHGQCQEVANUKMRHURDKERWXLVSNFQXHUYQFZRWBUI 
HXVLWTYPBOZEWMOYYGSCTGIMQXZLRXKRKCKRWTAGVYYYIPLQKQLISWVGQVYGHVHQ 
HDLRIGMMUVLLPMLIBVYCTQWIRUZTTLDCUGEMIMOCRPCWIAPLJYVADNSBVGVGCLPB 
HVYCHTMCVKKRXGNSQFVPIALKZCJIYHEPKENRAZUVMNYVADNSBQVJCTTUWGGKYXEZ 
ZXVYYKBUEJQKRWBZDDTZRHXLKHFTPPSFRRFVQIKVWLVRLNMOGQIKFXLDCONGPDML 
AWGUKILAFDXVZTXUGPRFPITURDVIMBXAGPGRLSPLLHGUCSMVIQQNUWTARKKIKXZO 
RDNCFPOLZHGEYQHBRDHKCGTXSLEBAPESZDEBRDALYGSLYGMLPVIRPGRNMWCGNGHC 
YOVFADGAGQWVRGRPLIVFAGTJIWIVQPYLFHMECLFLRRQNCAEAMDUBKTMVIHCMCQNA 
RKGUMRNTCQVIRTTTPHVICPMLBWQRQPYLBLUKYCVLBRYERWXIMUTZBDKDGWIDMHMV 
DWIVEJITYBVNVYKBUEDUDYAEACDOKMLTAAKQMCGNZYVYVUDKRCGQECDYAFHOYYSC 
VGQGURWXZYVHIMBMOCVCGNTKZYQFNYHTUCARVPXXUAHFSMBUKGVRFQPELVSGIRHH 
OCZQIITWDGWILQLTAAKKEETALCARCMHBCCVHFPPGFAKCEETLTMQKKMGBUEYKSPPM 
PMQCEBIXTNHTRRIKLYQFXCCXYYONPITXWGQILQRTSKLVKYZXZYVRVAXTSRHOGCGT 
TCQVKMSHAFDVNMGDMSONKGBXHLGYVUTKLEOCUMUMOCFQDNPGFYQFKFTXENHTKGHX 
HDWGIQTOLLWGVLWHBPVYVUTKLEHVKGCZAGUGUYCWHQHKXFIXLLDRGPDTIFHFZZTZ 
HLWQNMCWLPLHNCLHBJGORLPZLRRURTTMOCSCGCGLISWGMCCMBYO 
 
Best Plaintext: 
ARNABHADINSISTEDWEPLACETHEHOLEWHEREITWOULDNTBESEENLATERIWASPRETT 
YSURENOWTHATHEPLANNEDTOCLAIMTHETABLEFORHISOFFICESOHESUGGESTEDWER 
EMOVETHEMAKERSNAMEPLATEANDDRILLTHEREITWASJUSTASWELLHEDTDTHEDEMOL 
ITIONCHARGEWASLINKEDTOAWEBOFMECHANICALDETONATORSANDALMOSTANYOTHE 
RTOWARDSWOULDHAVEDISTURBEDATLEASTONEOFTHEMTHEMACHINERYWASOLDANDT 
HESAPPERSWERENTHAPPYWORKINGWITHITBUTMECHANICALMECHANISMSCANBEEAS 
IERTOWORKWITHTHANELECTRONICSASYOUCANSEEHOWEVERYTHINGISCONNECTEDA 
JUDICIOUSDOSEOFSUPERGLUEFIXEDMOSTOFTHEMECHANISMSINPLACEFUSTLEAVI 
NGUSWITHTHEPROBLEMOFWHATTODOWITHAHEAPOFOLDANDUNSTABLEEXPLOSIVESN 
ORMALLYWEWOULDHAVEPLACEDONEORTWOOFOUROWNDETONATORSANDPACKEDOUTTH 
EPLACEWITHSANDBAGSANDBREEZEBLOCKSTOCONTAINTHEEXPLOSIONANDITHINKE 
VENHARRYMIGHTHAVEBEENCONVINCEDTHATTHATISWHATWESHOULDDOINTHISCASE 
BUTUNFORTUNATELYTHEEXPLOSIVESWERENOTTHEONLYTHINGWECOULDSEEINSIDE 
THESAFESITTINGUNDERTHEMWASASLIMBLACKBOOKWECOULDNTSEEANYDETAILSBU 
THAVINGGOTTHISFARITSEEMEDCRAZYTODESTROYITANYTHINGTHISWELLPROTECT 
EDMUSTHAVEBEENIMPORTANTATSOMETIMEANDWENEEDEDTOKNOWWHATTHISMIGHTA 
LLHAVEBEENABOUTAFTERAQUICKCALLBACKTOHEADQUARTERSHARRYGOTAPPROVAL 
TOCONTINUETRYINGTOCRACKTHESAFEHEKNEWMETOOWELLTOASKMETOLEAVEBUTTH 
EDOCUMENTSTEAMRETREATEDTOASAFEDISTANCEDOWNTHECORRIDORWITHMOSTOFT 
HEGUARDSLEAVINGASMALLTEAMTOWATCHOVERUSASWEWORKEDONEOFTHEMHADJOIN 
EDTHESASFROMTHESAPPERSANDWASANEXPERTENCEDBOMBDISPOSALEXPERTSOHEW 
ORKEDWITHUSWATCHINGTHEEXPLOSIVESFORANYCHANGESMONITORINGVIBRATION 
ANDTEMPERATUREANDGENERALLYKEEPINGUSCALMITTAKESASPECIALTEMPERAMEN 
TTODOTHATWORKFULLTIMEANDWEWEREGLADOFTHECOMPANYANDTHEEXPERTISEAFT 
ERSEVENTEENHOURSWEWEREGETTINGTIREDANDASEIGHTEENAPPROACHEDIBEGANT 
OWONDERIFWEWOULDMANAGETOSAVETHEPAPERSBUTEVENTUAL 
 
Best key alphabets: 
[CDEFGHIJKLMNOPQRSTUVWXYZAB] 
[RSTUVWXYZABCDEFGOIJKLMNHPQ] 
[YZABCDEFGOIJKLMNPQRSTUVHWX] 
[PQRSTUVWXFZABCDEMGHIJKLONY] 
[TUVWXYZABCDEFGHIJKLMNOPQRS] 
[HIJKLMNOPGRSTUVWXYZABCDEFQ] 
[YZABCDEFGHIJKLMNXPQRSTUVWO] 
[DEFGHMIKLINOPQRSTUVWXYZABC] 
 
fitness: -9.5534 

5.3 Particle Swarm Optimization (PSO) based cryptanalysis 

Particle swarm optimization (PSO) [7] is a population-based, self-adaptive search opti-
mization technique. The approach, in detail, is presented in section 2.2. An experimental in-
stance of the obtained output is depicted as follows. 
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Key=lssahznjcja Fitness=49 
Key=lssahznacja Fitness=61 
Key=lssahzkacja Fitness=74 
Key=lsschzkacja Fitness=84 
Key=lsschzkahja Fitness=94 
Key=lsschzkahca Fitness=106 
Key=lsschzkahch Fitness=115 
Key=nsschzkahch Fitness=122 
Key=nsschxkahch Fitness=127 
Key=nsschxdahch Fitness=133 
Key=nsschxdwhch Fitness=151 
Key=nssccxdwhch Fitness=157 
Key=nssccxdwhyh Fitness=163 
Key=nssccxdwhyd Fitness=171 
Key=assccxdwhyd Fitness=185 
Key=azsccxdwhyd Fitness=198 
Key=azbccxdwhyd Fitness=214 
Key=azbycxdwhyd Fitness=248 
 
Coputationally Empirical Key=azbycxdwhyd 
 
Plain Results: your summarization should include a brief definition of the 
type of problem being solved by the swarm intelligence algorithm as well as 
discussing how a candidate solution is represented by a particle in the case 
of pso or an ant in the case of aco and how the evaluation of a candidate 
solution is compute d by a fitness quality function. in the case of aco using 
a local heuristic function, this should be discussed too. your essay must 
also discuss the stre ngths and weaknesses of the discussed types of swarm 
intelligence algorithms in the context of the application or type of problems 
addressed in your essa y. note that there is no need to explain, in this 
short essay, concepts or applications that were already explained in the 
lectures. 

5.4 Attack on Round-Reduced Speck32/64 Using Deep Learning (Gohr's Approach) 

In Crypto 2019, Gohr [16] introduced a method for performing multiple differential 

cryptanalysis on the SPECK cipher, specifically focusing on an input difference of ∆in=
0x0040/0000. This approach aimed to simplify a distinguishing problem by converting it 
into a classification issue. The details of this methodology are elaborated in section 4.1. To 
generate training and validation data, Gohr used the Linux random number generator 

(/dev/urandom), ensuring uniformly distributed keys 𝐾𝑖  and plaintext pairs 𝑃𝑖  with the 

specified input difference ∆= 0x0040/0000. The data also included a vector of binary-val-

ued real/random labels 𝑌𝑖 . Through this process, a dataset of 107 samples was created for 
training purposes. The optimization of this method was conducted against mean square error 
loss, with a minor penalty added for L2 weights regularization. This was achieved using the 
Adam optimization algorithm. 

 

Computational Libraries and Simulation Setup: 

Python3, TensorFlow library, and Keras were used in experimentation as an interface for 
TensorFlow. We have executed the experiments on a high-end workstation machine having 

128 Gb RAM and (Nvidia 2080 𝑇𝑖 ×4) GPU cards present. 
 

Input format for Speck 32/64: 

In this neural network architecture, the first convolution block (Block 1) accepts a 4×16 ma-
trix as input, where each row represents a 16-bit value arranged in the order: 𝐶𝑙, 𝐶𝑟, 𝐶𝑙

′, 𝐶𝑟
′ . 

A convolution layer with 32 filters is applied to this input. Given the kernel size of one in this 

1D CNN, it converts the values 𝐶𝑙, 𝐶𝑟, 𝐶𝑙
′, 𝐶𝑟

′  into a series of filters (𝑓𝑖𝑙𝑡𝑒𝑟1, 𝑓𝑖𝑙𝑡𝑒𝑟2,…, 

𝑓𝑖𝑙𝑡𝑒𝑟32). These filters represent non-linear combinations of the original features, following 
the ReLU activation function, with the specific combinations determined by the inputs and 
weights learned by the 1D-CNN. The output from the first block is then connected to the 
input and added to the output of the next layer within the residual block. The 1D-CNNs in 
these residual blocks (referred to as Blocks 2-i) feature a kernel of size 3, padding of size 1, 
and a stride of size 1, maintaining the temporal dimension consistent across different layers. 
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To preserve significant input signals and prevent them from being lost between layers, the 
output from each layer is connected to its input and added to the output of the subsequent 
layer. A residual block produces a feature tensor of 32×16, which is then flattened into a 
512×1 vector. This flattened vector is forwarded to the final classification block. It undergoes 
processing through three perceptron layers, also known as MLP. Batch normalization and 
ReLU activation functions are applied to the first two layers, while a final sigmoid activation 
function is utilized for binary classification. 
 

ResNet module: 

The initial layer of the ResNet Architecture proposed by Gohr consists of an input layer. The 
input layer takes in the size of (number of blocks × word_size × 2). The input is next directed 
to the first block, where it undergoes processing through a 1D-CNN with a kernel size of 1. 
This is followed by batch normalization and a ReLU activation function. Next, the output of 
the Block 1 is passed on to the second block. The second block is the modular unit of which 
we can set the number of layers. For our experiments, we set one to ten layers, each consisting 
of two 1D-CNN with a kernel size of 3, each followed by batch normalization and a ReLU 
activation function. The final classification layers are included in block 3. It comprises three 
perceptron layers separated by two batch normalization and ReLU functions and finished 
with a Sigmoid function. 

 

Accuracy and efficiency of the Neural Distinguishers: 

The neural distinguisher assigns each pair a real-valued score ranging from 0 to 1. If the score 
is 0.5 or higher, the sample is identified as a real pair; if it's less, the sample is labeled as a 
random pair. For five rounds, the ND outputs the classification accuracy of ≈ 92.61%. The 
performance and results are depicted in Figure 5. 

 

Figure 5. An instance screenshot of results. 

6. Conclusion and Consolidated Observations 

Traditional symmetric cryptanalysis has seen incremental gains over time, prompting in-
dividuals to examine other options. Deep learning has lately gained a lot of attention as a 
result of substantial improvements in study fields like computer vision and speech recogni-
tion, thus it wasn't long before cryptography experts started to think about Deep Neural Net-
works (DNNs). The scope and practicality of machine learning, deep learning, and other sto-
chastic optimization approaches for cryptanalysis are investigated in this work. This research 
also looks at the most recent state-of-the-art advancements in this subject. 

6.1. Future Scope 

The research in this direction has an enough possibility to look into. Most of the state-
of-the-art approaches have considered Simon and Speck lightweight block ciphers in their 
experiments. So, apart from this, other ciphers' generated training data can also be considered 
for particular cryptanalysis exploiting DNNs. In addition to this, the language processing and 
translation models, Inverse Reinforcement Learning, Neural Machine Translation modeling 
mechanisms are also having a good potential for ciphertext-only attack. 
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