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Abstract: This study focuses on solving the green economic load dispatch problem by considering the 

presence of green energy sources, including wind energy and solar power plants. The main objective 

function of the whole study is to minimize the total fuel cost (TFC) of all the thermal generating sources 

(TGSs) in the system. Moreover, the multiple selection of all TGSs is also evaluated. Fire hawk opti-

mization (FHO) and the Zebra optimization algorithm (ZOA) are applied to solve the problem of 

achieving the best TFC value and satisfying all the constraints involved. The results indicated that ZOA 

can achieve a better optimal solution compared to FHO. Particularly, the results obtained by ZOA are 

completely superior to FHO in all comparison criteria at two load demand levels, such as Best TFC 

value (Best.Cost), Average TFC value (Aver.Cost), and Maximum TFC value (Max.Cost). On top of 

that, ZOA is the only algorithm of two applied ones providing the fast convergence capability to the 

optimal value of the main objective functions in two cases of load demand levels. Therefore, ZOA is 

an efficient search method to deal with such GELD problems.     

Keywords: Green economic load dispatch; Solar power plant; Wind power plant; Multiple fuel selec-

tion; Fire hawk optimization algorithm; Zebra optimization algorithm.   

 

1. Introduction 

Finding the optimal solution to the economic load dispatch problem (ELD) plays an 
important role in power system operation [1]. The main purpose of solving the ELD is to 
determine the optimized generation for each thermal generating source (TGS) in order to not 
only fulfill load demand but also minimize fuel consumption costs and satisfy all related con-
straints [2]. In the old-fashioned ELD problem (OELD), TGs are the only generation source 
in charge of powering the whole power system. However, the operation of these TGSs un-
leashes different emissions that negatively affect human life and the environment. In this 
circumstance, the integration of green energy sources (GESs), including wind power plants 
(WPPs) and solar power plants (SLPs), has become a rising trend and is also recognized as a 
perfect fit to partly reduce the negativities caused by the huge number of TGSs on the earth. 
By following the trend, OELD is modified with the evaluation of different types of GESs 
and becomes a green economic load dispatch problem (GELD).  

Similar to OELD, GELD is also a complex optimization problem; while its scale be-
comes larger accompanied by a wide range of complicated constraints, the use of classical 
computing methods such as the Gradient [3], the Jacobian matrix [4] or the Gauss-Siedel 
method [5] are impossible to reach the optimal solution. However, meta-heuristic algorithms 
have been consistently proposed and developed to deal with such large-scale and highly com-
plex optimization problems. In fact, meta-heuristic algorithms have proven to be the most 
capable searching method to find the optimal solution for economic and engineering prob-
lems, and GELD is not an exception. Many studies applied different meta-heuristic algo-
rithms to solve OELD and GELD, such as the Harmony search algorithm (HSA) [6], Mod-
ified cuckoo search algorithm (MCSA) [7], Adaptive cuckoo search algorithm (ACSA) [8], 
Dragonfly algorithm (DA) [9], Firework algorithm (FWA) [10], adaptive simulated annealing 
and genetic operators (GO-ASA) [11],  Whale optimization algorithm (WOA) [12], moth-
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flame optimization algorithm based on position disturbance updating (MFA-PDU) [13], 
Grasshopper optimization algorithm (GOA) [14], Nondominated-Sorting Grey Wolf Opti-
mizer Algorithm (NS-GWOA) [15], Marine predator optimization algorithm (MPA) [16], the 
improved version of Mayfly optimization algorithm (IMOA) [17], astute black widow opti-
mization (ABWO) [18], the equilibrium optimizer (EO) [19], the multi-objective multi-verse 
optimization (MOMVO) [20] 

By fully understanding and acknowledging the cutting-edge characteristics of these algo-
rithms compared to the classical ones, this study also applied two novel meta-heuristic algo-
rithms, including the fire hawk optimization (FHO) [21] and the zebra optimization algorithm 
(ZOA) [22] to determine the optimal solution to the GELD with the main objective function 
of minimizing the total fuel cost of thermal generating sources. The selection of FHO and 
ZOA for solving the considered problem in the study is based on the following terms: 1) 
ZOA and FHO are the novel meta-heuristic algorithms proposed in 2022 and 2023, respec-
tively. 2) In the developing phase, these algorithms are evaluated with various benchmark 
functions for their performance. 3) FHO and ZOA are rapidly applied to solve different op-
timization problems, both engineering and non-engineering problems, and reach better re-
sults when compared to previous methods. Particularly, the application of FHO can be found 
in [23], [24], and [25], while the implementation of ZOA is assessed in [26], [27], and [28]. 
FHO and ZOA are inspired by the living practices of animals in wildlife. Specifically, FHO 
is formed by simulating the hunting behavior of the fire hawk, while ZOA is proposed based 
on imitating the movement of zebra in foraging and defending from its enemies. According 
to the authors, both FHO and ZOA have proven their capability compared to predecessors 
while dealing with various optimization problems, including economic and engineering opti-
mization problems.  

The novelties and the striking contributions of the study are summarized as follows: 
1. Successfully apply two novel meta-heuristic algorithms to solve one of the most critical 

problems in power system operation, GELD. 
2. Indicated the best algorithm to solve the considered problems between the two by eval-

uating different criteria, and that is ZOA. 
3. The presence of both solar and wind energy is considered simultaneously. Besides, the 

constraint of multiple fuel selection for all TGSs is successfully satisfied in the process 
of solving the GELD. 

4. Provide the typical reference for using green energy in power systems to alleviate envi-
ronmental damage. 
In addition to the introduction, other sections of the paper are structured as follows: 

Section 2 will present the main objective function and the constraints; Section 3 will briefly 
introduce the applied algorithms; Section 4 shows the results achieved by the two applied 
methods and the related discussion; and finally, the essential conclusions are revealed in Sec-
tion 5. 

2. Problem formula 

2.1. The main objective function 

This paper aims to reach the minimum value of the total fuel cost (TFC) of all TGSs 
existing in the power system. The determination of TFC is formulated as the main objective 
function in Equation (1). 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑇𝐹𝐶 =  ∑ 𝛾𝑛 + 𝛿𝑛𝑃𝑇𝐺𝑆,𝑛 + 𝜀𝑛𝑃𝑇𝐺𝑆,𝑛
2

𝑁𝑇𝐺𝑆

𝑛=1

 

𝑤𝑖𝑡ℎ 𝑛 = 1,… ,𝑁𝑇𝐺𝑆 

(1) 

Where 𝑇𝐹𝐶𝑛 is the total fuel cost of the TGSs in the considered power system; 𝛾𝑛, 𝛿𝑛, 

and 𝜀𝑛 are the fuel coefficients specialized for the TGS 𝑛; 𝑃𝑇𝐺𝑆,𝑛 is the amount of power 

supplied by the TGS 𝑛; and 𝑁𝑇𝐺𝑆 is the amount of TGSs in the considered power system. 
In this research, the multiple fuel option constraints of all TGS in the power system are 

also taken into account. Therefore, the mathematical expression presented in Equation (1) is 
rewritten as Equation (2). 
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𝑇𝐹𝐶 =

{
 
 

 
 𝛾𝑛,1 + 𝛿𝑛,1𝑃𝑇𝐺𝑆,𝑛 + 𝜀𝑛,1𝑃𝑇𝐺𝑆,𝑛

2 ; 𝑖𝑓 𝑃𝑇𝐺𝑆,𝑛
𝑙𝑠𝑡 ≤ 𝑃𝑇𝐺𝑆,𝑛 ≤ 𝑃𝑇𝐺𝑆,𝑛

1,𝑚𝑎𝑥     

𝛾𝑛,2 + 𝛿𝑛,2𝑃𝑇𝐺𝑆,𝑛 + 𝜀𝑛,2𝑃𝑇𝐺𝑆,𝑛
2 ; 𝑖𝑓 𝑃𝑇𝐺𝑆,𝑛

2,𝑚𝑖𝑛 ≤ 𝑃𝑇𝐺𝑆,𝑛 ≤ 𝑃𝑇𝐺𝑆,𝑛
2,𝑚𝑎𝑥          

…      

𝛾𝑛,𝑘 + 𝛿𝑛,𝑘𝑃𝑇𝐺𝑆,𝑛 + 𝜀𝑛,𝑘𝑃𝑇𝐺𝑆,𝑛
2 ; 𝑖𝑓 𝑃𝑇𝐺𝑆,𝑛

𝑘,𝑚𝑖𝑛 ≤ 𝑃𝑇𝐺𝑆,𝑛 ≤ 𝑃𝑇𝐺𝑆,𝑛
ℎ𝑠𝑡

 (2) 

 

Where 𝛾𝑛,1, 𝛿𝑛,1 and 𝜀𝑛,1 are fuel coefficients using the fuel type 1 of TGS 𝑛, 𝑃𝑇𝐺𝑆,𝑛
𝑙𝑠𝑡

 

and 𝑃𝑇𝐺𝑆,𝑛
1,𝑚𝑎𝑥 are the limit power generation of TGS n using the fuel type 1. Likewise, 𝛾𝑛,2, 

𝛿𝑛,2 and 𝜀𝑛,2 are fuel coefficients using fuel type 2 of TGS 𝑛. 𝑃𝑇𝐺𝑆,𝑛
2,𝑚𝑖𝑛

 and 𝑃𝑇𝐺𝑆,𝑛
2,𝑚𝑎𝑥 are limit 

power generation of TGS n using fuel type 2. Lastly, 𝛾𝑛,𝑘, 𝛿𝑛,𝑘 and 𝜀𝑛,𝑘 are fuel coeffi-

cients using fuel type 𝑘 of TGS 𝑛 and 𝑃𝑇𝐺𝑆,𝑛
𝑘,𝑚𝑖𝑛

 and 𝑃𝑇𝐺𝑆,𝑛
ℎ𝑠𝑡  are the limit of power generation 

of TGS 𝑡  using the fuel 𝑘, with 𝑘 being the number of fuel types. 

2.2 The involved constraints 

The power balance constraints:  

This constraint infers that the total power produced by all types of generating sources at 
the supplying side must equal the total power required by load demand plus the loss in trans-
mission lines as Equation (3). 

∑ 𝑃𝑇𝐺𝑆,𝑛

𝑁𝑇𝐺𝑆

𝑛=1

+ 𝑃𝑊𝑃𝑃 + 𝑃𝑆𝐿𝑃  = 𝑃𝐷𝑀 + 𝑃𝐿𝑜𝑠𝑠  (3) 

Where, ∑ 𝑃𝑇𝐺𝑆,𝑛
𝑁𝑇𝐺𝑆
𝑛=1  do all TGSs in the system produce the total power; 𝑃𝑊𝑃𝑃 and 

PSLP are the power supplied by the WPP and SLP integrated into the system; 𝑃𝐷𝑀  and 

𝑃𝐿𝑜𝑠𝑠 are the power demand and the power loss in the transmission line, respectively. 
The power loss in Equation (4) is determined using the following expression: 

𝑃𝐿𝑜𝑠𝑠 = ∑ ∑ 𝑃𝑇𝐺𝑆,𝑛𝐵𝑛𝑚𝑃𝑇𝐺𝑆,𝑚

𝑁𝑇𝐺𝑆

𝑚=1,𝑛≠𝑚

𝑁𝑇𝐺𝑆

𝑛=1

+ ∑ 𝐵0𝑛𝑃𝑇𝐺𝑆,𝑛

𝑁𝑇𝐺𝑆

𝑛=1

+ 𝐵00 (4) 

Where, 𝐵𝑛𝑚, 𝐵0𝑛, and 𝐵00 are the loss factors 

The operation constraint of TGSs:  

Each TGS in the power system is designed to supply power in the allowed range between 
the lowest and the highest range. The violation of these ranges will cause damages and nega-
tively affect the stability of the whole system: 

𝑃𝑇𝐺𝑆,𝑛
𝑙𝑠𝑡 ≤ 𝑃𝑇𝐺𝑆,𝑛 ≤ 𝑃𝑇𝐺𝑆,𝑛

ℎ𝑠𝑡  (5) 

Where, 𝑃𝑇𝐺𝑆,𝑛
𝑙𝑠𝑡  and 𝑃𝑇𝐺𝑆,𝑛

ℎ𝑠𝑡  are the lowest and highest amount of power produced by 

the TGS 𝑛; 𝑃𝑇𝐺𝑆,𝑛 is the amount of power produced by the TGS 𝑛. 

The operation constraint of WPP and SLP: 

Similar to TGSs, both WPPs and SLPs can only supply power to load with the values 
within the lowest and the highest range as in Equations (6) and (7). 

 

𝑃𝑊𝑃𝑃
𝑙𝑠𝑡 ≤ 𝑃𝑊𝑃𝑃 ≤ 𝑃𝑊𝑃𝑃

ℎ𝑠𝑡  (6) 

𝑃𝑆𝐿𝑃
𝑙𝑠𝑡 ≤ 𝑃𝑆𝐿𝑃 ≤ 𝑃𝑆𝐿𝑃

ℎ𝑠𝑡  (7) 

Where, 𝑃𝑊𝑇𝑃
𝑙𝑠𝑡  and 𝑃𝑊𝑇𝑃

ℎ𝑠𝑡  are the lowest and the highest value of power supplied by 

WPP; 𝑃𝑆𝐿𝑃
𝑙𝑠𝑡  and 𝑃𝑆𝐿𝑃

ℎ𝑠𝑡 are the lowest and the highest value of power supplied by SLP; 𝑃𝑊𝑇𝑃 

and 𝑃𝑆𝐿𝑃 are the power supplied by the WPP and the SLP, respectively. 
Supposedly, the SLP is accompanied by the battery energy storage system (BESS), which 

is large enough to keep the SLP online regardless of day or night. 
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3. The applied algorithms 

In this section, the Fire Hawk optimizer (FHO) [21] and the Zebra optimization algo-
rithm (ZOA) [22] will be implemented to solve the given problem. ZOA and FHO are novel 
meta-heuristic algorithms, and they are all developed based on the imitation of living behav-
iors of species in nature. The key difference between the two algorithms is their update meth-
ods for new solutions, which is briefly presented in the following subsections: 

3.1. Zebra optimization algorithm 

The update process of ZOA is built chiefly based on the two phases, including the zebra 
group's food-searching behavior and defense behavior. These behaviors are formulated using 
the mathematical model as follows: 

Phase 1: the food-searching behavior 

The specific formula of the update process in Phase 1 of ZOA is performed as Equation 
(8). 

𝑍𝑖
𝑛𝑒𝑤,𝑃1 = 𝑍𝑖 + 𝐴𝐹 × (𝐿𝑍 − 𝐶𝑇1 × 𝑍𝑖) 𝑤𝑖𝑡ℎ 𝑖 =  1. . . 𝑃𝑆 (8) 

Where 𝑍𝑖
𝑛𝑒𝑤,𝑃1

 is the new position of  the zebra 𝑖 in Phase 1; 𝑍𝑖 is the current po-

sition of the considered zebra 𝑖; 𝐴𝐹 is the amplifying factor having a value between zero 

and one; LZ is the best zebra with the best position of the population; 𝐶𝑇1 is the constant 

value, and according to the author 𝐶𝑇 is set by 2 for the best searching efficiency, and 𝑃𝑆 
is the initial population size. 

After completing Phase 1 of the update process, the refining procedure is performed to 
find the high-quality solution and remove the lower ones using the model in Equation (9). 

𝑍𝑖 = {
𝑍𝑖
𝑛𝑒𝑤,𝑃1,   𝑖𝑓 𝐹

𝑍𝑖
𝑛𝑒𝑤,𝑃1 < 𝐹𝑍𝑖

𝑍𝑖 ,                  𝑒𝑙𝑠𝑒
 (9) 

Where 𝐹
𝑍𝑖
𝑛𝑒𝑤,𝑃1 is the fitness value of the zebra with the new position; 𝐹𝑍𝑖  the fitness 

values of the zebra with the current position. 

Phase 2: the defense behavior 

Phase 2 of the update process for new solutions of the ZOA is executed using the fol-
lowing Equation (10). 

𝑍𝑖
𝑛𝑒𝑤,𝑃2 = {

𝑍𝑖 + 𝐶𝑇2 × (2𝐶𝑇2 − 1) × (1 −
𝐶𝐼

𝐻𝐼
) × 𝑍𝑖 ,     if    𝑃𝐵 ≤ 0.5

𝑍𝑖 + 𝐴𝐹 × (𝐴𝑍 − 𝐶𝑇1 × 𝑍𝑖),                       𝑒𝑙𝑠𝑒
 (10) 

 

Where 𝑍𝑖
𝑛𝑒𝑤,𝑃2

 is the new position of the zebra 𝑖 in Phase 2; 𝐶𝑇2 is the constant 

value set by 0.01; 𝐶𝐼 and 𝐻𝐼 are the current iteration index and the highest iteration index; 
𝐴𝑍 is the zebra being attacked; 𝑃𝐵 is the probability index for selecting the update method 
in Phase 2. 

Similar to Phase 1, the new update solutions in Phase 2 are also checked to retain the 
high-quality solutions and remove the lower ones, see Equation (11). 

𝑍𝑖 = {
𝑍𝑖
𝑛𝑒𝑤,𝑃2,   𝑖𝑓 𝐹

𝑍𝑖
𝑛𝑒𝑤,𝑃2 < 𝐹𝑍𝑖

𝑍𝑖 ,                  𝑒𝑙𝑠𝑒
 (11) 

3.2. Fire Hawk Optimizer 

The update process for new solutions of the FHO is mostly based on the simulation of 
the movement of the fire hawk and their prey in a hunting time. 

The movement of the fire hawk: 

The movement of the fire hawk is simulated using the mathematical expression in Equa-
tion (12). 
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𝐹𝑖
𝑛𝑒𝑤 = 𝐹𝑖 + (𝑟𝑑1 × 𝐵𝐹 − 𝑟𝑑2 × 𝐹𝑁) 𝑤𝑖𝑡ℎ 𝑖 =  1, . . . , 𝑁𝐹 (12) 

Where 𝐹𝑖
𝑛𝑒𝑤is the new position of the fire hawk 𝑖 ; 𝐹𝑖 is the current position of the 

considered fire hawk 𝑖;  𝑟𝑑1 and 𝑟𝑑2 are, respectively, the random value between zero 

and one; 𝐵𝐹 is the best fire hawk with the best position in the whole population; 𝐹𝑁 is the 
nearest fire hawk to the considered fire hawk and 𝑁𝐹 is the number of the fire hawk in the 
initial population. 

The movement of the prey: 

Two types describe the movement of the prey: 1) the movement within the possible 
hunting area of a fire hawk or 2) the movement toward another hunting area of the neigh-
borhood fire hawk. These movements will be briefly described by equations (13) and (14), 
respectively: 

𝑃𝑘
𝑛𝑒𝑤 = 𝑃𝑘 + (𝑟𝑑3 × 𝐹𝑖 − 𝑟𝑑4 × 𝑆𝑃𝑖𝑛) 𝑤𝑖𝑡ℎ 𝑘 =  1, . . . , 𝑁𝑘 (13) 

𝑃𝑘
𝑛𝑒𝑤 = 𝑃𝑘 + (𝑟𝑑5 × 𝐹𝑁 − 𝑟𝑑6 × 𝑆𝑃𝑜𝑢𝑡) 𝑤𝑖𝑡ℎ 𝑘 =  1, . . . , 𝑁𝑘 (14) 

Where 𝑃𝑘
𝑛𝑒𝑤 is the new position of the prey 𝑘; 𝑃𝑘 is the current position of the prey 

𝑘; 𝑟𝑑3, 𝑟𝑑4, 𝑟𝑑5, and 𝑟𝑑6 are the random value between zero and one; 𝐹𝑖 is the position 
of the fire hawk 𝑖; and 𝐹𝑁 is the neighborhood fire hawk;  𝑆𝑃𝑖𝑛 and 𝑆𝑃𝑜𝑢𝑡 are, respec-
tively, safe positions outside and inside the hunting area where the preys can hide from their 

enemies; 𝑁𝑘 is the number of prey. Note that the total number of fire hawks (NF) and the 

number of prey (𝑁𝑘) are equal to the initial population size (𝑃𝑆). 

After both fire hawks and the preys are updated for their new positions, they will be 
gathered together as Equation (15). 

𝑆𝑛𝑒𝑤  =  ⌊𝐹𝑖
𝑛𝑒𝑤; 𝑃𝑘

𝑛𝑒𝑤  ⌋ 𝑤𝑖𝑡ℎ 𝑖 =  1, . . . , 𝑁𝐹   𝑎𝑛𝑑 𝑘 =  1, . . . , 𝑁𝑘 (15) 

Then, the refining procedure for the high-quality solutions is performed as Equation 
(16). 

𝑆𝑛 = {
𝑆𝑛
𝑛𝑒𝑤,          𝑖𝑓 𝐹𝑆𝑛𝑛𝑒𝑤 < 𝐹𝑆𝑛
𝑆𝑛 ,                     𝑒𝑙𝑠𝑒

𝑤𝑖𝑡ℎ 𝑛 =  1, . . . , 𝑃𝑆 (16) 

Where Sn is the position of the individual n created in the initialization process; Sn
new 

is the position of the individual n in the initial population size; 𝐹𝑆𝑛𝑛𝑒𝑤  and 𝐹𝑆𝑛  are the new 

and old fitness value of the individual n.  

4. The results and discussions 

In this section, FHO and ZOA are implemented to solve the GELD to reduce the TFC 
of all the TGSs in the considered power system. On top of that, considering the multiple fuel 
selections and the presence of green generating sources, including WPP and SLP, are all given 
special attention. The considered power system consists of ten TGSs with two load demand 
levels of 2500 and 2700 MW. All the related data of the applied power system is cited from 
[4]. Besides, a WPP and an SLP with rated power 100 and 50 MW are connected to the system 
to reduce the generation of all TGSs partly. For a fair comparison of the real performance of 
the two applied algorithms, all initial settings of population size and the highest number of 
iterations are set by the same numbers, which are 30 and 100, respectively. On the other hand, 
both FHO and ZOA are executed with 50 test runs for the best solution. 

The study is implemented in a personal computer with the main specifications: the cen-
tral processing unit (CPU) with 2.2 GHz of clock speed and 8GB of Random accessing 
memory (RAM). All the coding and simulation are performed using MATLAB software ver-
sion R2018a. 
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Figures 1a and 1b present the fuel cost value achieved by FHO and ZOA after 50 test 
runs with both load demand levels 2500 and 2700, respectively. In these figures, the pink 
line illustrates the TFC values achieved by FHO, while the green line displays the similar 
results obtained by ZOA. By observing these figures, it is very clear that ZOA provides out-
standing efficiency while reaching many optimal TFC values of both load demand levels, 
especially in Figure 1b compared to FHO; this method cannot achieve any optimal one 
throughout all the test runs. 

 
(a) 

 
(b) 

Figure 1. The results obtained the FHO and ZOA after 50 test runs 

Next, the best convergences of the two applied algorithms are presented in Figures 2a 
and 2b, respectively. In these figures, ZOA only requires over 40 iterations to reach the best 
optimal TFC values with a load demand of 2500 MW and around 45 iterations to do the same 
with a load demand of 2700 MW, while FHO cannot provide similar capabilities in both two 
levels of load demand even at the last iteration.  

(a) 

 

(b) 

Figure 1. The best convergences achieved by FHO and ZOA for the best test run 
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The average convergences achieved by FHO and ZOA are displayed in Figures 3a and 
3b, corresponding with the two load demand levels. ZOA continuously outperforms FHO in 
this comparison in both cases of load demand levels. Specifically, ZOA achieves the best 
average TFC values at around 60th and 80th iterations for load demand levels 2500 and 2700 
MW, respectively. Meanwhile, FHO cannot reach any best average TFC values in both cases 
of load demand levels. Moreover, in the case of load demand 2700 MW, the difference be-
tween TFC values at the last iteration between ZOA and FHO is huge. 

 
(a) 

 
(b) 

Figure 2. The average convergences achieved by FHO and ZOA among 50 test runs 

Figures 4a and 4b show the maximum convergences obtained by FOA and ZOA for 
two load demand levels. ZOA again shows its high performance compared to FHO while 
reaching the best maximum TFC values much faster than FHO in both cases of load demand 
levels. Particularly, ZOA obtained the best maximum TFC value at around the 70th iteration 
for a load demand of 2500 MW and the 85th iteration for a load demand of 2700 MW. FHO 
shows its low efficiency, while this algorithm cannot reach any of the best maximum TFC 
values even in the case of load demand of 2500 MW. 

 
(a) 

 
(b) 

Figure 3. The maximum convergences achieved by FHO and ZOA among 50 test runs 
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Figures 5a and 5b show the detailed comparison of the two applied algorithms using 
different criteria for two cases of load demand level. Particularly, the comparison for load 
demand 2500 is displayed in Figure 5a, while a similar comparison for load demand 2700 MW 
is presented in Figure 5b. ZOA is superior to FHO in all criteria regardless of the load demand 
increase from 2500 to 2700. Specifically, in the case of load demand 2500 MW, ZOA achieves 
($) 460.787 of the Best TFC value (Best.Cost) while the similar value obtained by FHO is ($) 
461.25. by taking a simple calculation, ZOA is 0.1% better than FHO in the first criterion. 
While analyzing the Average TFC value (Aver.Cost) and the Maximum TFC value 
(Max.Cost), ZOA continuously maintains its better efficiency over FHO. In fact, the values 
achieved ZOA in these two criteria are $464.797 and $ 472.376, while those of FHO are 
$465.028 and $473.089. By converting to percentage, ZOA is 0.07% and 0.15% better than 
FHO in these criteria. While observing Figure 5b where the comparison of FHO and ZOA 
for the case of load demand 2700 MW are shown, the superiority of ZOA over FHO is largely 
expanded, especially in the last two criteria. Particularly, ZOA reaches $550.07 and $552.436 
for Aver.Cost and Max.Cost, respectively, while those values obtained by FHO for these two 
criteria are $554.173 and $560.764, respectively. The superiority degree in percentages of 
ZOA over FHO in these criteria of load demand are 0.74% and 1.5%. More importantly, in 
this case of load demand, ZOA is the only algorithm reaching the Best.Cost value, which is 
$549.845 while that of FHO is $550.52, and the ZOA is 0.12% better than FHO in this 
criterion.  

 
(a) 

 
(b) 

Figure 4. The brief comparison between FHO and ZOA on different criteria 

In fact, the superiority of ZOA over FHO comes from the update mechanism for the 
new solutions after each iteration, especially in phase 2. Particularly, ZOA using the constant 

value (𝐶𝑇2), the amplifying factor (𝐴𝐹), and the subtraction between one and the ratio of 

current and maximum iteration (1 −
𝐶𝐼

𝐻𝐼
) to shrink the search space as presented in Equation 

(10). As a result, this implementation accelerates the speed of reaching the optimal solution 

much easier, while the update process of FHO has highly relied on the 𝑆𝑃𝑖𝑛 and 𝑆𝑃𝑜𝑢𝑡 
along with the utilization of the neighborhood solution and other random terms, such as 𝑟𝑑3 

and 𝑟𝑑4 as given in the Equations (13) and (14), respectively. This implementation can some-
how increase the diversity of solutions in the search space. However, this approach will lead 
to the low convergence phenomenon, and sometimes, the searching process may be trapped 
in the local optima, especially while dealing with large-scale optimization problems such as 
the GELD problem. 

The power generation of each TGS in the system for both cases of load demand levels 
is given in Figures 6a and 6b, respectively. 
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(a) 

 
(b) 

Figure 5. The power generation of all TGSs determined by FHO and ZOA 

5. Conclusions 

In this research, two novel meta-heuristic algorithms, including Fire Hawk Optimization 
(FHO) and Zebra Optimization Algorithm (ZOA), are successfully applied to solve the 
GELD to minimize the total fuel cost of all thermal generating sources with consideration of 
both wind power plants and solar power plants. The results indicate that ZOA outperforms 
FHO at all comparison criteria, regardless of the increase in load demand from 2500 to 2700 
MW. Besides, ZOA is the only applied algorithm reaching the optimal value of the main 
objective function and satisfying the involved constraints in the tests. At the same time, FHO 
cannot provide a similar capability. For more details, ZOA is 0.1%, 0.07%, and 0.15% better 
than FHO in Best.Cost, Aver. Cost, and Max.Cost for the case of load demand of 2500 MW. 
When the load demand of 2700 MW is considered, the better percentages of ZOA over FHO 
are 0.12%, 0.74%, and 1.5%. The impressive performance of ZOA while dealing with the 
GELD problem mainly comes from the effective update mechanism, which can shrink the 
search space for better acceleration to the optimal solution, as mentioned earlier. The results 
indicate that ZOA is a highly efficient search method for solving large-scale optimization 
problems accompanied by highly complex constraints, and the algorithm is highly recom-
mended for solving such GELD problems. 
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