

Journal of Computing Theories and Applications ISSN:3024-9104

DOI : 10.33633/jcta.v1i2.9332 publikasi.dinus.ac.id/index.php/jcta/

Review Article

Methodologies of the Validation of Software Architectures

Amina El Murabet * and Anouar Abtoy

 SIGL, ENSATE, Abdelmalek Essaadi University, Tetouan, Morocco; e-mail: elmurabet.amina@uae.ac.ma,
aabtoy@uae.ac.ma

* Corresponding Author : Amina El Murabet

Abstract: Software architecture validation is the process of assessing whether a software architecture

meets its intended requirements and goals. It is an important step in the software development process,

as it can help to identify and address potential problems early on before they become more costly and

difficult to fix. There are a variety of different methodologies that can be used to validate software

architecture. Some of the most common methodologies include Architectural evaluation methods, Ar-

chitecture tests and reviews, and Model-based validation. This paper will provide an overview of the

different methodologies that can be used to validate software architecture. Apart from that, it also

analyzes and summarizes the strengths and weaknesses of each method so that it can guide determining

the most appropriate methodology for a particular case.

Keywords: Software engineering; Software architecture; Software development process; Validation;

Methodologies.

1. Introduction

The essential framework of a software system is its architecture. It outlines the system's
constituent parts, their connections, and how they work together. The process of determining
if a software architecture satisfies its intended requirements and objectives is known as vali-
dation. The failure to validate software architecture can lead to a variety of issues[1]. So, it is
a crucial stage in the software development process since it can assist in identifying and ad-
dressing possible issues before they become more expensive and challenging to fix. The fol-
lowing are some of the most typical issues:
• Performance problems: A software architecture may not be able to handle the antici-

pated load if it has not been thoroughly verified. Performance issues like slow response
times and outages may result from this.

• Scalability problems: A software architecture may not be able to scale to meet the de-
mands of the business if it is not properly verified. Due to this, there may be issues with
scaling, such as the inability to manage growing traffic or data volumes.

• Maintainability problems: If a software design is not properly proven, maintaining it
could be time-consuming and expensive. Maintainability issues, such the inability to
patch bugs or add new features, may result from this.

• Security problems: If a software architecture isn't properly tested, it could be open to
attack. Security issues may result from this, including disruptions in system performance
or unauthorized access to data and systems.

• Quality problems: If a software architecture is not properly validated, it may not fulfill
the business's standards for quality. Data loss, crashes, and other quality issues like bugs
could result from this.

The non-validation of the software architecture can cause very serious problems and can

be led to huge losses. For example, a glitch in the rocket's guidance system's software caused
the Ariane 5 rocket to explode 40 seconds after its takeoff. A floating-point exception, a type
of error that can happen when a computer performs calculations with floating-point values,
was what actually triggered the issue. The explosion resulted from the software developers'
failure to check the guidance system for this kind of malfunction. The explosion cost over

Received: October, 8th 2023

Revised: October, 25th 2023

Accepted: October, 27th 2023

Published: November, 1st 2023

Copyright: © 2023 by the authors.

Submitted for possible open access

publication under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/licen

ses/by/4.0/).

Journal of Computing Theories and Applications 2023, vol. 1., no. 2., El Murabet and Abtoy. 79

$370 million[2]. In 2012, Knight Capital Group lost over $440 million in 30 minutes due to a
software glitch in its trading program[3]. The glitch caused the algorithm to place thousands
of erroneous orders, which led to significant losses for the company. The software issue was
caused by a failure to validate the algorithm before it was deployed.

There are a variety of different methodologies that can be used to validate software ar-
chitecture. Some of the most common methodologies include:
• Architectural evaluation methods: These methods involve a systematic assessment of the

architecture against a set of criteria, such as performance, scalability, security, and main-
tainability. Some examples of architectural evaluation methods include the Architecture
Trade-off Analysis Method (ATAM)[4], the Scenario-based Architecture Analysis
Method[5], the Software Architecture Analysis Method (SAAM)[6], the Architecture De-
cision Records (ADR) approach[7], and the Architecture Review Board (ARB) pro-
cess[8].

• Architecture tests and reviews: These methods involve testing and reviewing the archi-
tecture to identify any errors, defects, or deviations from the specifications. Some exam-
ples of architecture tests and reviews include unit tests, integration tests, system tests,
code reviews, and architecture reviews[9].

• Model-based validation: This involves using architectural models to validate the archi-
tecture. Architectural models can be used to simulate the system's behavior and identify
potential problems[10].

Each of these approaches has advantages and disadvantages of its own. However, they

can also be more time- and money-consuming. Architectural evaluation procedures are often
more thorough than architecture assessments and reviews. In order to identify possible issues
early on, model-based validation often necessitates the creation of precise architectural mod-
els. The most appropriate methodology for a given situation will depend on a number of
factors, such as the size and complexity of the system, the available resources, and the time
constraints. In some cases, it may be necessary to use a combination of different methodolo-
gies to validate the software architecture comprehensively.

Various works tried to explore the validation of the software architecture. The most
recent one goes back to 2002. Dobrica and Niemelä[11] presented a survey of eight of the
most representative software architecture analysis methods. The authors selected these meth-
ods based on the many criteria (Completeness, Accuracy, Repeatability, Scalability, Scalabil-
ity). The paper has many limitations: very old, some of the methods that the authors survey
may no longer be as widely used or as effective as they once were. Also, it does not provide
specific guidance on how to choose the right software architecture analysis method for a
particular project.

I. Atoum et al. [12] showed that the challenges of software requirements quality assur-
ance SREQ-QA and validation SREQ-V can significantly impact the validation of software
architecture. For example, if the requirements are incomplete or inconsistent, it will be diffi-
cult to validate the software architecture against those requirements. Similarly, if there is a
lack of tools and support for SREQ-V, conducting the necessary validation activities may be
difficult. Additionally, human factors, such as communication problems and lack of experi-
ence, can lead to errors in the validation of software architecture. The study does not have a
more in-depth discussion about the validation.

Rajabli et al.[13] conducted a systematic literature review to identify the state-of-the-art
in software V&V for autonomous cars. They identified 79 primary studies that addressed this
topic. The limitation of this review, like many others, is that it gives a very specific domain of
software architecture validation.

2. Architectural evaluation methods (AEMs)

Architectural evaluation methods (AEMs) are a set of techniques used to assess the qual-
ity of a software architecture by considering a number of criteria, such as performance, scala-
bility, security, and maintainability. Typically, AEMs used in the early of software develop-
ment process, before the architecture is implemented, to identify and address potential prob-
lems that may arise.

One of the most popular AEMs is the Architecture Trade-off Analysis Method
(ATAM)[7]. ATAM is a method that that involves multiple stakeholders, including architects,

Journal of Computing Theories and Applications 2023, vol. 1., no. 2., El Murabet and Abtoy. 80

developers, testers, and users. They work together to identify the system’s key quality attrib-
utes of the system and evaluate the extent to which the architecture can meet those require-
ments. ATAM is often used to evaluate various alternative architectural solutions as well as
to assess the extent to which the architecture is sensitive to quality attributes.

 Another popular AEM is the Scenario-based Architecture Analysis Method (SAAM)[5].
SAAM uses scenarios, which are descriptions of how the system will be used, to assess archi-
tectural quality. The team identified a number of representative scenarios and then uses those
scenarios to evaluate the architecture's performance, scalability, security, and used them to
evaluate architectural performance, scalability, security, and other quality attributes. SAAM
focuses more on evaluating software architectures by leveraging scenarios and can help in
identifying issues such as errors, performance bottlenecks, scalability issues, security issues,
security weaknesses, and maintenance challenges. A comparison between ATAM and SAAM
can be found in Table 1 based on the focus, goals, and approach.

Table 1. ATAM vs. SAAM

Characteristic ATAM SAAM

Focus General-purpose Scenarios
Goals Identify and evaluate trade-offs be-

tween different architectural solu-
tions, assess the architecture's sensi-

tivity to quality attributes

Identify and evaluate how the archi-
tecture performs under different us-

age scenarios, identify potential prob-
lems

Approach Structured Structured

Other notable AEMs include:
• Architecture Decision Records (ADRs): ADRs are a way of documenting the rationale

behind architectural decisions[14]. ADRs can be used to assess the quality of the archi-
tecture by ensuring that the decisions are well-reasoned and that the trade-offs have been
carefully considered.

• Architecture Review Board (ARB): An ARB is a group of experts who review the archi-
tecture and provide feedback to the architects[8]. ARBs can help identify potential prob-
lems with the architecture that the architects may have overlooked.

Ågren et al.[9] discussed the challenges of architecture evaluation in a continuously develop-
ing system, especially AEMs. They propose four principles for continuous architecture eval-
uation.

3. Architecture tests and reviews

Architecture tests and reviews are a set of techniques for evaluating the quality of a soft-
ware architecture. They are typically used later in the software development process than ar-
chitectural evaluation methods, after the architecture has been implemented[7].

3.1. Architecture tests

Involve testing the architecture to identify any errors or defects. This can be done
through a variety of types of testing[13], [15], including:
• Unit tests: Unit tests are tests of individual units of code. They can be used to indirectly

test the architecture by testing the components that make up it[7].
• Integration tests: Integration tests are tests of how different units of code work together.

They can be used to test the architecture by testing the interactions between the different
components[7].

• System tests: System tests are tests of the entire system as a whole. They can be used to
test the architecture by testing how the different components work together to meet the
system's requirements[7].

• Performance tests: Performance tests are used to measure the system's performance un-
der load. They can be used to identify performance bottlenecks in the architecture[6].

• Security tests: Security tests are used to identify security vulnerabilities in the architecture
[6].

Journal of Computing Theories and Applications 2023, vol. 1., no. 2., El Murabet and Abtoy. 81

3.2. Architecture reviews

Involve reviewing the architecture with a team of stakeholders to identify any potential
problems[7]. The team comprises architects, developers, testers, users, and other stakehold-
ers[15], [16]. Architecture reviews can be conducted in a variety of ways, including:

• Formal reviews: Formal reviews are conducted according to a defined process. They

typically involve a team of reviewers who examine the architecture documentation and
other artifacts to identify potential problems[7].

• Informal reviews: Informal reviews are more ad hoc. They may be conducted by a single
reviewer or by a small team of reviewers. Informal reviews can be used to get feedback
on the architecture early in the development process[7].

The following table compares architecture tests and reviews:

Table 2. Architecture tests vs. reviews

Characteristic Architecture tests Architecture reviews

Focus Assessing the quality of the software
architecture

Gathering feedback on the software
architecture from experts

Strengths It can be used to assess a variety of
aspects of the software architecture,

can be automated.

It can be used to identify potential
problems with the software architec-
ture early in the development pro-
cess, can be used to get feedback

from experts
Weaknesses It can be expensive to implement,

can be difficult to develop test cases
It can be time-consuming can be dif-
ficult to find experts to participate in

the review

Alsaqqa et al.[17] propose a new approach to software architecture analysis that consid-

ers modern software systems' dynamic and changing nature. The proposed approach is ATR-
oriented and based on four principles: continuous monitoring and evaluation of the program
design, use of stakeholder feedback, use of evaluation tasks that works automatically, and
integration of research results into the development process. The authors suggest that their
approach can help improve the quality and maintainability of software systems by early de-
tection of construction problems and enabling prompt corrective action.

4. Model-based validation

A collection of model-based validation (MBV) methods is used to verify software de-
signs[18]. In order to understand a system's behavior and properties, one might utilize models,
which are abstract representations of the system[19]. Model-based verification (MBV) tech-
niques use models to find potential issues in the architecture, like poor design, performance
snarls, and security holes.

Various phases of the software development process can use MBV approaches. MBV
can be used, for instance, to verify early architectural prototypes and find potential issues
before they are codified. MBV can also be used to validate current systems, evaluate the ef-
fects of architecture modifications, or make sure the system complies with requirements.

Various MBV techniques are available[20]–[23], each with its own strengths and weak-
nesses. Some common MBV techniques include:
• Model checking is a method for confirming that a model meets a list of requirements[24].

A variety of attributes, including functional correctness, performance constraints, and
security requirements, can be verified using model checkers.

• Simulation is a method for running a model and seeing what happens[25]. Simulation
can evaluate a system's performance under various load scenarios or spot potential mis-
takes or design flaws.

• Run-time analysis is a method for keeping tabs on how a system is being used in order
to spot any potential issues[26]. Errors, performance snags, and security flaws can all be
found via run-time analysis.
In Table 3, we compare the three MBV techniques based on three characteristics: focus,

strength, and weaknesses. MBV is very effective and powerful in validating software architec-
ture. Important factors such as system size and complexity, resource availability, and time

Journal of Computing Theories and Applications 2023, vol. 1., no. 2., El Murabet and Abtoy. 82

constraints must be considered to select an MBV technique to suit a particular situation. MBV
can also incorporate artificial intelligence (AI) to increase efficiency when performing its
tasks[27].

Table 3. The three techniques of MBV

Characteristic Architecture tests Architecture reviews

Focus Verifying that a model satisfies a set
of properties

Observing the behavior of a model

Strengths It can be used to find subtle defects,
can be automated

Can be used to validate complex sys-
tems, can be used to predict the per-

formance of a system
Weaknesses It can be expensive to implement,

can be difficult to use
It can be time-consuming and diffi-
cult to validate the simulation model

5. Discussion

An informative overview of the three main types of software architecture validation,
which include architectural evaluation methods, architecture tests and reviews, and model-
based validation, is provided in Table 4 for benchmarking purposes.

Table 4. Benchmarking of types of software architecture validation

Characteristic Architectural evaluation methods Architecture tests and reviews Model-based validation

Purpose To assess the quality of a software ar-
chitecture against a set of quality at-
tributes, such as performance, secu-

rity, and maintainability.

To find defects in a software architec-
ture, such as missing requirements, de-
sign errors, and architectural inconsist-

encies.

To identify potential problems in a
software architecture using models by
verifying that a software architecture

satisfies its requirements and con-
straints.

Strengths It can be used to evaluate a wide
range of architectural properties, such

as functional correctness, perfor-
mance, security, and maintainability.

It can be used to identify errors and
defects in the architecture

Can validate architectural properties
that are difficult or impossible to test
directly and provide quantitative evi-
dence of the validity of a software ar-

chitecture.

Weaknesses It can be time-consuming and expen-
sive to conduct

It can be difficult to identify all poten-
tial problems in the architecture

It can be expensive to develop and
maintain

Maturity Well-established and widely used. Less mature than architectural evalua-
tion methods.

Emerging technology, but gaining
popularity

Tool support A variety of tools are available to sup-
port architectural evaluation methods,

such as SAAM and ATAM.

Limited tool support is available for
architecture tests and reviews.

A number of tools are available to
support model-based validation, such

as MARTE and UML-RT.

Applicability It can be used to evaluate architec-
tures of all sizes and complexities

Best suited for small to medium-sized
software architectures.

It can be used to evaluate architec-
tures of all sizes and complexities but
is particularly well-suited for evaluat-

ing early-stage architectures

Contribution to
the overall vali-
dation success

High Medium Medium

Dependence on
resources

Requires a team of experienced archi-
tects and engineers.

Requires a team of experienced testers
and architects.

Requires a team of experienced mod-
elers and architects.

Projects particu-
larity

It can be applied to projects of all
sizes and security levels.

Best suited for small to medium-sized
projects.

Best suited for medium to large-sized
projects, especially those with com-

plex security requirements.

Testing Aspect It can be used to test both functional
and non-functional requirements.

It can be used to test both functional
and non-functional requirements but
is particularly well-suited for testing

non-functional requirements.

It can be used to test functional and
non-functional requirements but is
particularly well-suited for testing

them.

Use Cases Evaluating a new software architec-
ture before it is implemented.

Assessing the quality of an existing
software architecture before making

major changes.

Verifying that a software architecture
satisfies its requirements and con-
straints in safety-critical systems.

Journal of Computing Theories and Applications 2023, vol. 1., no. 2., El Murabet and Abtoy. 83

Each form of validation has advantages and disadvantages of its own. Early in the soft-
ware development cycle, architectural evaluation techniques are frequently employed to assist
architects in making knowledgeable choices on the architecture. Later in the software devel-
opment process, architecture tests and reviews are usually utilized after the architecture has
been put in place. It is possible to apply model-based validation at any level of the software
development cycle.

Depending on the project's particular requirements, the optimal validation method will
be chosen. Architecture reviews might be the best choice, for instance, if the project has a
constrained budget and/or a short deadline. Model-based validation might be the best choice
if the project wants to validate architectural properties that are challenging or impossible to
test directly.

In practice, it is often best to use a combination of different validation techniques to get
a more comprehensive assessment of the quality of a software architecture. For example, an
architect might use architectural evaluation methods to identify potential problems in the
architecture early in the development process and then use architecture tests and reviews to
validate the architecture after it has been implemented. Some additional considerations to
keep in mind when choosing a software architecture validation technique:
• Size and complexity of the system: The size and complexity of the system will affect the

cost and time required to conduct each type of validation.
• Available resources: The resources available, such as budget and personnel, will also af-

fect the choice of validation technique.
• Time constraints: The time constraints on the project will also affect the choice of vali-

dation technique.
• Project objectives: The choice of validation technique will also depend on the project's

specific objectives. Architecture tests could be the ideal choice, for instance, if the ob-
jective is to locate and correct problems in the architecture. Performance testing might
be the ideal choice if the objective is to evaluate the architecture's performance.

Ultimately, the best way to choose a software architecture validation technique is to con-

sider all of the relevant factors and select the technique most likely to meet the project's needs.
Based on the results of this paper, we recommend the development of a software architecture
validation process to work on the following aspects:
• Focus on automation: It will become harder to validate software systems as they get

more complicated manually. Automated validation solutions can enhance the validation
process's effectiveness and scalability.

• Utilization of machine learning: New and improved validation approaches can be created
using machine learning. By analyzing historical data, for instance, machine learning can
be used to spot patterns and trends that can be utilized to anticipate prospective issues
with software designs.

• Support for emerging technologies: As new software technologies emerge, new valida-
tion methodologies will need to be developed to support them. For example, method-
ologies must be developed to validate the architectures of microservices-based and AI-
powered systems.

By implementing these suggestions, we can develop more effective and efficient methodolo-
gies for validating software architectures. This will help improve software systems' quality and
reliability, especially as they become more complex and challenging to develop.

6. Conclusions

Software architecture validation is an essential step in the software development process,
helping to ensure that the architecture of a software system meets the system's requirements
and is of high quality. Various software architecture validation techniques are available, each
with its own strengths and weaknesses.

The optimum sort of validation to use will be determined by the project's specific needs,
such as money, timeframe, and system complexity. For example, architecture reviews may be
the greatest option for projects with limited resources and short deadlines. In contrast, model-
based validation may be the best option for projects requiring the validation of architectural
aspects that are difficult or impossible to test directly. In practice, several validation ap-
proaches are frequently employed to assess the software architecture's quality fully.

Journal of Computing Theories and Applications 2023, vol. 1., no. 2., El Murabet and Abtoy. 84

This paper has succeeded in presenting an overview analysis of software validation meth-
ods and providing a useful overview to highlight the strengths and weaknesses of the three
main types of software architecture validation. So it can determined the best and most appro-
priate software validation method based on particular case to minimize losses resulting from
software issues.

Author Contributions: Conceptualization: All.; methodology: All.; validation: All.; investi-
gation: A.E.; resources: A.E..; writing—original draft preparation: A.E.; writing—review and
editing: A.E.; supervision: A.A.; project administration: All.

Acknowledgments: This work was supported by Abdelmalek Essaadi University.

Conflicts of Interest: The authors declare no conflict of interest.

References

[1] R. F. Schmidt, “Software Architecture,” in Software Engineering, Elsevier, 2013, pp. 43–54. doi: 10.1016/B978-0-12-407768-3.00003-
3.

[2] T. Huckle and T. Neckel, Bits and Bugs. Philadelphia, PA: Society for Industrial and Applied Mathematics, 2019. doi:
10.1137/1.9781611975567.

[3] C. anton Boiangiu, A. adrian Dinu, M. aura Duican, and R. catalin Raducu, “Comparative Analysis between Mainstream Software
Development Methodologies,” Apr. 2021, pp. 20–28. doi: 10.12753/2066-026X-21-076.

[4] P. Kruchten, The rational unified process, 3rd ed. Boston, MA: Addison-Wesley Educational, 2003.
[5] P. Clements et al., Documenting software architectures, 2nd ed. Boston, MA: Addison-Wesley Educational, 2010.
[6] N. Rozanski and E. Woods, Software systems architecture, 2nd ed. Boston, MA: Addison-Wesley Educational, 2011.
[7] L. Bass, R. Kazman, and P. Clements, Software Architecture in Practice, 3rd ed. Boston, MA: Addison-Wesley Educational, 2012.
[8] J. F. Maranzano, S. A. Rozsypal, G. H. Zimmerman, G. W. Warnken, P. E. Wirth, and D. M. Weiss, “Architecture Reviews: Practice

and Experience,” IEEE Softw., vol. 22, no. 2, pp. 34–43, Mar. 2005, doi: 10.1109/MS.2005.28.
[9] S. M. Ågren et al., “Architecture evaluation in continuous development,” J. Syst. Softw., vol. 184, p. 111111, Feb. 2022, doi:

10.1016/j.jss.2021.111111.
[10] G. Booch, J. Rumbaugh, and I. Jacobson, The unified modeling language user guide, 2nd ed. Boston, MA: Addison-Wesley Educational,

2005.
[11] L. Dobrica and E. Niemela, “A survey on software architecture analysis methods,” IEEE Trans. Softw. Eng., vol. 28, no. 7, pp. 638–

653, Jul. 2002, doi: 10.1109/TSE.2002.1019479.
[12] I. Atoum et al., “Challenges of Software Requirements Quality Assurance and Validation: A Systematic Literature Review,” IEEE

Access, vol. 9, pp. 137613–137634, 2021, doi: 10.1109/ACCESS.2021.3117989.
[13] N. Rajabli, F. Flammini, R. Nardone, and V. Vittorini, “Software Verification and Validation of Safe Autonomous Cars: A

Systematic Literature Review,” IEEE Access, vol. 9, pp. 4797–4819, 2021, doi: 10.1109/ACCESS.2020.3048047.
[14] O. Kopp, A. Armbruster, and O. Zimmermann, “Markdown architectural decision records: Format and tool support,” CEUR

Workshop Proc., vol. 2072, pp. 55–62, 2018.
[15] M. Goldstein and I. Segall, “Automatic and Continuous Software Architecture Validation,” in 2015 IEEE/ACM 37th IEEE

International Conference on Software Engineering, May 2015, pp. 59–68. doi: 10.1109/ICSE.2015.135.
[16] B. Kitchenham, O. Pearl Brereton, D. Budgen, M. Turner, J. Bailey, and S. Linkman, “Systematic literature reviews in software

engineering – A systematic literature review,” Inf. Softw. Technol., vol. 51, no. 1, pp. 7–15, Jan. 2009, doi: 10.1016/j.infsof.2008.09.009.
[17] S. Alsaqqa, S. Sawalha, and H. Abdel-Nabi, “Agile Software Development: Methodologies and Trends,” Int. J. Interact. Mob. Technol.,

vol. 14, no. 11, p. 246, Jul. 2020, doi: 10.3991/ijim.v14i11.13269.
[18] B. Cole, V. Mittal, S. Gillespie, N. La, R. Wise, and A. MacCalman, “Model-based systems engineering: application and lessons from

a technology maturation project,” Procedia Comput. Sci., vol. 153, pp. 202–209, 2019, doi: 10.1016/j.procs.2019.05.071.
[19] Object Management Group, “OMG Systems Modeling Language (OMG SysMLTM),” 2018. [Online]. Available:

http://www.omg.org/spec/SysML/20161101
[20] A. Bertolino et al., “A Survey of Field-based Testing Techniques,” ACM Comput. Surv., vol. 54, no. 5, pp. 1–39, Jun. 2022, doi:

10.1145/3447240.
[21] C. Trubiani, I. Meedeniya, V. Cortellessa, A. Aleti, and L. Grunske, “Model-based performance analysis of software architectures

under uncertainty,” in Proceedings of the 9th international ACM Sigsoft conference on Quality of software architectures, Jun. 2013, pp. 69–78. doi:
10.1145/2465478.2465487.

[22] J. Gonzalez-Huerta, E. Insfran, S. Abrahão, and G. Scanniello, “Validating a model-driven software architecture evaluation and
improvement method: A family of experiments,” Inf. Softw. Technol., vol. 57, pp. 405–429, Jan. 2015, doi:
10.1016/j.infsof.2014.05.018.

[23] G. Jacobs, C. Konrad, J. Berroth, T. Zerwas, G. Höpfner, and K. Spütz, “Function-Oriented Model-Based Product Development,”
in Design Methodology for Future Products, Cham: Springer International Publishing, 2022, pp. 243–263. doi: 10.1007/978-3-030-78368-
6_13.

[24] E. M. Clarke Jr, O. Grumberg, D. Kroening, D. Peled, and H. Veith, Model Checking, 2nd ed. Carnegie Mellon University; Technion;
Oxford University; Bar Ilan University; Technische Universitaet Darmstadt: MIT Press, 2018.

[25] G. S. Fishman, Discrete-Event Simulation. New York, NY: Springer New York, 2001. doi: 10.1007/978-1-4757-3552-9.

Journal of Computing Theories and Applications 2023, vol. 1., no. 2., El Murabet and Abtoy. 85

[26] A. Francalanza, J. A. Pérez, and C. Sánchez, “Runtime Verification for Decentralised and Distributed Systems,” 2018, pp. 176–210.
doi: 10.1007/978-3-319-75632-5_6.

[27] B. Uzun and B. Tekinerdogan, “Model-driven architecture based testing: A systematic literature review,” Inf. Softw. Technol., vol. 102,
pp. 30–48, Oct. 2018, doi: 10.1016/j.infsof.2018.05.004.

