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Abstract: The advent of the Internet as an effective means for resource sharing has consequently, led 

to proliferation of adversaries, with unauthorized access to network resources. Adversaries achieved 

fraudulent activities via carefully crafted attacks of large magnitude targeted at personal gains and 

rewards. With the cost of over $1.3Trillion lost globally to financial crimes and the rise in such 

fraudulent activities vis the use of credit-cards, financial institutions and major stakeholders must 

begin to explore and exploit better and improved means to secure client data and funds. Banks and 

financial services must harness the creative mode rendered by machine learning schemes to help 

effectively manage such fraud attacks and threats. We propose a hybrid modular genetic algorithm 

trained neural network ensemble to detect fraud activities. The hybrid, equipped with knowledge to 

altruistically detect fraud on credit card transactions. Results show ensemble effectively differentiates, 

the benign class attacks/threats from genuine credit card transaction(s) with model accuracy of 92%.  
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1. Introduction 

The birth and adoption today, of credit cards along with the added functionality of 
financial inclusiveness it proffers – has both, given more comfort to clients as well as 
attracted malicious adversaries interested in personal gains [1]. Credit-cards crimes have 
since become easy targets – as such crimes when therein committed and perpetrated – can 
and are only discovered a weeks afterwards [2], [3]. Successful credit-card fraud techniques 
can includes (but are not limited to): (a) card copying to acquire/steal user privacy data (on 
need), and (b) vendors extorting money without a card-holder’s awareness [4]–[6]. 
Whenever banks lose money to such card-fraud, their corresponding card-holders 
entirely/partially reimburse such losses through reduced benefits and higher interests. Thus, 
it is in the best interest of both card-holders and financial institutions, to reduce card fraud 
as well as invest wisely in schemes to aid card-fraud prevention and detection [7], [8]. 

Financial crimes cost the global financial services industry $42Billion by 2018 – with 
the numbers growing rapidly [9]. Anticipating today’s fraud systems, financial services firms 
must diversify via applying innovative measures to mitigate and prevent fraud. If a technical 
system is abused, methods are needed to detect it. Fraud prevention and detection schemes 
aim to identify fraud instances via anomaly detection in user behavior and logged data 
analysis [10], [11]. Management of fraud thus, advances preventive measures to curb fraud 
acts [12], [13]. Oracle offers fraud management that combines anomaly-correlation abilities 
with sophisticated behavior detection, analysis and case administration [14] – to result in 
early detection of complex fraud with enhanced client protection, and reduced reputational 
risk [15], [16].  
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Fraudsters continually seek more efficient mode with improve dynamism to evade 
security measures and firewalls that profiles user behavior at entry point, and minor hacks to 
steal client valuable data. Fraud monitors proffers combo of risk monitoring and detection 
analysis [17]. Ojugo and Otakore [18] notes that a detection system should intelligently 
gather event alerts with early multi-channel fraud detection that aims to enhance client 
protection, and reduce risks of fraud susceptibility [19]–[21]. 

The dynamism in card fraud detection continues to puzzle administrators as 
adversaries are continually poised with rising quest to tweak schemes to help them evade 
detection; while, businesses are more determined to curb such threats. These, have 
contributed to making such task for both business owners and policymakers, an 
inconclusive and continuous feature [4]. To formulate improved and better performed 
frameworks, studies have successfully shown that ensembles with degraded performance 
can be attributed to a variety of reasons such as improper feature/parameter selection, 
conflicts imposed by the dataset used during data encoding, selected training/testing 
probability distribution for underlying features of interest, etc [22]–[24]. Even with the 
consequent adoption and adaptations of dynamically evolved, intelligent and stochastic 
classifiers, card fraud persists as adversaries are continually evolving their exploit techniques 
[25], [26]. 

Our study explores a hybrid ensemble [27], [28] capable of addressing optimization 
issues with appropriate feature(s) selection to adequately train the ensemble such that it 
avoids the pitfalls of model over-fitting and over-parameterization as well as effectively 
resolves the conflicts in data encoding and heuristic(s) structure with the hybrid. We 
propose the hybrid genetic algorithm trained modular neural network ensemble to aid card-
fraud detection. 

2. Review of Related Literature(s) 

2.1. Fraud Detection 

The advent of the Internet alongside the evolution on Moore’s law of computing 
continues to advance processing prowess/capabilities [29], [30]. These are met with cyber-
attacks, which is today the single largest threat globally to individuals and businesses [31]. 
These attacks are targeted at resources, generated by these coy, to include intellectual 
property, data, devices etc – aimed ultimately at financial gains [32], [33]. A remarkable 
evidence of our society’s digital revolution towards financial inclusion is the proliferated use 
of cards.  This revolution has also birthed many challenges with card-fraud and is currently 
witnessing the era of more clever and complicated methods/techniques being adopted and 
adapted to dispose clients of their privacy data and money [34], [35]. 

 
 
 
 
 
 
 
 
 
 
 

Figure 1. Schema of the various fraudulent activities (Source: [36]) 

Fraud seeks to illegally dispose an unsuspecting, compromised user of valuable assets 
herein obtained by an adversary via willful misrepresentation. From a criminal viewpoint, 
fraudulent charges may theft, larceny, and embezzlement [37]. It is a state where an 
unsuspecting, vulnerable user relies and depends on the false representative claims issued by 
an attacker/adversary for personal benefits [38]. Fraud is perpetuated by either an insider 
within an organization (as insider threat), or by an external user to compromise the 
workings and proper function of a system within an organization/business [39], [40]. Thus, 
[5] identifies fraud can be to the benefit of an individual; to part of an organization; or to 
the whole organization itself. Credit-card today, has improved a bank’s proximity to her 
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clients, and also ushered in more financial inclusion for customers. It has also advanced the 
needs for adversaries and attracted malicious attacks for gains [20]. A critical reason in the 
choice of credit-cards by adversaries, is that asides being an easy target – such crimes 
if/when committed, are often uncovered days after; while, some cases even go unreported. 
Successfully implemented card-fraud methods include(s): (a) cloning of card having 
acquired the compromised user privacy and confidential information, and (b) finance 
houses overcharging the cardholders even without their awareness [39]. When banks lose 
money to card fraud, the cardholders are made to repay such loss wholly/partly, via either 
reduced benefits and/or higher interest rates. Thus, it is in the best standpoint of both the 
banks and the various cardholders – to take the necessary precautions and action in a bid to 
reduce card fraud [41]. 

Ileberi et al. [39] trained the RBF model with 7-parameters to recognize an attack from 
a data packet, sent via a filter alarm. Their design created profiles using stream sample 
mode. And their result – shows we can: (a) accurately cluster and quantify packets as a 
profile, and (b) we can listen to low-error rates anomalies and correctly identify. They 
concluded that routers listen and trace packet exchange, they harness key parameters and 
underlying features of interest for each packet; And thus, allows the model to create the 
corresponding profiles that in turn, improved their detection rate/confidence. Artikis et al. 
[4] used a change aggregate tree to detect minor shocks cum anomaly in traffic data. These, 
they investigated and uncovered that many of such events correlate during various sessions. 
As such, a router actively terminates session to indicate that an attack is imminent. Aghware 
et al. [3] used a deep learning ensemble with 7-feats to monitor, inspect and detect packet 
rates; while, Ojugo et al. [42] extended [35] via an unsupervised ensemble to capture and 
profile packet parameters explored to group (into classes), packet patterns in a traffic 
session. 

 

2.2 Learning Models 

An algorithm seeks to explore a sequence of instruction to process a set of data inputs 
so as to yield a transformed output usually referred to as an outcome [43]. During 
processing, what we know as both input and output can change. We seek a system to track 
how the input is processed and transformed unto an output, and the changes therein 
achieved [44]. Thus, what we lack in knowledge is made up for in data and instruction to 
yield a program. The idea is to learn what constitutes an output. A model achieves this via 
the learning process. Learning is a system’s ability to map/assign the input data points onto 
an output class using the underlying feats of interest, and approximate a solution for the 
system as the data-point changes via the actions of processing [26], [45].  

Learning is classified [46]: (a) supervised learning maps an input data to an output class, 
whose correct values are provided by a supervisor via the use of labels, and (b) unsupervised 
learning maps input unto an output class without the use of labels. Its structure aims to find 
regularities at the input and map them unto classes, and (c) reinforcement or semi-
supervised – a hybrid of the supervised and unsupervised modes [47]–[50]. 

 

2.3. Study Motivation 

A remarkable evidence of the digital revolution and transformation age in our society 
in the recent past, is the proliferation of credit-card(s) use and adoption in a variety of 
exchange platforms. This revolution also ushered in the problem of credit card fraud, 
wherever more clever and complicated methods are used to steal considerable amounts of 
money [34]: 
1. The constant loss in revenue by financial institutions alongside a variety of the hidden 

therein accrued to clients with such financial losses. 
2. The rise in adoption of online purchases and e-commerce vis-à-vis the rise in adoption 

of credit-card to foster more financial inclusiveness has made more users complacent 
as they port on various platforms to aid the seamless transaction buying and selling. 
Wherein it should be noted that these criminals and adversaries are always, often steps 
ahead of many security experts. 

3. Adversaries continue to leverage on user-trust patterns and susceptibility behaviours 
cum traits (i.e. phishing threats) to commit such crimes – since by nature, users yearn 
to improve their dependence and trust-level of techs that improve their living ease. The 
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need thus, to protect client valuable assets via the implementation of fraud prevention 
and detection schemes has become both critical and paramount. 

4. The adoption of such techniques are often hampered due to the limited nature of fraud 
dataset and since, it is also very much unwise to describe in great details – the workings 
and structure of such fraud detection techniques and ensemble over public as these will 
further arm adversaries with the needed requisite knowledge to evade detection. 

5. The inherent issues in performance degradation has often been triggered and attributed 
to features such as the improper selection of underlying parameters of interest, choice 
in mismatched features, data encoding anomalies, structural dependencies conflict, the 
use of non-optimized dataset vis-à-vis its lack thereof. Eliminating ambiguities, noise 
and partial truth features will further improve the classification properties of an 
ensemble. 

6. The presentation of censored results and limited availability of datasets – has often 
hampered the performance of detection. Also, with the available dataset rippled with 
noise, partial truth, ambiguities, and imprecision, which the schemes must resolved in 
order to arrive at an optimal solution. 

7. Card fraud can persist even with the adaptation of dynamic schemes and classifiers. 
New schemes must be ably address optimization tasks exploring machine learning 
approaches to yield ensemble unification via exploiting historic (numerical) dataset. 

3. Proposed Material and Method 

3.1. Data Gathering 

Dataset is a transaction log file that consists of 23-fields for each record. Log file 
contains about 57,345-transaction records with details to include cardholder data, bank 
name and others as in Table 1. Transactions log consists of records to help effectively 
classify into genuine and fraudulent transactions. Dataset is rippled with cases of genuine 
and fraudulent transaction classes. The sampled (unstructured) dataset was collected for a 
15-months period, with the classified records amounts to 58.2% of total data-records. The 
dataset is split into: training (75%) and testing (25%) respectively. 

Table 1. Historic Dataset with features such as Data Description, Types and Format 

Features Description of Features Data Type Format 

User Name Account Holder’s Name Object abcd 
Bank Name Bank of Account Holder Object abcd 
NUBAN Account Nigerian Universal Bank Number e-channel Trans. Int 1234 
Billing Address Account holder's local bank address of withdrawal, hotel Object abcd 
Transaction Amount Amount of transactions adjusted in the bank’s currency Float 12.34 
Transaction Type Local, International, and/or e-Commerce as type Object abcd 
Date/Time Transaction Date and Time Float M:D:Y 
Transaction Channel Channel (payment terminal and/or merchant application) Object abcd 
Merchant Hotels, Restaurants, etc Object Abcd 
Transaction Gap Time Duration from last transaction to the current transaction Float M:D:Y 
Daily Transaction Daily average transactions performed by a cardholder Int 1234 
Daily Transaction Limit The daily limit of the amount that cardholders can do daily Float 12.34 
Freq. Trans. Types Average frequency of transactions by cardholder Int. 1234 

 

3.2. Hybrid Memetic Modular Neural Network Ensemble (HyGAMoNNE) 

It is known fact that hybrid (reinforcement) ensembles are always proven to better 
than single models. There is however, the issue of resolving conflicts that arise from 
encoding data as data flows and is transcribed from one heuristics to another. There is also 
the issue of structural dependencies imposed on the ensemble. These must be adequately 
and effectively resolved. We use a hybrid modular ensemble as in Figure 2, which shows the 
ensemble as a 3-block model-view adapted from [51] as: (a) unsupervised modular Kohonen 
neural network, (b) the supervised cultural genetic algorithm, and (c) a knowledgebase. 
1. The Cultural Genetic Algorithm: Basically, a GA-block uses 4 operators (initialize, 

fitness function and select, mutation, and crossover) to uncover probable solution(s). 
A gene is fit – if its value is close to optimal. A variant of GA is the Cultural GA 
(CGA), which uses 4-belief spaces to define its solution space namely: (a) normative 
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belief which defines the specific value ranges to which a gene is bound, (b) domain 
belief contains knowledge about the task being undertaken, (c) temporal belief contains 
knowledge about the available problem space, and (d) spatial belief contains knowledge 
about the task’s topography. Furthermore, it uses the influence function to bridge the 
belief spaces and its gene pool to ensure any modified genes still conform to the belief 
space(s). The CGA yields a pool that does not violate its belief space and assist in 
reducing the number of genes generated until an optimum is discovered [52], [53]. 

2. The Unsupervised Kohonen Modular Network is a grid-like, feed-forward neural 
network whose first layer accepts input, and re-sends unbound to its second layer, 
which uses the transfer function to offer competitive computation. The competitive 
layer maps similar patterns into relations, which is used to determine training results. 
We modify these parameters to carefully create our Kohonen MNN via a deep-
learning architecture [54]. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

Figure 2. Hybrid Genetic Algorithm Trained Modular Neural Network Ensemble 

 

3.3. Data Encoding 

Unstructured and unclassified data must be formatted to be used by the appropriate 
heuristics. This will help clean up the dataset and reduce its ambiguities, noise, partial truth, 
non-available and incomplete data, amongst other imprecise and inconsistent feats. With the 
fusion of both heuristics (i.e. the genetic algorithm and Modular neural network) – it yields a 
conflict for encoding data. Our ensemble must appropriately filter the dataset records, and 
map onto the required form that the hybrid can effectively and easily understand. To 
resolve this conflict and adequately encode the selected feats of interest, we transform our 
dataset of Table 1 using the Pandas Library as in listing 1. This will help the ensemble to 
modulate the raw data unto the require dataset – and even if data is retrieved from a variety 
of sources, will be adequate for analysis. 

 

Listing 1. Data Description and Encoding for HyGAMoNNE Algorithm 

INPUT: Select Parameters of interest 

OUTPUT: Format parameters to appropriate data_type 

1: For Each selected parameter DO 

2:    if selected parameter is non-numerical then data_type category is generated 

3:   End if 

4: End For 

 

3.4. Training Phase & Tuning of Hyper-Parameters 

In training, the selected parameters are tuned (i.e. hyper-parameters) with values 
outside an ensemble’s bounds [55]–[57], which impacts its behavior via targeted learning to 
yield an optimal solution. Our choice ensemble will help to learn feats directly so as to help 
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resolve the data encoding and structural conflicts imposed on the ensemble by the native 
heuristics used, and avoid over-fit, over-parameterization and poor generalization of 
ensemble [58], [59]. For hyper-parameters in our proposed ensemble is as [60] thus: 
1. Learning rate regulates the neuron’s bias and weights, and ensures amount to be 

modified via gradient loss. It denotes how easy an ensemble may abandon its belief for 
new norms. A small learning rate value denotes faster learning and implies how easily 
the ensemble can quickly identify important feats. It enables an ensemble to easily and 
more quickly adapt to change. To minimize ensemble over-fit and over-training, we 
choose a learning rate of 0.2, which is suitably adjusted for the ensemble. 

2. Batch size is the training size used. It is of 3-modes: (a) batch is when iteration and 
epoch sizes are equal, (b) mini – when the iteration is greater than epoch size, and (c) 
stochastic is when the gradient and network features are updated and recalibrated after 
iteration. 

 
Using trial-n-error in tuning the hyper-parameters, we used the best fit values of 0.2 and 

500-epochs for learning_rate and batch_size respectively during training (and re-
implemented during test phase). This is found to be in agreement with [61]–[63]. 

4. Results and Discussion 

4.1. Ensemble Testing Phase Performance and Evaluation 

To compute the sensitivity, specificity, and accuracy of the ensemble [64], [65] we 
evaluate its performance using Eq. 1 to Eq. 3 respectively as thus: 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (1) 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑇𝑁

𝑇𝑁 +  𝐹𝑃
 (2) 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
   (3) 

 
The resultant confusion matrix classification report is given in the Table 2 and 3 

respectively. Table 2 shows that the ensemble has a prediction accuracy of 0.99 (i.e., 99%) 
with data inclusion that were not originally used to train the ensemble, from the outset. 

Table 2. Classification report for Test-Dataset 

Parameters Sensitivity Specificity Accuracy Support 

0 0.98 1.00 0.99 11,411 
1 1.00 0.98 0.99 1,059 

Avg/Total 0.99 0.99 0.99 12,500 

 
Table 3 shows that from the test dataset, 11,411-cases of the 12,500 records were 

correctly classified as fraudulent in the class (label 0). It implies the ensemble correctly 
identified and classified appropriately as true-positives the transactions of the class 0. Also, 
31-cases of incorrectly classified fraudulent transaction were marked false-positive; While, 
we have 1,059 benign transactions in the class (label 1); for which, 776-incorrectly classified 
fraud transactions was marked false-negative, and 283-correctly classified fraud was marked 
true-negative. Note: (a) true-positive, ensemble predicted positive, and it was true, (b) true-
negative, ensemble predicted negative and it was true, (c) false-positive, ensemble predicted 
positive and it was false, and lastly, (d) false-negative, ensemble predicted negative and it 
was false. This, is as seen in Table 3 and agrees with [28]. 

Table 3. Classification report for Test Data (predicted versus actual values) 

Parameters Actual Values 

Predicted 11,411 31 
Values 776 283 
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4.2. Result Findings 

Simulation test-beds with a single-layered net of 1-to-10 neurons yields highest f-score 
and least training loss time to result in the best number of layers. Adding a second hidden 
layer yielded good results with the highest number of neurons yielding the best scores and 
agrees with [66], [67]. Table 4 shows the first layer configuration with 10 neurons and extra 
2 neurons for optimal extra processing. The hidden layer of 9,11-neurons resulted in a 99% 
accuracy and 0.39 training loss value. The ensemble favors the adoption and consequent use 
of a second hidden layer with a greater value for the accuracy as in agreement with [61], 
[68]. 

Table 4. Accuracy result with 2-hidden layers 

Hidden 
Layer 

Sensitivity Specificity Accuracy Iteration Train Loss Epoch 

9, 1 0.91 0.92 0.83 29 0.393 500 
9, 2 0.93 0.92 0.85 24 0.392 500 
9, 3 0.91 0.92 0.90 25 0.483 500 
9, 4 0.90 0.87 0.89 25 1.185 500 
9, 5 0.58 0.92 0.91 18 1.482 500 
9, 6 0.92 0.92 0.86 19 1.699 500 
9, 7 0.59 0.92 0.89 22 0.318 500 
9, 8 0.85 0.93 0.90 14 1.484 500 
9, 9 0.94 0.92 0.91 19 1.659 500 
9, 10 0.91 0.92 0.92 18 1.371 500 
9, 11 0.92 0.94 0.99 14 0.390 500 
9, 12 0.93 0.93 0.94 16 1.280 500 

Table 5. Predicted results values of selected transaction rule log 

Transaction Rule(s) Duration Attack Confusion Matrix 

0.24069543 0.12secs Yes TP 
0.92057455 0.13secs Yes TP 
1.19477387 0.13secs Yes TP 
0.54475628 0.21secs Yes TP 
0.54754170 0.19secs Yes TP 
1.49257306 0.20secs Yes TP 
1.68077918 0.25secs Yes TP 
1.46754675 0.30secs Yes TP 
0.98409124 1.13secs No FN 
1.58973958 1.09secs No FN 
1.19001043 0.26secs Yes TP 
0.73513175 1.16secs No FN 
1.47307977 2.01secs Yes TP 
1.94126630 0.93secs Yes TP 
0.68066651 0.82secs Yes TP 
0.78385333 0.45secs Yes TP 
0.95404663 1.34secs No FN 
0.76097431 0.98secs Yes TP 
1.25818485 0.23secs Yes TP 
1.34559804 0.43secs Yes TP 
0.97082850 0.23secs Yes TP 
1.42120613 1.49secs No FN 
1.41576289 1.60secs No FN 
1.25585408 0.21secs Yes TP 
1.44015847 1.20secs Yes TP 
1.20401244 2.01secs No FN 
1.67491842 0.12secs Yes TP 
1.61675307 0.31secs Yes TP 
2.08888464 0.24secs Yes TP 
1.95249323 2.76secs No FN 
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Table 5 yields the false-positive and true-negative error classification rates. Result 
shows that from the 57,345-instances of the records retrieved from the dataset with 23-
fields (all of which has been pre-processed), 22-out-of-the-30 recorded data were correctly 
classified (i.e. result of the test dataset) where 52,560 cases are genuine, and over 5,411 
benign cases were in the first class labeled 0. Ensemble successfully identified 5,210-cases as 
correctly classified as benign true-positive instance; But, 8-out-of-30 cases were incorrectly 
classified as genuine transactions, and marked as false-positive instance in the class labeled 
1. Also, 276-cases were incorrectly identified as fraud transactions as false-negative, and 
233-cases correctly identified malicious instances of them were marked as true-negative; 
And this agrees with [69], [70]. Thus, (a) for true positive, model predicted positive, which is 
true, (b) for true negative, model predicted negative and it was true, (c) for false positive, 
model predicted positive and it was false, and (d) for false negative, the model predicted 
negative and it was false. Thus, it can be concluded on the premise of the results achieved 
that the proposed HyGAMoNNE. 

 

4.2. Discussion of Findings 

The fight against card-fraud will always require a concerted effort. Many detection 
filters, schemes and heuristics often profiles transaction requests using adopted parametric 
feats of interest to analyze the created profiles as well as pro-actively decide, if a profile 
packet data is (un)compromised vis-à-vis yield safety actions as further measures. Their 
performance is often hindered by the misclassification of unidentified data-points. The 
needed ensemble should correctly and effectively group all profiled request data packets 
(into the various classes of genuine and fraudulent transactions) with zero-tolerance for 
errors. Again, we can thus, conclude on the premise of the results achieved therein – that, 
our proposed HyGAMoNNE ensemble can effectively classify transactions into the various 
classes. 

 

4.3. Tradeoff for Ensemble Implementation 

Several trade-off were noticed in our aim to benchmark these simulations results, and 
these fall under the following classes and agrees with [71]–[73]: 
1. Censored Result(s): Modelers often build newer ensembles rather than investigate 

older ones by re-evaluating their limitations/bias. They also fail to report negative 
results on the premise that they are less valuable. Thus, they showcase ‘incorrect’ 
results with misleading images on their level of agreement with known successful 
solutions [74], [75]. 

2. Test-beds – Modelers employ graphs that are further discussed to allude to or convey 
how well their simulations agree with the squeezed and available limited (historic) data 
that often yield results that are not easily distinguishable. Some studies do not even 
provide numeric dataset; however, their model agrees with the observations. A 
measure of goodness does not provide the relevant knowledge for the task at hand 
[76], [77]. 

3. Insufficient Tests – Validation compares computed versus observed values. Many 
studies use inadequate data. If a model seeks to simulate results of a task, such 
capability cannot be demonstrated with unfounded/misleading result from limited data 
and misleading conclusions [78], [79]. 

5. Conclusions 

Fraud schemes/techniques usually filters a credit card transaction request, analyzes it 
to decide uncompromised and compromised packets, and met out safety measures for 
further actions. This performance can be hindered by the error rate for incorrectly classified 
and unidentified rules that the scheme/model generates. An ideal scheme will correctly 
classify all request and packets with almost zero error rates of false positive/negative – 
through tradeoffs between the number of false positives and false negatives. 

To implement hybrid ensemble, a modeler must carefully select the appropriate feats 
to be used for, choose an efficient encoding scheme for the dataset (so as not to lose data 
via pre-processing), effectively explore the observed data in the domain in interest and to 
yield an optimal solution. The dataset used must be encoded within model’s structured 
learning – to resolve all statistical dependencies as well as highlight implications for such a 
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multi-agent model so as to avoid over-fit, over-training etc. Modelers must acknowledge 
that these agents create or enforce their own behavioral rules on the adopted heuristics, and 
dataset; Thus, impacting differently on hybrid ensemble other than intended. 

Model must provide enough new data with feedback logic that aid valuable 
comprehension of the adopted rules. Thus, modelers must provide the needed balance 
required to easily understand and manage between model’s complexity and its navigation – 
to help study other processes. Thus, we posit that: (a) parameters are a major source of 
uncertainty in predictions. Model should have input ranges rather than single values, (b) 
multi-criteria training with adequate datasets helps reduce parameter uncertainty, and (c) 
prediction is of limited practical use, without clear data about reliability and accuracy. 
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