

Journal of Computing Theories and Applications ISSN:3024-9104

DOI : 10.62411/jcta.12618 publikasi.dinus.ac.id/index.php/jcta/

Research Article

A Multilevel Digital Image Thresholding Technique Based
on an Enhanced Firefly Algorithm with Neighborhood
Attraction

Abdulkarim Bashir Suleiman 1, Kana Armand Florentin Donfack 2, Abdulkarim Muhammad 2, and Muhammad

Jumare Haruna 1,*

1 Department of Computer Science, Federal University of Education, Zaria, Kaduna State 810282, Nigeria;
e-mail : abdulkarimbashir@rocketmail.com; muhammadjumare@gmail.com

2 Department of Computer Science, Ahmadu Bello University, Zaria, Kaduna State 700225, Nigeria;
e-mail : donfackkana@gmail.com; amuhd@abu.edu.ng

* Corresponding Author : Muhammad Jumare Haruna

Abstract: Digital image segmentation is essential in image processing, influencing the accuracy of

higher-level tasks. Thresholding is widely used, yet identifying optimal threshold values remains chal-

lenging. The Firefly Algorithm with Neighbourhood Attraction (FaNA), a metaheuristic approach, is

efficient for color image thresholding but underperforms on grayscale images due to suboptimal

thresholds. To overcome this, an enhanced version (eFaNA) was developed by integrating a chaotic

tent map for population initialization and a Lévy flight-based random walk for improved exploration.

eFaNA was compared with FaNA, fuzzy firefly algorithm (FFA), and the standard Firefly Algorithm

(FA) in multilevel thresholding of grayscale images. Results demonstrate that eFaNA achieves superior

segmentation quality with minimal detail loss, outperforming the others. The average PSNR obtained

by eFaNA, FFA, FaNA, and FA was 25.5320 dB, 25.4075 dB, 24.1522 dB, and 24.4506 dB, respec-

tively; average SSIM was 0.8641, 0.8604, 0.8432, and 0.6703; and execution time was 50.5322, 38.7726,

38.7528, and 107.6340 seconds, respectively. This reflects a PSNR improvement of 5.71% over FaNA,

0.49% over FFA, and 4.42% over FA, and an SSIM gain of 2.48% over FaNA, 0.43% over FFA, and

28.92% over FA. While eFaNA lags behind FFA and FaNA in execution time by ~11.8 seconds, it

significantly outperforms FA. The performance gain is attributed to the chaotic tent map’s diverse

initialization and the Lévy flight’s enhanced search capability. These improvements enable eFaNA to

deliver consistently better threshold values and segmentation results. However, its relatively higher

computational cost may limit applicability in real-time image processing.

Keywords: Digital image; Firefly algorithm with neighborhood attraction; Firefly optimization

algorithm; Image segmentation; Multilevel thresholding.

1. Introduction

Digital image processing is the application of various computing algorithms to process
digital images [1]. Digital image segmentation is a core activity in digital image processing. It
is the process of partitioning or separating digital images into their non-overlapping classes
[2], [3], where pixels within the same class belong to the same object parts or background. It
is a process that converts an image into distinct and uniform regions [4], [5], and it’s done by
grouping neighboring pixels that have coherent intensities [5], [6]. The aim is to change the
representation of a digital image to make it more meaningful and simpler for easier analysis.
It has several applications, such as in the diagnosis and monitoring of diseases, for example,
in medical imaging, for finding moving objects in video sequence [7], in computer vision and
robotics [8], in autonomous or self-driving cars [9], among others. A lot of digital image seg-
mentation methods have been proposed in the literature, including region and boundary-
growing-based methods [10], edge-based methods [11], clustering-based methods [12], Arti-
ficial Neural Network based method (ANN) [13] and thresholding-based methods [14].

Received: April, 16th 2025

Revised: May, 24th 2025

Accepted: May, 25th 2025

Published: May, 27th 2025

Copyright: © 2025 by the authors.

Submitted for possible open access

publication under the terms and

conditions of the Creative Commons

Attribution (CC BY) licenses

(https://creativecommons.org/licen

ses/by/4.0/)

https://publikasi.dinus.ac.id/index.php/jcta/index
https://publikasi.dinus.ac.id/index.php/jcta/index
https://publikasi.dinus.ac.id/index.php/jcta/index
mailto:abdulkarimbashir@rocketmail.com
mailto:muhammadjumare@gmail.com
mailto:donfackkana@gmail.com
mailto:amuhd@abu.edu.ng
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

Journal of Computing Theories and Applications 2025 (May), vol. 2, no. 4, Suleiman, et al. 573

Several metaheuristics algorithms have been used to find optimal thresholds for image
segmentation. These include modified Grasshopper Optimization Algorithm (GOA) [14],
[15], Oppositional Symbiotic Organism Search (OSOS) [16], [17], learning enthusiasm-based
teaching-learning based optimization (LebTBLO) [18], [19] and firefly metaheuristic algo-
rithm [4] among others. However, some gaps in the existing literature associated with me-
taheuristic algorithms for image thresholding include not obtaining excellent threshold values,
which is denoted as the local optima problem and leads to poor threshold images. As a result,
threshold images are distorted and are incomparable with ground truths, often measured in
terms of Peak Signal Noise Ratio (PSNR), Structural Similarity Index Measure (SSIM), etc.
Another issue with these algorithms is their low performance on colored and medical images
such as Magnetic Resonance Images (MRI), X-rays, etc. In addition, these algorithms have
high computational time, often referred to as the Execution time. This is the cumulative time
these algorithms take to obtain resultant threshold values and segment digital images into
constituents.

 The Firefly algorithm is one of the most commonly used metaheuristic algorithms for
image thresholding due to its performance and fewer parameters [14], [20]. However, it has
high computational time when used to threshold digital images. To reduce the time this algo-
rithm takes for thresholding digital images and their variants, the Firefly algorithm with
Neighborhood Attraction (FaNA) and fuzzy firefly [21] algorithms were employed. Although
FaNA threshold digital-colored images have low execution time, they do not produce optimal
threshold values resulting in qualitative and accurate digital greyscale images. This work con-
tributes to knowledge by developing a chaotic tent map-based enhanced firefly algorithm with
neighborhood attraction that addresses the local optima threshold problem in FaNA for gray-
scale images, consequently making it yield accurately segmented digital greyscale images.

The rest of this paper is structured as follows. Section 2 review of related works. Section
3 describes the firefly algorithm with neighborhood attraction. Section 4 describes the pro-
posed method. The results obtained by the proposed method and discussion are presented in
section 5. Section 6 concludes the paper and outlines possible directions for future research.

2. Related Work

In the existing literature that seeks to find a solution to local optima, threshold utilizes
metaheuristic algorithms. These algorithms can be broadly categorized into three: those based
on standard metaheuristic algorithm without modification, those modified by hybridization
with other metaheuristic algorithms, and those modified using other non-metaheuristic algo-
rithms or schemes. For instance, the standard Cuckoo search (CS), FA, Particle Swarm Op-
timization (PSO), and Differential Evolution (DE) were used to search for optima thresholds
that could segment grayscale images by [21]. Optima thresholds that could segment X-ray
digital images were sorted using standard FA and BAT algorithms [22]. The authors in [23]
seek to find an optimal threshold that could segment digital-coloured images using FFA,
FaNA, Salp Swarm algorithm (SSA), basic firefly algorithm, Opposition Dimension Firefly
Algorithm (ODFA), and Black Widow Optimization (BWO) algorithm. Optima thresholds
for digital grayscale images were found by [24] using a Hybridized firefly with the Dragonfly
algorithms and compared with GA, PSO, FA, BFO, and Electromagnetic Optimization
(EMO) algorithms. In addition, [25] utilizes hybrid FA with PSO, Genetic Algorithm (GA),
PSO, AMO (Animal Migration Optimization), and the standard FA to find optima thresholds
for digital grayscale images. The standard FA and Social Spider Optimization (SSO) were also
used to find optima thresholds for digital grayscale images [26]. A modified firefly algorithm
based on lévy flight was also used in [4] and [23] to find optima thresholds for digital grayscale
images. Study [27] seeks to find an optimal threshold for digital grayscale images using LFA
and chaotic Bat algorithm, PSO, lévy Bat (LBAT), and Bacteria Foraging Optimization algo-
rithm (BFO). In [28], a lévy flight-based FA and FFA were used to find optima thresholds
for digital-colored images. Lévy flight-based FA, lévy flight-based BA, lévy flight based BFO,
and lévy flight PSO were employed to find optima thresholds for segmenting noised stained
gray scaled images by [29]. The authors in [30] and [31] utilize Brownian random walk-based
FA, BFO, and CS to search for optima thresholds for colored RGB digital images.

Journal of Computing Theories and Applications 2025 (May), vol. 2, no. 4, Suleiman, et al. 574

3. Firefly Algorithm with Neighborhood Attraction

Firefly Algorithm with Neighborhood Attraction was proposed by [32]. The contribu-
tion of this work was to select fireflies that will be compared with the current fireflies to
ascertain whether an update is necessary. FaNA is based on the k nearest neighbor strategy.
The attraction of fireflies is such that fireflies are attracted by brighter fireflies selected from
a predefined neighborhood rather than the entire population. The following modifications
were made to the standard firefly algorithm in the FaNA algorithm. Randomization parame-

ters, 𝛼, and attractiveness coefficient were updated according to Equations (1) and (2), re-
spectively. The movement equation used was as shown in Equation (3) [32].

𝛼(𝑡 + 1) = (
1

9000
)

1
𝑡

 𝛼(𝑡) (1)

𝛽 = 𝛽𝑚𝑖𝑛 + (𝛽0 − 𝛽𝑚𝑖𝑛)℮−𝛾𝑟2
 (2)

𝑋𝑖𝑑
(𝑡+1)

 = 𝑋𝑖𝑑
(𝑡)

+ 𝛽(𝑋𝑗𝑑
(𝑡)

− 𝑋𝑖𝑑
(𝑡)

) + 𝛼(𝑡)𝑆𝑑Ɛ𝑖 (3)

Where 𝑆𝑑 is the length scale of each variable. Ɛ𝑖 is a random number drawn from the uni-

form distribution. t is the iteration count, 𝛽𝑚𝑖𝑛 is the minimum value of 𝛽, 𝛽0 is the attrac-

tiveness constant, 𝛾 is the light absorption coefficient, r is the distance between fireflies, α is

the randomization parameter, and e is the exponent. 𝛽 was limited within the range

[𝛽
0
, 𝛽

𝑚𝑖𝑛
]. 𝛼, 𝛾, 𝛽𝑚𝑖𝑛 , 𝛽0 were initially set to 0.5, 1.0, 0.2 and 1.0 respectively. The Firefly

with Neighbourhood Attraction algorithm and its flow charts are shown in Algorithm 1.

Algorithm 1. Firefly Algorithm with Neighborhood Attraction (FaNA) [32]
INPUT: Number of fireflies (N), Attractiveness Coefficient or constant, Absorption Co-
efficient or constant, Maximum number of iterations or cycle
OUTPUT: Best firefly (best threshold vector)
1: Randomly initialize the population of fireflies Fi where (i = 1, 2, …n) according to

Algorithm 2.
2: Compute the fitness value of each firefly
3: While FE ≤ MAXFEs do
4: Update the parameter α according to Equation (1)
5: For i = 1 to N, do
6: k= 3
7: For j= i-k to i+k do
8: If j NE i, then
9: Set = (j + N) % N
10: Calculate the attractiveness according to Equation (2).
11: If f(Fj) > f(Fi)
12: Move Fi towards Fj according to Equation (3).
13: Compute the fitness value of the new Fi
14: End
15: End
16: Next j
17: End
18: Next i
19: End
20: FE++
21: End.
22: Return the best firefly

Algorithm 2. Random Initialization scheme
INPUT: UB, LB, population size, dimension
OUTPUT: Initial populations of fireflies, F
1: i=0, j=0
2: while (i <= population size)

Journal of Computing Theories and Applications 2025 (May), vol. 2, no. 4, Suleiman, et al. 575

Algorithm 2. Random Initialization scheme
3: while (j <= dimension)
4: F(i,j)=(UB-LB) *rand (0,1) +LB
5: j=j+1
6: End while
7: i =i+1
8: End while

Where UB is the upper bound, LB is the lower bound, and rand (0,1) is the random function
that returns values between 0 and 1.

4. Proposed Method

This paper enhanced the firefly algorithm with neighborhood attraction to threshold
digital grayscale images by introducing a chaotic initialization scheme and lévy flight-based
random walk mechanism. The enhanced algorithm works as follows. The first step computes
the initial solutions using a chaotic tent map, the second step evolves a new population based
on lévy flight random walk, the third step finds the fitness of each firefly, and the fourth step
compares the fitness of each firefly with one another. The fifth step moves towards brighter
firefly within the specified neighborhood, and the sixth step computes the new fitness of the
evolved fireflies. These procedures are repeated until a stopping condition or the maximum
number of iterations is reached. Algorithm 3 and Figure 1 show the algorithm and proposed
method flow chart. In the context of the enhanced firefly algorithm with neighborhood at-
traction, referred to as the proposed method. The movement equation of the firefly with
neighborhood attraction in Equation (3) was modified by setting the attractiveness term to
zero and adding lévy flight random walk, fireflies’ individuals were initialized as expressed in
Equation (4).

𝐹𝑙𝑒𝑣𝑦 = chaotic𝐹 + 𝐿(𝑑) (4)

Where chaotic𝐹 is a population of chaotic fireflies. 𝐹𝑙𝑒𝑣𝑦 is the lévy based population of

fireflies. 𝑇 is the iteration count, which is the dimension. 𝐿 is a vector of random numbers
generated using the lévy distribution obtained using Equations (5)-(11).

Algorithm 4. Proposed enhanced Firefly Algorithm with Neighborhood Attraction
(eFaNA)
INPUT: Number of fireflies, attractiveness coefficient or constant, absorption coefficient
or constant, maximum number of iterations or cycle
OUTPUT: Best firefly (best threshold vector)
1: Initialize the firefly population using chaotic tent map according to Algorithm 6
2: Evolve lévy flight-based firefly population using Algorithm 5
3: Compute the fitness value of each firefly
4: While FE ≤ MAXFE do
5: Update the parameter α according to Equation (1)
6: For i = 1 to N do
7: k= 3
8: For j= i-k to i+k do
9: If j NE i then
10: Set j = (j + N) % N
11: Calculate the attractiveness according to Equation (2)
12: If f(Fj) > f(Fi)
13: Move Fi towards Fj according to Equation (3).
14: Compute the fitness value of the new Fi
15: End
16: End
17: Next j
18: End
19: Next i
20: End

(continue)

Journal of Computing Theories and Applications 2025 (May), vol. 2, no. 4, Suleiman, et al. 576

Algorithm 4. Proposed enhanced Firefly Algorithm with Neighborhood Attraction
(eFaNA)
21: FE++
22: End.
23: Return the best firefly

4.1. Random Walk

A random walk is a random process that consists of taking a series of random steps
consecutively [33]. It is one of the strategies for generating candidate solutions in a solution
space. Various random walks, such as the Lévy flight and Brownian Walk, may result depend-
ing on the distribution from which the step size or length is drawn. The Lévy flight strategy
is better than other strategies as it explores the search space more efficiently and has a longer
step length [28]. In Lévy flight, the step size is drawn from lévy distribution expressed as a
power law as in Equation (5).

𝐿(𝑠)~|𝑠|−1−𝛽 (5)

Where 𝛽 is an index or exponent and s is the step length. 𝛽 is within the range 0 < 𝛽 ≤ 2.
To generate the size of the random steps, we adopted Mantegna’s definition used in Nadimi-
Shahraki et al. [34], and was calculated as in Equation (6).

𝑠 = 0.01
𝑢

|𝑦|1 𝛼⁄
 (6)

Where 𝛼 is lévy index and is taken as 1.5, 𝑢 and 𝑦 are drawn from normal distributions,
denoted as Equations (7) -(9) [33].

𝛿𝑢 = (
𝛤 (

1 + 𝛼
2

) ⋅ 𝛼 ⋅ 2
𝛼−1

2

𝛤(1 + 𝛼) ⋅ 𝑠𝑖𝑛 (
𝜋𝛼
2

)
)

1
𝛼

 (7)

𝑢 ~𝑁(0, 𝛿𝑢
2) (8)

 𝑦~𝑁(0, 1) (9)

Where 𝛿𝑢 and 𝛿𝑣 defined in Equations (10) and (11), respectively [33].

𝛿𝑢 = [
𝛤(1 + 𝛽)sin (𝜋𝛽/2))

𝜆𝛤 (1 +
𝛽
2

) 𝛽2
𝛽−1

2

]

1
𝛽

 (10)

𝛿𝑣 = 1 (11)

Where 𝜆 = 1.5, 𝛤 is the Gamma function. Lévy flight-based fireflies evolved according to
Algorithm 5.

Algorithm 5. Lévy flight Based Scheme

INPUT: population size, dimension, chaotic𝐹
OUTPUT: lévy flight generated populations of fireflies, Flevy
1: i =0, j=0
2: while (i <= population size)
3: while (j <= dimension)
4: Evolve lévy flight-based population using Equation (4).
5: j=j+1
6: End while
7: i =i+1
8: End while

(continue)

Journal of Computing Theories and Applications 2025 (May), vol. 2, no. 4, Suleiman, et al. 577

Figure 2. Flow chart of the enhanced firefly Algorithm with Neighborhood Attraction (eFaNA)

Journal of Computing Theories and Applications 2025 (May), vol. 2, no. 4, Suleiman, et al. 578

4.2. Chaotic Tent Map

Random initialization of individuals in the population may lead to an unequal distribu-
tion of the individuals within the solution space, which may cause algorithms to be struck in
local optima and converge prematurely. To solve these problems, chaotic tent maps are often
used. They are of utmost importance in improving the performance of evolutionary algo-
rithms as they help them avoid local optima and speed up convergence [35]. There are various
chaotic maps, but we adopted the tent map used by [36]. A tent map is a one-dimensional
map that exhibits good chaotic behavior. It has better ergodicity and randomicity than ran-
dom distribution and can improve the global search ability of fireflies. The chaotic Tent map
is mathematically expressed in Equation (12) [36].

𝑥𝑘+1 = {
2𝑥𝑘 , 0 ≤ 𝑥𝑘 ≤ 0.5

2(1 − 𝑥𝑘), 0.5 < 𝑥𝑘 ≤ 1
 (12)

Where 𝑥𝑘 ranges from 0 to 1. The tent map generates a chaotic sequence in (0,1). Fireflies are initial-
ized according to the initialization scheme presented in Algorithm 6.

Algorithm 6. Chaotic tent map-based initialization scheme
INPUT: UB, LB, population size, dimension

OUTPUT: Initial populations of fireflies, chaotic𝐹
1: i=0, j=0
2: while (i <= population size)
3: while (j <= dimension)
4: Randomly initialize variables Fi,j
5: If (Fi,j < = 0.5)
6: // Map Fi,j to chaoticFi,j using equation 30 as follows:

7: Chaotic𝐹𝑖,𝑗 = 2 ∗ 𝐹𝑖,𝑗 ∗ (𝑈𝐵 − 𝐿𝐵) + 𝐿𝐵
8: Else

9: Chaotic𝐹𝑖,𝑗 = 2 ∗ (1 − 𝐹𝑖,𝑗) ∗ (𝑈𝐵 − 𝐿𝐵) + 𝐿𝐵
10: j=j+1
11: End while
12: i =i+1
13: End while

where UB, is the upper bound and LB is the lower bound.

4.3. Enhanced Firefly Algorithm With Neighbourhood Attraction For the Multilevel
Thresholding of Digital Gray Scale Images

This section presents how the enhanced algorithm(eFaNA) was applied to threshold
grayscale images. The implementation is detailed as in Algorithm 7.

Algorithm 7. Applying eFaNA for thresholding of grayscale images
INPUT: Grayscale image, Ig
OUTPUT: Grayscale image, Ig, Threshold image Ith, PSNR, SSIM values, Execution time
and standard deviation
1: Read the grayscale image, Ig
2: Compute the histogram of the image, Ig
3: Compute the occurrence probabilities of each gray scale level in Ig.
4: Execute Algorithm 4 using Otsu as an objective function, f.
5: Use the obtained optimal threshold vector in step 4 above to segment Ig, resulting in

Ith.
6: Compute the PSNR, RMSE, SSIM values, Execution time, mean, and standard devi-

ation defined as in Equation (12)-(17), respectively.

4.4 Evaluation Metrics and Tools

To measure and compare the performances of the four different algorithms compared
in this work, the following evaluation metrics were used. These metrics are explained below.

Journal of Computing Theories and Applications 2025 (May), vol. 2, no. 4, Suleiman, et al. 579

4.4.1. Peak Signal to Noise Ratio (PSNR)

This metric measures the quality of threshold images. Equation (13) [37] is the mathe-
matical formula for calculating PSNR.

𝑃𝑆𝑁𝑅(𝐼,𝑆) = 20𝑙𝑜𝑔10 (
𝑀𝑎𝑥

𝑅𝑀𝑆𝐸(𝐼,𝑆)
) (13)

Where 𝑅𝑀𝑆𝐸 is the root-mean-square-error expressed as in Equation (14) [37], and 𝑀𝑎𝑥
is the maximum pixel value in the given image.

𝑅𝑆𝑀𝐸(𝐼,𝑆) = √
∑ ∑ (𝐼(𝑖, 𝑗) − 𝑆(𝑖, 𝑗))

2𝑁
𝑗=1

𝑀
𝑖=1

𝑀 ∗ 𝑁

(14)

Where 𝐼 is the original image, and 𝑆 is the segmented image with size 𝑀 ∗ 𝑁. 𝑃𝑆𝑁𝑅 is
measured in decibel (db).

4.4.2. Structural Similarity Index Metric (SSIM)

This evaluates the likeness between the original and segmented image. This is computed
as shown in Equation (15) [37].

𝑆𝑆𝐼𝑀(𝑖 𝑠) =
(2𝜇𝑖𝜇𝑠 + 𝐶𝑎)(2𝛿𝑖𝛿𝑠 + 𝐶𝑏)

(𝜇𝑖
2 + 𝜇𝑠

2 − 𝐶𝑎)(𝛿𝑖
2 + 𝛿𝑠

2 + 𝐶𝑏)
 (15)

Where 𝑖 and 𝑠 are original and segmented images, respectively. 𝜇𝑖𝜇𝑠 are average values. 𝛿𝑖
2

and 𝛿𝑠
2 are the variances. 𝛿𝑖𝛿𝑠 is the covariance. 𝐶𝑎 = (k1L)2 and 𝐶𝑏= (k2L)2 stabilize the

division with weak denominator, with L = 256, k1 = 0.01, and k2= 0.03.

4.4.3. Execution Time

This is the algorithm's cumulative time to obtain the best threshold values and segment
a given grayscale image using the obtained threshold values (given in seconds). The execution
time is the sum of the time the algorithm takes to obtain optimal thresholds and segment the
grayscale image. It is calculated as expressed in Equation (16).

Execution Time = ∑ time taken to obtain thresholds + time taken to segment image (16)

This Equation denotes that the overall execution time equals the time it takes for an
algorithm to search for an optima threshold for a given image and the time it takes for the
algorithms to use the optima threshold to segment the image in consideration.

4.4.4. Mean

The average PSNR, fitness value, execution time, and SSIM are computed in Equation
(17).

𝑚𝑒𝑎𝑛 = ∑ 𝑥𝑖 𝑛⁄ (17)

4.4.5. Standard Deviation

This finds out the stability of the evaluated algorithms. The value of the standard devia-
tion should be as small as possible. It is expressed mathematically as in Equation (18).

𝑆𝑇𝐷 = √ ∑
(𝜎 − µ)

𝑚𝑎𝑥𝐼𝑡𝑒𝑟

𝑚𝑎𝑥𝐼𝑡𝑒𝑟

𝑖=1

 (18)

4.4.6. Hardware and Software Tools

The hardware and software used throughout this study's experiments was an HP 15
Notebook computer system with the following configurations: Intel Core i3, CPU N3510,
1.99 GHz processor, and 8 GB RAM. The algorithms in this study were implemented using
MATLAB version R2023a on a 64-bit Windows 10 Pro operating system.

Journal of Computing Theories and Applications 2025 (May), vol. 2, no. 4, Suleiman, et al. 580

4.4.7 Experimental Datasets

Five different digital grayscale Image datasets were used for the experimental analysis.
These datasets include Lena, Mandrill, Traffic, Cameraman, and Livingroom. Each grayscale
image is 512 by 512 dimensions and was selected because they have different characteristics,
and the proposed algorithm’s performance was evaluated on them.

4.4.8 Experimental Settings

The initial population of fireflies used was set to 25. The number of runs was 30, and

the maximum number of iterations (MaxFE) was set to 100. The initial values of 𝛼, 𝛾, 𝛽𝑚𝑖𝑛,

𝛽0 were initially set to 0.5, 1.0, 0.2 and 1.0 respectively. 𝛽 was limited within the range

[𝛽
0
, 𝛽

𝑚𝑖𝑛
]. Optimal thresholds were obtained for each grayscale image test data set at 2, 3, 4,

and 5 threshold levels.

5. Results and Discussion

This section presents the optimal thresholds obtained by the algorithms. It also discusses
the qualities of the threshold image obtained by the algorithms and compares them regarding
PNSR, SSIM, and execution time. Samples of the threshold digital images obtained by the
four algorithms compared were also presented.

Table 1. Optimal threshold distributions were obtained by FA, FFA, FaNA and eFaNA for each image dataset.

Images Algorithms
Threshold levels

2 3 4 5

Lena

FA [21] 84, 120 42, 85, 110 111, 136, 152 217 125, 155, 187, 232, 245

FaNA [32] 105, 155 24, 92, 114 27, 106, 115, 255 24, 25,62, 84, 120

eFaNA [Ours] 99, 164 134, 146, 240 32,78, 89, 138 18, 39, 80, 88, 98

FFA [23] 101, 164 65, 99, 173 61, 86,101,167 24, 91,138,203,255

Cameraman

FA [21] 63,119 61,76, 207 5,13, 16, 68 6,19,39,63,131

FaNA [32] 73, 142 8,36, 86 8,46,80, 223 8,8,55,59,119

eFaNA [Ours] 127,194 60,111, 197 22,52,88,201 48,62,81,115,190

FFA [23] 123,193 107,145,199 37,91,121, 200 62,89,103,141,194

Mandrill

FA [21] 83,125 14, 37, 69 20,43,71, 122 27,62,99,119,171

FaNA [32] 75,138 38,83,139 38, 66, 97, 155 48,76, 109, 147, 170

eFaNA [Ours] 70,135 46,88,145 33,66,107,159 35,74,99,120, 165

FFA [23] 91,140 145,149, 250 104,140,146,219 133,161,173,220,255

Traffic

FA [21] 107,136 68,92,157 39,66,90,104 34,36,67,68,93

FaNA [32] 86,138 35,75,94 46,67,79,183 38,45,64,76,102

eFaNA [Ours] 92,155 44,71,90 32,61,84,135 41,39,71,81,82

FFA [23] 110,163 120,146,184 124,147,178,224 100,129,164,189,223

Livingroom

FA [21] 106,140 108,137,234 36,65,106,188 4,13,44,72,158

FaNA [32] 91,136 115,139,227 40,55,87,135 11, 9,58,71,115

eFaNA [Ours] 87,141 79,87,141 21,55,92,151 33,27,67,83,109

FFA [23] 68,149 31,84,199 40,57,75,120 56,97,127,154,207

Table 1 shows the optimal threshold distributions obtained by FA, FFA, FaNA, and
eFaNA for each image dataset used in this work. Table 8 is a sample of the threshold digital
grayscale images obtained for traffic images using the optimal thresholds in Table 1. These
threshold distributions were obtained using the Otsu between class variance objective func-
tion.

Table 2 depicts the quality of the threshold digital images in terms of the average PSNR
obtained by the algorithms compared at different threshold levels. Table 2 shows that as the
threshold levels increase, the average PSNR values increase, proving that eFaNA can effec-
tively threshold digital grayscale images. Table 3 compares the overall average PSNR obtained
by FA, FFA, FaNA, and eFaNA at all the thresholds considered. From this table, it can be
seen that eFaNA obtained an overall average PSNR of 25.530db, FFA obtained an overall

Journal of Computing Theories and Applications 2025 (May), vol. 2, no. 4, Suleiman, et al. 581

average PSNR of 25.40750db, FaNA obtained an overall average PSNR of 24.1522db and
the standard firefly algorithm obtained an overall average PSNR of 24.4506db. This result
means that eFaNA has an overall average PSNR improvement of about 5.7130% over FaNA,
an overall average PSNR improvement of about 0.4899% over FFA, and an overall average
PSNR improvement of 4.422% over FA. In addition, this table shows that eFaNA is generally
more stable at obtaining PSNR values because it has a better overall average standard devia-
tion of 1.5361db against an overall average standard deviation of 2.8317db by FaNA,
2.4742db by FFA and 4.6778db by FA. Figure 3 is a bar chart that compares the overall
average PSNR obtained by the four algorithms.

Table 2. The quality of the threshold digital images in terms of the average PSNR obtained by the algorithms compared at different
threshold levels.

Images
Threshold

levels

Objective function: Otsu Between Class Variance

FA [21] FFA [23] FaNA [32] eFaNA [Ours]

mean std mean std mean std mean std

Lena

2 21.8214 3.0759 23.7961 0.4504 21.8754 0.5365 23.9082 0.2317

3 23.1287 6.2467 23.5254 2.6749 22.7451 1.2203 24.6303 0.4017

4 24.7947 3.4172 25.1945 2.6465 25.0653 1.4582 25.6268 1.3210

5 25.6454 3.0759 25.8110 2.4362 25.7623 3.1982 25.8180 2.0390

Cameraman

2 24.7549 2.1207 25.1181 0.5842 24.6830 0.4146 25.1987 0.2015

3 27.7017 7.0991 27.7224 4.7226 27.4329 1.9745 27.4720 1.2971

4 28.3022 6.2449 28.5932 2.5648 28.5597 2.4117 29.8449 1.0361

5 28.4279 7.1129 29.7767 5.0346 28.5855 3.8023 29.9071 2.4051

Mandrill

2 22.4423 2.3723 23.6565 0.3874 22.7159 0.9198 21.8057 0.9428

3 25.2999 10.5197 25.8325 1.8346 24.4329 8.1106 26.7520 1.8159

4 25.6669 4.5932 26.7137 2.8743 24.5102 4.0949 27.8582 2.9207

5 25.9365 4.2342 26.7663 4.5048 25.3167 3.0243 27.1042 2.7415

Traffic

2 17.0845 3.5946 21.1457 1.1490 18.8816 1.3676 20.9299 0.6313

3 22.9086 4.8921 23.6673 2.6896 21.3936 3.2791 23.5473 0.9761

4 23.7890 3.8510 23.9746 2.6502 22.7832 4.1579 24.9936 2.9775

5 24.2707 4.5429 25.4895 3.6255 22.9630 5.1796 25.5443 2.4702

Livingroom

2 22.1896 2.4543 23.4492 1.0340 21.8816 1.5814 23.4572 0.4021

3 24.7275 7.3624 24.8571 2.7996 21.9254 3.3151 22.1101 1.6249

4 24.4537 2.6040 26.0870 2.3562 25.6589 3.2092 26.9642 2.1359

5 25.6659 4.1414 26.9739 2.4650 25.8723 3.3782 27.1679 2.1494

Table 3. The overall average PSNR and standard deviation obtained by the algorithms at each threshold level considered for each of
the five images.

Mean and deviation at

Average PSNR ± STD (dB)

FA [21] FFA [23] FaNA [32] eFaNA [Ours]

PSNR std PSNR std PSNR std PSNR std

Levels 2 Threshold 21.6585 2.7236 23.4331 0.7210 22.0075 0.9640 23.0599 0.4819

Levels 3 Threshold 24.7533 7.2240 25.12094 2.9442 23.5860 3.5799 24.9023 1.2231

Levels 4 Threshold 25.4013 4.1421 26.1126 2.6184 25.3155 3.0664 27.0575 2.0782

Levels 5 Threshold 25.9893 4.6215 26.9635 3.6132 25.7000 3.7165 27.1083 2.3610

Average 24.4506 4.6778 25.4075 2.4742 24.1522 2.8317 25.5320 1.5361

Table 4 shows the SSIM values of the threshold digital images obtained by each algo-

rithm at different threshold levels. This table shows that the enhanced FaNA often obtains a
slightly better average SSIM as the threshold increases. Table 5 presents the overall average
SSIM obtained by the algorithms. This table shows that eFaNA has an overall average SSIM

Journal of Computing Theories and Applications 2025 (May), vol. 2, no. 4, Suleiman, et al. 582

of 0.8641, FFA has an overall average SSIM of 0.8604, FaNA has an overall average SSIM of
0.8432, and FA has an overall average SSIM of 0.6703. This means that eFaNA has an overall
average SSIM improvement of 2.4768% over FaNA, an overall average SSIM improvement
of 0.43237% over FFA, and an overall average SSIM improvement of 28.9198% over the
standard firefly algorithm. Moreover, this table shows that eFaNA is more stable as it has a
better standard deviation than other algorithms in consideration, with an overall average
standard deviation of 0.0479 against 0.1300 for FaNA, 0.0831 for FFA, and 0.0872 for FA.
Figure 4 shows the overall average SSIM and the overall average deviation from mean SSIM
by the algorithms. This result is comparable with those obtained in FA [21], FFA [23], and
FaNA [32].

Figure 3. A comparison of the overall average PSNR obtained by FA, FFA, FaNA and eFaNA

Table 4. Comparison of Mean and standard deviation of Structural Similarity Index Measure (SSIM) for each algorithm at different
threshold levels.

Images
Threshold

levels

Objective function: Otsu Between Class Variance

FA [21] FFA [23] FaNA [32] eFaNA [Ours]

mean std mean std mean std mean std

Lena

2 0.8416 0.0445 0.8465 0.0071 0.8450 0.0076 0.8514 0.0045

3 0.8433 0.0940 0.8548 0.0398 0.8442 1.2203 0.8632 0.0243

4 0.8673 0.0841 0.8698 0.0428 0.8476 0.0653 0.8738 0.0229

5 0.8726 0.0818 0.8740 0.1327 0.8594 0.1079 0.8846 0.0543

Cameraman

2 0.8713 0.0313 0.8737 0.0090 0.8656 0.0057 0.8768 0.0042

3 0.8808 0.0668 0.8891 0.0534 0.8749 0.0474 0.8524 0.0156

4 0.8104 0.0698 0.8769 0.0508 0.8525 0.0511 0.8774 0.0358

5 0.8813 0.1276 0.8834 0.1901 0.8338 0.0762 0.8954 0.1000

Mandrill

2 0.8161 0.0578 0.7738 0.0130 0.8684 0.0022 0.8533 0.0026

3 0.8569 0.1027 0.8702 0.0421 0.8628 0.0903 0.8674 0.0144

4 0.8653 0.1248 0.8758 0.0560 0.8651 0.1394 0.8763 0.0371

5 0.8780 0.1186 0.8832 0.1975 0.8807 0.0765 0.8892 0.1278

Traffic

2 0.7058 0.0697 0.7913 0.0229 0.7393 0.0280 0.8011 0.0113

3 0.8071 0.0835 0.8719 0.1067 0.7845 0.0848 0.8502 0.1002

4 0.8060 0.1031 0.8317 0.1214 0.8030 0.1173 0.8562 0.0611

5 0.8317 0.1296 0.8523 0.1528 0.8189 0.1564 0.8607 0.1200

Livingroom

2 0.8010 0.0557 0.8494 0.0332 0.7960 0.0387 0.8559 0.0128

3 0.8971 0.1138 0.8812 0.0682 0.8724 0.0739 0.8325 0.0469

4 0.8713 0.0736 0.8774 0.1335 0.8760 0.0884 0.8799 0.0549

5 0.8783 0.1104 0.8820 0.1886 0.8741 0.1227 0.8842 0.1072

24.45060

25.40750

24.15220

25.53200

23.0

23.5

24.0

24.5

25.0

25.5

26.0
O

V
ER

A
LL

 A
V

ER
A

G
E

 P
SN

R

FA FFA FaNA eFaNA

Journal of Computing Theories and Applications 2025 (May), vol. 2, no. 4, Suleiman, et al. 583

Table 5. Comparison of the average SSIM and standard deviation obtained by FA, FFA, FaNA, and eFaNA for each five digital gray-
scale images.

Mean and deviation at

Average SSIM ± STD

FA [21] FFA [23] FaNA [32] eFaNA [Ours]

SSIM std SSIM std SSIM std SSIM std

Levels 2 Threshold 0.8072 0.0518 0.8269 0.0170 0.8229 0.0164 0.8477 0.0071

Levels 3 Threshold 0.8570 0.0922 0.8734 0.0620 0.8478 0.3033 0.8531 0.0403

Levels 4 Threshold 0.8441 0.0911 0.8663 0.0809 0.8488 0.0923 0.8727 0.0424

Levels 5 Threshold 0.8684 0.1136 0.8749 0.1723 0.8534 0.1079 0.8828 0.1019

Average 0.8442 0.0872 0.8604 0.0831 0.8432 0.1300 0.8641 0.0479

Table 6 shows the average execution time obtained by the four algorithms at different

threshold levels on all the digital grayscale images. Table 7 shows the overall average execution
time obtained by all the algorithms. From this table, it can be seen that eFaNA has an overall
average execution time of 50.5322 seconds against an overall average Execution time of
38.7528 seconds for FaNA, an overall average Execution time of 38.7726 seconds by FFA,
and an overall average execution time of 107.6340 seconds for FA. The overall average devi-
ation from the mean execution time obtained by the algorithms is shown in Figure 5. This
table shows that eFaNA has an average standard deviation from the mean Execution time of
6.6052 seconds, against 4.9404 seconds for FaNA, 6.0480 seconds for FFA, and 16.6569 sec-
onds for FA. This result shows that FaNA outperforms eFaNA by segmenting digital gray-
scale images in lesser execution time compared to eFaNA and FA. However, eFaNA has
better segmentation time efficiency than FA.

Table 6. Comparison of the mean and standard deviation of execution time (in seconds) for each algorithm at different thresholds
levels using Otsu objective function.

Images
Threshold

levels

Objective function: Otsu Between Class Variance

FA [21] FFA [23] FaNA [32] eFaNA [Ours]

time std time std time std time std

Lena

2 88.2098 19.1110 37.3723 5.8517 31.1274 0.8027 37.0262 6.8251

3 118.2067 16.0284 39.2615 2.9556 37.4807 3.9699 35.4648 2.9037

4 99.6616 24.6340 49.8117 9.6474 49.7550 10.8344 46.6747 12.8143

5 107.3812 25.4585 58.4643 10.7389 68.3415 8.7257 60.0711 2.9462

Cameraman

2 78.7180 16.2980 36.2381 4.4529 34.1808 1.7240 32.4599 8.5185

3 123.0385 3.0401 51.6079 1.4535 64.7530 1.3365 56.7885 3.2075

4 102.1132 19.3959 54.5218 12.0404 64.7530 9.9271 55.1692 12.0563

5 111.8808 21.0630 55.9598 9.4755 70.4936 12.4704 62.3241 12.7078

Mandrill

2 100.2471 21.1944 39.07953 9.1064 37.3175 7.7764 69.2402 4.8273

3 137.9080 7.6201 46.99347 1.7488 41.5267 1.8933 60.5505 12.9591

4 116.8505 25.0848 53.34716 12.0245 70.5606 8.8091 62.6374 13.0046

5 146.1605 28.1303 47.11662 11.4617 54.6418 10.3641 98.4154 6.7694

Traffic

2 113.5037 4.4289 18.1378 10.3459 17.9014 1.2861 25.4931 2.6515

3 85.8978 7.5799 32.3606 2.9205 16.2971 3.7287 31.2785 1.9907

4 108.0225 21.1942 36.0326 3.7328 18.0689 3.9621 38.7988 3.0970

5 109.8973 9.9325 47.1701 6.6616 27.0862 1.6898 45.5761 6.5386

Livingroom

2 103.3260 21.0198 18.5705 0.4924 17.3660 0.9608 30.4280 6.4810

3 94.4083 20.2983 14.6174 3.5500 18.8603 3.3811 45.1375 7.0005

4 101.4389 15.6460 18.3912 1.0076 14.9513 0.7861 56.5279 1.7283

5 105.8101 5.9803 20.3981 1.2909 19.5937 4.3802 60.5817 3.0762

Journal of Computing Theories and Applications 2025 (May), vol. 2, no. 4, Suleiman, et al. 584

Figure 4. A comparison of the overall average standard deviation from the mean SSIM obtained by
FA, FFA, FaNA, and eFaNA

Table 7. Comparison of the overall mean execution time (seconds) and its deviation obtained by FA, FFA, FaNA, and eFaNA.

Mean and deviation at

Average execution time ± STD

FA [21] FFA [23] FaNA [32] eFaNA [Ours]

time std time std time std time std

Levels 2 Threshold 96.8009 16.4104 29.8796 6.0499 27.5786 2.5100 38.9295 5.8607

Levels 3 Threshold 111.8919 10.9134 36.9682 2.5257 35.7836 2.8619 45.8440 5.6123

Levels 4 Threshold 105.6173 21.1910 42.4209 7.6905 43.6178 6.8638 51.9616 8.5401

Levels 5 Threshold 116.2260 18.1129 45.8218 7.9257 48.0314 7.5260 65.3937 6.4076

Average 107.6340 16.6569 38.7726 6.0480 38.7528 4.9404 50.5322 6.6052

Figure 5. Comparison of the overall mean execution time obtained by FA, FFA, FaNA, and eFaNA
for each considered threshold level.

A sample of the resultant traffic threshold images obtained are as shown in Table 8 for
all the compared algorithms at threshold levels 2 to 5. Based on this table, it can be seen that
FA threshold images with major defects compared to the ground truth, while FFA, FaNA
and eFaNA threshold images with minimal defects with the traffic images yielded by eFaNA
being more visible with the least minimal defects

0.8442

0.8604

0.8432

0.8641

0.830

0.835

0.840

0.845

0.850

0.855

0.860

0.865

0.870

O
V

ER
A

LL
 A

V
ER

A
G

E
 S

SI
M

FA FFA FaNA eFaNA

107.6340

38.7726 38.7528

50.5322

0.0

20.0

40.0

60.0

80.0

100.0

120.0

O
V

ER
A

LL
 A

V
ER

A
G

E
EX

EC
U

TI
O

N
 T

IM
E

FA FFA FaNA eFaNA

Journal of Computing Theories and Applications 2025 (May), vol. 2, no. 4, Suleiman, et al. 585

Table 8. The compared algorithms determined the traffic image threshold.

Method
Threshold levels

2 3 4 5

FaNA [32]

FA [21]

FFA [23]

eFaNA [ours]

6. Conclusions and Recommendation

This work enhanced the Firefly algorithm with neighborhood attraction for digital gray
scale image thresholding. The results obtained reveal that eFaNA is comparable to FFA at
thresholding digital gray scale image. The enhanced FaNA is more consistent at yielding op-
timal threshold values that segment digital gray scale images without much loss of important
image details compared to FA and FaNA and FFA, but may not be a good option for real
time applications. These results also show that, enhancing firefly algorithm with neighbor-
hood attraction by introducing chaotic tent map and lévy flight based random walk into the
algorithm can improve the algorithm’s ability at yielding better threshold values, for segment-
ing digital gray scale images. This result was obtained because, the chaotic tent map included
in the algorithm generates more better initial population of fireflies and the lévy flight based
random walk scheme improved its exploration capability. Therefore, good initial population
of fire-flies are used to begin the search for optimal solutions that were used to segment the
given digital gray scale images. The enhanced firefly algorithm with neighborhood attraction
proposed in this work yield threshold values that segments digital gray scale images and ob-
tained threshold images with better PSNR and SSIM. It is however, not a good choice for
applications involving real time thresholding of digital gray scale images. Its performance
compared to other metaheuristics algorithms is also not known. Also, the performance of the
enhanced algorithm using other objective functions is not known. In addition, the perfor-
mance of the algorithm on colored digital images was not investigated in this work.

Despite these promising results, several limitations remain. The algorithm’s performance
has not been benchmarked against other metaheuristic methods such as PSO, ABC, ACO, or
ANN-based approaches for gray scale image thresholding. Additionally, its effectiveness us-
ing alternative objective functions, such as Tsalli, Kapur, or Minimum Cross Entropy (MCE),
has yet to be explored. Lastly, the algorithm was not evaluated on colored digital images.
Addressing these limitations in future research would provide a more comprehensive under-
standing of the enhanced algorithm's capabilities and applicability.

Author Contributions: Conceptualization: Abdulkarim Bashir Suleiman and KAF Donfack;
methodology, Abdulkarim Bashir Suleiman and Muhammad Jumare Haruna; software: Mu-
hammad Jumare Haruna; validation: Abdulkarim Bashir Suleiman, Abdulkarim Muhammad.,
and Donfack A Kana; formal analysis: Abdulkarim Bashir Suleiman; investigation: Abdulka-
rim Bashir Suleiman; resources: Muhammad Jumare Haruna and Abdulkarim Muhammad;
data curation: Abdulkarim Bashir Suleiman; Writing—original draft preparation: Abdulkarim

Journal of Computing Theories and Applications 2025 (May), vol. 2, no. 4, Suleiman, et al. 586

Bashir Suleiman; Writing—review and editing: KAF Donfack and Muhammad Jumare Ha-
runa; Visualization: Abdulkarim Bashir Suleiman and Muhammad Jumare Haruna; Supervi-
sion: KAF Donfack and Abdulkarim Muhammad; Project administration: Abdulkarim Mu-
hammad and KAF Donfack; Funding acquisition: Abdulkarim Bashir Suleiman and Muham-
mad Jumare Haruna. All authors have read and agreed to the published version of the man-
uscript.

Funding: This research received no external funding

Conflicts of Interest: The authors declare no conflict of interest.

References

[1] W. Zheng, “Current Technologies and Applications of Digital Image Processing,” J. Biomed. Sustain. Healthc. Appl., vol. 3, no. 1, pp.
13–23, Jan. 2023, doi: 10.53759/0088/JBSHA202303002.

[2] N. M. Zaitoun and M. J. Aqel, “Survey on Image Segmentation Techniques,” Procedia Comput. Sci., vol. 65, pp. 797–806, 2015, doi:
10.1016/j.procs.2015.09.027.

[3] J. C. Tilton, S. Aksoy, and Y. Tarabalka, “Image segmentation algorithms for land categorization,” in Remote Sensing Handbook,
Volume II, CRC Press, 2024, pp. 196–232. [Online]. Available:
https://www.taylorfrancis.com/chapters/edit/10.1201/9781003541158-11/image-segmentation-algorithms-land-categorization-
james-tilton-selim-aksoy-yuliya-tarabalka

[4] A. Sharma, R. Chaturvedi, U. K. Dwivedi, S. Kumar, and S. Reddy, “Firefly algorithm based effective gray scale image segmentation
using multilevel thresholding and entropy function,” Int. J. Pure Appl. Math., vol. 118, no. 5, pp. 437–443, 2018, [Online]. Available:
https://www.acadpubl.eu/jsi/2018-118-5/articles/5/25.pdf

[5] Y. Yu et al., “Techniques and Challenges of Image Segmentation: A Review,” Electronics, vol. 12, no. 5, p. 1199, Mar. 2023, doi:
10.3390/electronics12051199.

[6] A. Hossain et al., “Identifying the retinal layers from optical coherence tomography images using a 3D segmentation method,” IET
Image Process., vol. 19, no. 1, p. e13306, Jan. 2025, doi: 10.1049/ipr2.13306.

[7] B. Abhisheka, S. K. Biswas, B. Purkayastha, D. Das, and A. Escargueil, “Recent trend in medical imaging modalities and their
applications in disease diagnosis: a review,” Multimed. Tools Appl., vol. 83, no. 14, pp. 43035–43070, Oct. 2023, doi: 10.1007/s11042-
023-17326-1.

[8] T. Habuza et al., “AI applications in robotics, diagnostic image analysis and precision medicine: Current limitations, future trends,
guidelines on CAD systems for medicine,” Informatics Med. Unlocked, vol. 24, p. 100596, 2021, doi: 10.1016/j.imu.2021.100596.

[9] A. Karnati and D. Mehta, “Artificial intelligence in self driving cars: Applications, implications and challenges,” Ushus J. Bus. Manag.,
vol. 21, no. 4, pp. 1–28, 2022, doi: 10.12725/ujbm/61.1.

[10] N. Kheradmandi and V. Mehranfar, “A critical review and comparative study on image segmentation-based techniques for
pavement crack detection,” Constr. Build. Mater., vol. 321, p. 126162, Feb. 2022, doi: 10.1016/j.conbuildmat.2021.126162.

[11] J. Jing, S. Liu, G. Wang, W. Zhang, and C. Sun, “Recent advances on image edge detection: A comprehensive review,”
Neurocomputing, vol. 503, pp. 259–271, Sep. 2022, doi: 10.1016/j.neucom.2022.06.083.

[12] K. K. D. Ramesh, G. K. Kumar, K. Swapna, D. Datta, and S. S. Rajest, “A Review of Medical Image Segmentation Algorithms,”
EAI Endorsed Trans. Pervasive Heal. Technol., vol. 7, no. 27, p. e6, Apr. 2021, doi: 10.4108/eai.12-4-2021.169184.

[13] M. A. Abdou, “Literature review: Efficient deep neural networks techniques for medical image analysis,” Neural Comput. Appl., vol.
34, no. 8, pp. 5791–5812, Jul. 2022, [Online]. Available: https://link.springer.com/article/10.1007/s00521-022-06960-9

[14] L. Abualigah, K. H. Almotairi, and M. A. Elaziz, “Multilevel thresholding image segmentation using meta-heuristic optimization
algorithms: comparative analysis, open challenges and new trends,” Appl. Intell., vol. 53, no. 10, pp. 11654–11704, May 2023, doi:
10.1007/s10489-022-04064-4.

[15] H. Liang, H. Jia, Z. Xing, J. Ma, and X. Peng, “Modified Grasshopper Algorithm-Based Multilevel Thresholding for Color Image
Segmentation,” IEEE Access, vol. 7, pp. 11258–11295, 2019, doi: 10.1109/ACCESS.2019.2891673.

[16] F. Chakraborty, D. Nandi, and P. K. Roy, “Oppositional symbiotic organisms search optimization for multilevel thresholding of
color image,” Appl. Soft Comput., vol. 82, p. 105577, Sep. 2019, doi: 10.1016/j.asoc.2019.105577.

[17] F. Chakraborty, P. K. Roy, and D. Nandi, “A novel chaotic symbiotic organisms search optimization in multilevel image
segmentation,” Soft Comput., vol. 25, no. 10, pp. 6973–6998, May 2021, doi: 10.1007/s00500-021-05611-w.

[18] S. Singh et al., “An efficient multi-level thresholding method for breast thermograms analysis based on an improved BWO
algorithm,” BMC Med. Imaging, vol. 24, no. 1, p. 191, Jul. 2024, doi: 10.1186/s12880-024-01361-x.

[19] S. Singh, N. Mittal, and H. Singh, “A multilevel thresholding algorithm using LebTLBO for image segmentation,” Neural Comput.
Appl., vol. 32, no. 21, pp. 16681–16706, Nov. 2020, doi: 10.1007/s00521-020-04989-2.

[20] Q. Liu, Z. Jiang, and H. Shi, “Maximum Entropy Image Segmentation Method Based On Improved Firefly Algorithm,” J. Phys.
Conf. Ser., vol. 1213, no. 3, p. 032023, Jun. 2019, doi: 10.1088/1742-6596/1213/3/032023.

[21] I. Brajevic and M. Tuba, “Cuckoo Search and Firefly Algorithm Applied to Multilevel Image Thresholding,” in Cuckoo Search and
Firefly Algorithm: Theory and Applications, Springer International Publishing, 2014, pp. 115–139. doi: 10.1007/978-3-319-02141-6_6.

[22] E. Turajlic, “Application of firefly and bat algorithms to multilevel thresholding of X-ray images,” in 2018 41st International Convention
on Information and Communication Technology, Electronics and Microelectronics (MIPRO), May 2018, pp. 1104–1109. doi:
10.23919/MIPRO.2018.8400201.

[23] S. Liu and Y. Wang, “A Lévy Flight Based Firefly Algorithm for Multilevel Thresholding Image Segmentation,” J. Phys. Conf. Ser.,
vol. 1865, no. 4, p. 042098, Apr. 2021, doi: 10.1088/1742-6596/1865/4/042098.

Journal of Computing Theories and Applications 2025 (May), vol. 2, no. 4, Suleiman, et al. 587

[24] S. Singh, N. Mittal, and H. Singh, “A multilevel thresholding algorithm using HDAFA for image segmentation,” Soft Comput., vol.
25, no. 16, pp. 10677–10708, Aug. 2021, doi: 10.1007/s00500-021-05956-2.

[25] T. Rahkar Farshi and A. K. Ardabili, “A hybrid firefly and particle swarm optimization algorithm applied to multilevel image
thresholding,” Multimed. Syst., vol. 27, no. 1, pp. 125–142, Feb. 2021, doi: 10.1007/s00530-020-00716-y.

[26] G. D. Singh, M. Prateek, S. Kumar, M. Verma, D. Singh, and H.-N. Lee, “Hybrid Genetic Firefly Algorithm-Based Routing Protocol
for VANETs,” IEEE Access, vol. 10, pp. 9142–9151, 2022, doi: 10.1109/ACCESS.2022.3142811.

[27] S. C. Satapathy, N. Sri Madhava Raja, V. Rajinikanth, A. S. Ashour, and N. Dey, “Multi-level image thresholding using Otsu and
chaotic bat algorithm,” Neural Comput. Appl., vol. 29, no. 12, pp. 1285–1307, Jun. 2018, doi: 10.1007/s00521-016-2645-5.

[28] S. Pare, A. K. Bhandari, A. Kumar, and G. K. Singh, “A new technique for multilevel color image thresholding based on modified
fuzzy entropy and Lévy flight firefly algorithm,” Comput. Electr. Eng., vol. 70, pp. 476–495, Aug. 2018, doi:
10.1016/j.compeleceng.2017.08.008.

[29] K. Sundaravadivu, C. Ramadevi, and R. Vishnupriya, “Design of Optimal Controller for Magnetic Levitation System Using
Brownian Bat Algorithm,” in Artificial Intelligence and Evolutionary Computations in Engineering Systems: Proceedings of ICAIECES 2015,
Springer India, 2016, pp. 1321–1329. doi: 10.1007/978-81-322-2656-7_120.

[30] S. Suresh, S. Lal, C. S. Reddy, and M. S. Kiran, “A Novel Adaptive Cuckoo Search Algorithm for Contrast Enhancement of Satellite
Images,” IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., vol. 10, no. 8, pp. 3665–3676, Aug. 2017, doi:
10.1109/JSTARS.2017.2699200.

[31] P. Anitha, S. Bindhiya, A. Abinaya, S. C. Satapathy, N. Dey, and V. Rajinikanth, “RGB image multi-thresholding based on Kapur’s
entropy — A study with heuristic algorithms,” in 2017 Second International Conference on Electrical, Computer and Communication Technologies
(ICECCT), Feb. 2017, pp. 1–6. doi: 10.1109/ICECCT.2017.8117823.

[32] H. Wang et al., “Firefly algorithm with neighborhood attraction,” Inf. Sci. (Ny)., vol. 382–383, pp. 374–387, Mar. 2017, doi:
10.1016/j.ins.2016.12.024.

[33] R. Bhattacharya and E. C. Waymire, Random Walk, Brownian Motion, and Martingales, vol. 292. Cham: Springer International
Publishing, 2021. doi: 10.1007/978-3-030-78939-8.

[34] M. H. Nadimi-Shahraki, S. Taghian, S. Mirjalili, L. Abualigah, M. Abd Elaziz, and D. Oliva, “EWOA-OPF: Effective Whale
Optimization Algorithm to Solve Optimal Power Flow Problem,” Electronics, vol. 10, no. 23, p. 2975, Nov. 2021, doi:
10.3390/electronics10232975.

[35] Y. Zhang, J. Lu, C. Zhao, Z. Li, and J. Yan, “Chaos Optimization Algorithms: A Survey,” Int. J. Bifurc. Chaos, vol. 34, no. 16, p.
2450205, Dec. 2024, doi: 10.1142/S0218127424502055.

[36] L. He and S. Huang, “Modified firefly algorithm based multilevel thresholding for color image segmentation,” Neurocomputing, vol.
240, pp. 152–174, May 2017, doi: 10.1016/j.neucom.2017.02.040.

[37] D. Oliva, N. Ortega-Sánchez, S. Hinojosa, and M. Pérez-Cisneros, Modern Metaheuristics in Image Processing. Boca Raton: CRC Press,
2022. doi: 10.1201/9781003183501.

