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Abstract: Skin cancer (SC) is a highly serious kind of cancer that, if not addressed swiftly, might result 

in the patient’s demise. Early detection of this condition allows for more effective therapy and prevents 

disease development. Deep Learning (DL) approaches may be used as an effective and efficient tool 

for SC detection (SCD). Several DL-based algorithms for automated SCD have been reported. How-

ever, more efficient models are needed to improve accuracy. As a result, this paper introduces a new 

strategy for SCD based on Grey Wolf optimization (GWO) methodologies and CNN. The proposed 

methodology has four stages: preprocessing, segmentation, feature extraction, and classification. The 

proposed method utilizes a Convolutional Neural Network (CNN) to extract features from Regions 

of Interest (ROIs). CNN is employed for feature categorization, whereas the GWO approach enhances 

accuracy by refining edge detection and segmentation. This technique utilizes a probabilistic model to 

accelerate the convergence of the GWO algorithm. Employing the GWO model to optimize the struc-

ture and weight vectors of CNNs can enhance diagnostic accuracy by a minimum of 5%, based on 

evaluation outcomes. The application of the proposed strategy and its performance comparison with 

other methods indicate that the proposed method with GWO predicted SC with an average accuracy 

of 95.11% and without GWO an Accuracy of 92.66%, respectively, enhancing accuracy by a minimum 

of 2.5% when we train our model with GWO. 
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1. Introduction 

The skin, the biggest organ in the body, protects against heat, UV radiation, and infec-
tion, yet cancer poses a major threat to human life[1]. Numerous cancer kinds can impact the 
human body, although one of the most lethal and rapidly proliferating tumors is skin cancer 
[2]. Statistics from the Skin Cancer Foundation indicate that one in five Americans may de-
velop skin cancer during their lifetime, and one in three cancer diagnoses pertains to skin 
cancer[3]. Around 3.5 million new cases are annually recorded in the USA, with a continuous 
increase in incidence[4]. Skin cancer, a significant global health issue, has garnered extensive 
scientific attention owing to its potential severity and high prevalence. Promptly identifying 
and accurately classifying skin cancer types is essential for effective treatment[5]. Conven-
tional diagnostic methods, including eye assessments and biopsies, are invasive, labor-inten-
sive, and susceptible to human error. This underscores the necessity for enhanced diagnostic 
instruments that are both precise and effective[6]. 

Deep learning (DL) possesses significant potential in this domain. DL is a subset of 
artificial intelligence that uses algorithms analogous to human cognitive processes to analyze 
extensive datasets. Numerous cutaneous malignancies originate in the epidermal layers of the 
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skin. Skin malignancies arise when skin cells proliferate and expand uncontrollably. New ep-
idermal cells frequently develop as old cells perish or sustain injury[7]. When this mechanism 
fails, cells proliferate rapidly and unevenly. This is why these cells are referred to as tumors, 
which take the form of a collection of tissue. Factors contributing to this condition include 
alcohol use, smoking, allergies, infections, environmental changes, and exposure to UV radi-
ation. In addition, abnormal swellings on the body might lead to skin cancer[8]. Skin cancer 
is classified into seven types: MEL, PGH, MN, DF, BKL, BCC, and AKIEC[9]. Melanoma 
is the most deadly type of cancer due to its rapid metastasis to other organs. It originates in 
skin cells known as melanocytes[10]. Melanocytes in the skin produce dark pigments that are 
typically black and brown but can also be red, purple, and pink. Melanoma cells typically 
spread to other organs, including the brain, liver, and lungs[11]. Melanoma cancer causes 
10,000 fatalities yearly in the United States. 

Early detection allows for effective treatment of Melanoma. It is not more prevalent 
than others. Various types of skin cancer[12]. Pigmented moles known as melanocytotic nevi 
(MN) can appear in various skin tones. This usually happens in childhood and early adult-
hood, when the body’s moles increase until age thirty to forty[13]. Basal cell (BCC) represents 
the most prevalent kind of skin cancer. Round cells seen in the lower epidermis frequently 
exhibit gradual development. Basal cells predominantly impact body areas exposed to sun-
light[14]. This type of cutaneous carcinoma seldom metastasizes and is due to uncontrolled 
cellular proliferation. It may manifest as a diminutive, flesh-toned, or white neoplasm demon-
strating bleeding[15]. Squamous cells (SCC) comprise flattened cells in the top epidermis. 
Cancer cells can emerge when cells grow without regulation. It may present as a solid red 
lesion or an open wound that hemorrhages profusely. Squamous cell carcinoma (SCC), a kind 
of skin carcinoma resulting from sun exposure, can manifest in many locations but is fre-
quently non-threatening. It may also manifest on skin that has previously sustained burns or 
chemical damage[16]. 

Machine learning approaches, including Support Vector Machine (SVM), Naïve Bayes 
(NB) [17], and Decision Tree (DT)[18], have been used to classify skin cancer. CNN has 
surged in prominence in recent years owing to its automated feature extraction capabilities 
and extensive application in research. Despite rising mortality rates, early detection and inter-
vention can enhance survival probabilities by more than 95% [19]. Our objective is to pre-
serve lives by creating a framework for promptly identifying cutaneous malignancies. 

In a study [20], researchers validated a CNN model with around 12,000 publicly available 
dermoscopic pictures and found that the model outperformed 136 out of 157 physicians in 
detecting malignant Melanoma. Many deep learning models now produce likelihood ratings 
for melanoma diagnosis; however, their opaque ”black box” nature raises concerns about 
interpretability, potentially misleading physicians. In response, many researchers have exam-
ined CNN models that identify dermoscopic features and replicate the criteria used for mel-
anoma diagnosis, aiming to produce improved diagnostic outcomes through ensemble learn-
ing and transfer learning. Furthermore, sophisticated methodologies like generative adversar-
ial networks[21], multitask learning[22], and improved data augmentation have emerged in 
recent years. CNN models have significantly improved melanoma diagnosis when applied to 
high-quality standardized dermoscopic images. 

2. Related Work 

Specialists skilled in multimedia applications and technologies. They underscored that 
advancing cost-effective identification techniques, such as artificial intelligence, might revo-
lutionize patient testing practices and improve the efficiency of medical care delivery. In re-
cent years, researchers and developers have sought to construct several deep-learning algo-
rithms for detection, segmentation, and classification. A group of researchers conducted per-
tinent investigations. Nahata and Singh[23] utilized ConvNet to categorize over 35,000 pho-
tos from the ISIC dataset in 2018 and 2019. They employ several classification models. Bansal 
et al. [24] utilized three distinct morphological techniques to improve dermatoscopic pictures. 
This study included attributes obtained from dermoscopic pictures. The suggested model 
achieves an accuracy of 94.9% on the HAM10000 dataset and 98.0% on the PH2 dataset. 

Shetty et al. [25] advocated data augmentation to improve model accuracy. This work 
uses K-fold cross-validation to ensure model robustness. The classification accuracy was eval-
uated using CNN models and machine learning techniques. The research demonstrates that 
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the suggested CNN exceeds other common methods in terms of accuracy. Kaur et al. [26] 
presented an automated classifier for Melanoma employing deep CNN. The objective was to 
improve the detection of melanoma skin cancers by employing a more efficient and simplified 
deep CNN algorithm relative to existing methods. Omeroglu et al. [27] introduced a network 
of roadways distinguished by multiple limbs and the hybrid amalgamation of mapping attrib-
utes from several modalities. These branches enable the examination of multimodal interac-
tions and the extraction of particular elements. Ding et al. [28] present an innovative approach 
for melanoma detection. The suggested method entails first data normalization to improve 
the quality of input images. In the subsequent phase, the Gray-Level-Matrix (GLCM) is em-
ployed to ascertain image characteristics. GLCM acquires the texture data for the images. 
SVM is employed to classify specific attributes and differentiate between benign and malig-
nant tumors. The dataset from the American Cancer Seciety(ACS) is employed to validate the 
proposed methodology. 

The proposed technique outperforms all alternative alternatives in every performance 
criterion. The proposed method accurately detects Melanoma accompanied by an 88% pre-
cision rate. Dahou et al. [29] delineate an advanced skin cancer detection system that utilizes 
a MobileNetV3 architecture for feature extraction and training to enhance accuracy. The ac-
quired attributes are subsequently input into an enhanced optimization technique called Hun-
ger Games Search (HGS). To ascertain the more pertinent attribute and enhance the model’s 
efficacy, in contrast to 88.19% on the ISIC-2016 dataset. The proposed method surpassed 
conventional algorithms in feature optimization and classification accuracy for skin cancer 
detection. Moldovan et al. [30] employed the HAM10000 dataset to introduce a deep learning 
and transfer learning methodology. The Python-based classification technique categorizes 
skin cancer images through a two-step PyTorch procedure. The prediction model for the 
initial step achieved an accuracy of 85.0%, but the model for the subsequent phase attained 
an accuracy of 75.0%. The constraints of manual methods are addressed through the appli-
cation of technology in early cancer diagnosis, thereby establishing a novel area of research. 

In recent decades, deep learning has revolutionized machine learning. The utilization of 
artificial neural networks in machine learning is the topic’s innovative aspect[31]. CNN is a 
deep learning model that outperforms traditional techniques in image and feature recognition 
[32]. This study [33] focuses on developing an ensemble machine-learning model for classify-
ing erythematous-squamous Diseases (ESD). The ensemble approaches integrate five distinct 
classifiers—NB, SVM, DT, Random Forest (RF), and Gradient Boosting (GB)—by amal-
gamating their predictions and employing them as input features for a metaclassifier through-
out the training process. This paper [34] introduces a sophisticated multi-class skin lesion 
classification method with an ensemble model that integrates the Inception-V3, ResNet-50, 
and VGG16 architectures. The classification job aims to categorize skin lesions into certain 
classifications, such as Melanoma, basal cell carcinoma (BCC), and squamous cell carcinoma 
(SCC), utilizing the ISIC dataset, which comprises an extensive collection of dermoscopic 
pictures. 

A comparison with alternative approaches is presented in Table 1. 

Table 1. Comparison with different Existing Techniques. 

Ref Model Dataset Limitations Accuracy 

[24] HC+DLM ISIC2018 High computational cost 94.9% 

[25] CNN HAM10K Limited training data 95.19% 

[35] DCNN ISIC 2017 High computational cost 94% 

[26] Deep CNN ISIC 2016, ISIC2017, ISIC2020 Vulnerable to occlusions 90.42% 

[27] Xception Seven-point dataset No local optimization 83.04% 

 
The following exemplifies the research’s major contribution: 

• GWO is used to optimize CNN’s hyperparameters and model a reasonably priced CNN 
classifier. 

• The suggested model is contrasted with a hyper-parameter optimization strategy based 
on GA and PSO. 

• To confirm the efficacy of the suggested approach, extensive experiments are carried 
out on the HAM 10000 dermoscopic multi-class skin cancer image dataset. 
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3. Proposed Method 

This section evaluates the proposed model's efficacy compared to six recognized deep 
CNN architectures VGG19, ResNet152, Vgg16, MobileNet, InceptionV3, and Efficient-
NetB0. 

 

Figure 1. Preprocessing, segmentation, and extraction of regions of interest for specific samples 

3.1. Hybrid Model for the Diagnosis of Cutaneous Malignancies 

 

Figure 2. Basic block diagram for identifying skin diseases 

UV radiation alters the DNA of skin cells, disrupting their normal development and 
leading to skin cancer. Researchers commonly use dermoscopic images to detect skin cancer. 
DL algorithms, including Melanoma (MEL), Basal Cell Carcinoma (BCC), Melanocytic Nevi 
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(MN), and Squamous Cell Carcinoma (SCC), improve the accuracy of detecting skin malig-
nancies. Early skin cancer detection allows healthcare practitioners to avoid disease progres-
sion and initiate treatment sooner. Artificial intelligence and image processing have revolu-
tionized the medical industry. Image processing is widely used in medical analysis[36]–[38]. 
The research community is essential in advancing intelligent automated systems for precise 
and prompt assessments and their continual enhancement. We developed a model, an auto-
mated method for detecting skin malignancies. The algorithm was trained and assessed using 
images of seven principal categories of skin cancer Actinic Keratoses and Intraepithelial Car-
cinomae (AKIEC), Dermatofibroma (DF), Vascular (VASC), Basal Cell Carcinoma (BCC), 
Benign Keratosis-like Lesions (BKL), Nevus ( NV), and Melanoma (MEL) [38]–[40]. The 
resolution of the provided image is 150 × 150 pixels. 

Additionally, the dataset was normalized to avert model overfitting. We employed the 
(SMOTE) Tomek to rectify the problem of imbalanced dataset distribution and equalize sam-
ple sizes across classes[41]. The dataset about cutaneous cancer is categorized into three sets: 
training, testing, and validation. 

Figure 2 illustrates workflow regarding the proposed paradigm for carcinoma of the skin. 
Relative to [42], the training parameter is diminished. The experimental methodology was 
executed for a period of up to 30 epochs. At the end of all epochs, the suggested model 
attained the necessary accuracy in both training and validation. The suggested technique was 
assessed using six trained classifiers, focusing on accuracy, loss, precision, recall, AUC, and 
score [43]. The GradeCAM heat-map method has been utilized to depict the visual charac-
teristics of skin cancer that highlight the features influencing its classification. These attributes 
have been utilized to emphasize factors that aid in detecting skin carcinoma[44]. 

3.2. Dataset 

The dataset consists of skin lesions, which are categorized into seven categories. Derm-
atoglyphics are preserved using several techniques. The ISIC repository contains 10,015 pub-
licly accessible samples. This study utilized the HAM-10000 dataset, comprising seven cate-
gories, to diagnose skin cancer. Figure 2 illustrates a block diagram for the identification of 
skin cancer. 

Table 2. HAM 10000 Dataset. 

Dataset Classes Training set 
85% 

Validation set 
5% 

Test set 10% Total Images 

HAM-10000 7 8513 500.75 1001.5 10,015 

3.3. Structure of Proposed Model 

The CNN architecture draws inspiration from the biological structure of the human 
brain, making it particularly adept at computer vision tasks such as object recognition, image 
segmentation, and facial detection[45]. A CNN’s translation or spatial invariance allows it to 
recognize the same feature in several images, independent of their location[46]. This work 
created a reliable model using the CNN model to diagnose skin carcinoma conditions 
properly. The model has five convolutional blocks, a Rectified Linear Unit (ReLu) Activation 
function, one dropout layer, two dense layers, and a SoftMax classification layer[47]. 

3.4. Classification using CNN 

CNNs are well-liked methods that perform mathematical linear operations using feature 
vectors [48]. A CNN operates in two phases during training: forward propagation and back-
ward propagation. After multiplying the input and weights, the filter matrix performs a con-
volutional operation to determine the output [49]. The errors occurring during the forwarding 
method are assessed using this output. The parameters are changed to account for the final 
prediction mistakes during the backpropagation process [50]. Identifying errors involves com-
paring outcomes with ground truth and applying the cost function. To minimize errors, as-
certain the gradient of the parameter and adjust accordingly. A CNN excels in classification 
tasks involving image-based datasets [51]. This study employed CNN to multiclassify skin 
cancer into eight distinct categories. 
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3.5. Fundamental Models 

This work uses four models to predict skin cancer disease and optimize technique. 

3.5.1. EfficientNetB0(B1) 

The Efficient Net architecture maximizes model performance by striking a balance be-
tween depth, breadth, and resolution. The objective is to achieve an optimal equilibrium be-
tween model size and accuracy. EfficientNetB0B1 is utilized when fewer computational re-
sources are necessary. EfficientNetB0B1 is well known for its precise performance, low pro-
cessing requirements, and sensible number of layers. It is frequently used in computer vision 
applications such as object detection and image classification[52]. 

3.5.2. MobileNetV3(B2) 

MobileNetV3 is a CNN-based app optimized for mobile devices with limited computa-
tional resources. This enhanced iteration of the original MobileNet architecture employs 
depth-wise separable convolutions, inverted residuals, and linear bottlenecks. Despite low 
computational resources, it excels in object identification and image classification [53]. 

3.5.3. DenseNet-169(B3) 

DenseNet-169 is a variant of DenseNet, a CNN characterized by dense connections. 
The network’s designation is the numeral ”121” to denote the number of layers. Dense-
Net169 follows a dense connection topology, with each previous layer providing direct input 
to the next. This connection architecture enhances information transfer across networks by 
using characteristics. DenseNet-169 is well-known for its effectiveness in training deep neural 
networks and addressing vanishing gradients[54]. 

3.5.4. ResNet-101(B4) 

One variant of ResNet is called ResNet-101. The”101” in the name indicates the number 
of network tiers. Residual blocks, which bypass connections and enable the network to ac-
quire residual mappings more effectively, are a hallmark of the ResNet architecture. This ar-
chitectural design includes a flexible solution to the vanishing gradient problem, which ad-
dresses the challenge of training deep neural networks. ResNet-101 is often used in computer 
vision for several tasks, such as image classification and object identification. It is suitable for 
many applications due to the trade-off between model depth and computing perfor-
mance[55]. 

3.6. Grey-wolf optimization approach 

Figure 3 shows the hyperparameter-optimized CNN. The retrieved layers and dimen-
sions are categorized and processed using decision. The choice is susceptible to optimizing 
attributes and the data set. The CNN architecture ensures the consistency of a feedback-based 
self-learning environment. Grey wolf optimization (𝑂𝐺) reduces and provides range charac-

teristics for (𝑇𝑋) and 𝐷(𝑃) 𝑆0, resulting in 𝐷𝑃 𝑆 =∼  𝑇𝑋 and (𝑇𝑋 /∈  𝐷𝑋). 
At the initial and final computational phases. The alignment method involves varying 

parameters in the attribute 𝐴𝑖 to achieve ∀𝐴𝑖  ⇒  𝐷𝑋 and (𝐴𝑖⊆ DX) at the outset. The for-
mulation vector is then generated in Equations (1) and (2). 

 

[𝑂𝐺 = lim
∆𝑆→∞

[
𝛿(∆𝑇𝑥)

𝛿𝑡
] ⊗ 𝜔(‖𝐷𝑃‖𝜄0)] (1) 

[∴ 𝑂𝐺 = lim
∆𝑆→∞

∏ ∑ (
𝛿(∆𝑇𝑥)(𝑖,𝑗)

𝛿𝑡
⊗ 𝜔 (‖𝐷𝑃‖

𝑆
𝜄0))

𝑆

𝑗=1

𝜂

𝑖=1

] (2) 

Where 𝑂𝐺  represents an observable quantity, which could signify a measurable quantity or a 
specific operator being evaluated under certain conditions, such as when ∆𝑆 → ∞. The nota-

tion lim
∆𝑆→∞

 indicates a limiting process where the entropy (𝑆) approaches infinity, implying a 

connection to equilibrium states or asymptotic behavior in thermodynamic systems. The 

component 𝜔(‖𝐷𝑃‖𝜄0) likely represents a weighting function 𝜔, applied to the norm of the 
norm ‖𝐷𝑃‖ of a quantity 𝐷𝑃. The superscript 𝜄0 may indicate either an initial state or a unit 
vector, depending on the context. 
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Figure 3. A hyper-parameter-optimized CNN model based on GWO is proposed. 

For collective processing, observable quantities (𝑂𝐺) in the GWO context, is used for 
the learned neural networking framework. The weight of association corresponds to such that 

where (𝑥) is the functional variable of optimized approaches. The product term ∏  
𝜂
𝑖=1 repre-

sents the interaction of multiple components or processes indexed 𝑖, while the summation 

∑  𝑆
𝑗=1 considers the contributions from different states or elements 𝑗. The term 

𝛿(∆𝑇𝑥)(𝑖,𝑗)

𝛿𝑡
 rep-

resents the time rate of change of the temperature difference (∆𝑇𝑥) for each component in 
the system. The tensor product operation ⊗ is applied to this rate of change alongside the 

weighting function 𝜔 (‖𝐷𝑃‖
𝑆
𝜄0), which involves the norm of a quantity 𝐷𝑃 and an initial state 

represented by 𝜄0 and an additional parameter 𝑆.   

[ℝ𝑌 = lim
𝑛→∞

(⋃lim
𝑛→𝑆

(
𝜕2(𝑂𝐺)

𝜕𝑡2
⊕ ∆𝑇))] (3) 

[∴ ℝ𝑌 = lim
𝑛→∞

(
(𝐿‖𝐷𝑃‖𝜄0)

𝐿(𝑡)
∏ ∑ (

𝜕2(𝑂𝐺)𝑗⋂𝜕2(𝐷𝑥)𝑘

𝜕𝑡2
⊕ ∆𝑇)

𝑆

𝑗=1

𝜂

𝑖=1

)] (4) 

Where ℝ𝑌 is the result of a limit as 𝑛 → ∞, involving an intersection of operations and sec-

ond-order derivatives of a function 𝑂𝐺  with respect to time (
𝜕2(𝑂𝐺)

𝜕𝑡2 ) and spatial terms like 

(∆𝑇). 𝐿 might represent a function of time, and 𝐷𝑃 and 𝜄0 could be associated with some 

boundary conditions or initial settings. The product ∏  
𝜂
𝑖=1 and summation ∑  𝑆

𝑗=1 in this equa-

tion signify interactions between various terms or variables, with the second derivative terms 
of 𝑂𝐺  interacting with spatial gradient terms such as (𝐷𝑥)𝑘. 

Equations (3) and (4) state that the optimization (𝑂𝐺) under a constant recurrence format 
constrains the formulation of datasets. For computational efficiency, a recurrence ratio’s func-
tional form is usually evaluated. The dataset's evaluation sequence and occurrence ratio is 
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subsequently subjected to the removal of inter-common attributes and features, as delineated 
in Equation (4). The buffer factor guarantees that threshold values are maximized within the 
dataset’s confines. Figure 4 illustrates the skin illness utilizing the proposed GWO Algorithm. 

 

Figure 4. Flow chart for skin disease categorization using the proposed GWO algorithm 

4. Results and Discussion 

The proposed model is assessed throughout the training and validation phases using 
several hyperparameters and tuning techniques, including loss function and optimizer metrics. 
We utilized the ADAM optimizer, a stochastic optimization algorithm. Stochastic optimiza-
tion methods utilize random minibatches of data to calculate the gradient of the loss function. 
Early halting is activated. The objective is to avert overfitting by ceasing training when the 
validation loss escalates. Employing a reduced learning rate to enhance training efficiency 
through dynamic adjustment. The epoch duration is 50, accompanied by a batch size of 32.  

4.1. Model Evaluations 

We analyzed dermoscopy images to evaluate the model's ability to classify eight kinds of 
skin cancer accurately. After training each model, data from each technique stage was utilized 
to generate confusion matrix-based performance parameters. The Model performance on the 
testing dataset was evaluated using several measures, such as accuracy (accur), recall (reca) or 
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sensitivity, f1 score(f1s), precision(prec), true positive (TP), true negative (TN), false positive 
(FP), and false negative (FN). All measurements were calculated using Equation (5)-(8). 

Table 3. Proposed model hyper-parameters. 

Parameter Value 

Epochs 50 

Optimizer Adam 

Learning rate 0.001 

Kernel size 3 

Dropout 0.4 

 

𝑎𝑐𝑐𝑢𝑟 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑁 + 𝐹𝑃
 (5) 

𝑝𝑟𝑒𝑐 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (6) 

𝑟𝑒𝑐𝑎 =
𝑇𝑃

𝑇𝑁 + 𝐹𝑃
 (7) 

𝑓1𝑠 =
2 ∙ 𝑝𝑟𝑒𝑐 × 𝑟𝑒𝑐𝑎

𝑝𝑟𝑒𝑐 + 𝑟𝑒𝑐𝑎
 (8) 

The proposed SCD categorizing and verifying approach is backed by flexible datasets, 
including preprocessed and training data. The technique involved extracting and mapping 
features from raw datasets using schematic records regarding the trained dataset repository. 
Figure 5 illustrates the method of extracting attribute ratios over several situations. A feature 
matrix with interconnected values is produced by linking the alignment ratios of separate 
attributes. This includes the alignment ratio-based feature selection performance efficiency of 
attribute ratios for a specific range of values. The division ratio between the training and 
testing datasets dictates the scenario. 

 

Figure 5. Extracting attribute ratios and comparing assessment parameters 

4.2. Discussion 

Figure 6 compares the performance of the proposed GWO strategy to known ap-
proaches, including feature and KNN optimization and whale optimization. The suggested 
GWO-based feature optimization achieved 95.82% accuracy, outperforming competing 
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approaches. The proposed Trained Convolutional Neural Networking (CNN) architecture is 
assessed using Recursive Learning (RL) based on extracted values from numerous compari-
sons (see Fig. 7). CNN+RL-based computation improves decision-making and assistance. 
The RL extends the CNN model’s feedback layer by incorporating structural modifications 
to processing (hidden layers). A minimum navies strategy optimizes the prediction and clas-
sification ratio by limiting the ratio of TNR to FPR. Various cross-domain techniques, such 
as KNN, whale optimization, and GWO, are employed to evaluate and validate anticipated 
results. Independent data processing and decision-making abilities are necessary for this ap-
proach. Performance ranges from KNN to whale optimization, depending on the situation. 
These optimization techniques are system-driven as they place a high priority on centraliza-
tion and dataset preservation. Network CNN+RL models in FSs are the focus of GWO. The 
decentralized structure of the federated learning framework makes it more computationally 
efficient than alternative methods. The federated learning (FL) and Recursive Learning (RL) 
models of CNN are used to investigate the GWO process using interdomain computation. 

Table 4. Evaluating the effectiveness of the proposed model in comparison to other approaches. 

Method Dataset MCC CSI Accur Reca F1S Prec 

ANN+ IGWO 
[56] 

ISIC 

2016 
0.9131 0.8636 97.0976 95.5817 97.1864 94.1755 

CNN Only [57] - 0.7967 0.6867 92.8760 89.5416 92.546 87.2953 

ANN (LM) [58] - 0.8029 0.6953 93.1398 89.8846 92.7105 87.7296 

ANN+GWO 
[59] 

- 
0.8830 0.8171 96.0422 94.0309 96.0263 92.3487 

ANN+ IGWO 
[60] 

ISIC 

2017 

0.8641 0.7928 95.1667 92.8606 96.3503 90.2746 

CNN Only [61] - 0.7767 0.6528 92.3333 88.5792 91.3521 86.4683 

ANN (LM)[62] - 0.7910 0.6783 92.6667 89.1980 92.5307 86.7776 

Proposed HAM10K 0.9155 0.8645 95.1122 94.5612 93.8874 96.1665 

*MCC: Matthew's Correlation Coefficient; CSI: Critical Success Index. 

 

Figure 6. Comparison of proposed method performance with different optimization algorithms 

The technique described here has some possible drawbacks that should be considered. 
Specific optimization techniques such as KNN, Whale, and GWO may limit the generaliza-
bility of outcomes since they may not apply to all the available datasets or problem areas. 
Furthermore, KNN and whale optimization rely on centralized datasets, which may be trou-
blesome for applications with dispersed or privacy-sensitive data. GWO is intricate, particu-
larly when utilized in CNN-based recursive learning models. Multidisciplinary Federated sys-
tems may face implementation difficulties. that diminish their efficacy. The computational 
requirements of the federated learning system, in conjunction with Grey-wolf optimization, 
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may incur substantial computational expenses. Interdomain computing utilizing FL and Re-
current Studying models of Temporal Neural Networks to enhance GWO may encounter 
constraints stemming from data heterogeneity and communication expenses. Performance 
comparisons of optimization approaches may not apply to all datasets or circumstances, thus, 
it’s important to consider dataset features and scalability considerations. 

 

Figure 7. Study evaluation and observation using a trained convolutional neural network technique 

Table 5. The suggested model’s performance in comparison to baseline techniques 

Classifiers Accur (%) Prec (%) Reca (%) F1S (%) AUC (%) 

VGG16 91.22 93.11 90.52 93.43 94.87 

EfficientNetB0 90.23 91.36 89.36 90.85 95.63 

MobileNetV3 91.54 90.27 92.78 88.54 93.99 

DenseNet-169 90.62 91.51 87.36 90.31 94.44 

ResNet-101 91.20 92.33 92.56 93.88 95.33 

Proposed Model 
(With GWO) 

95.11 94.56 93.88 96.16 97.65 

Proposed Model 
(Without GWO) 

92.66 92.32 91.35 94.36 95.40 

*AUC: Area under Curve. 

 
We used the same dataset and GWO to compare our recommended deep neural net-

works against current ones, including VGG19, ResNet152, EfficientNetB0, Vgg16, Incep-
tionV3, and MobileNetv3. We also compared the planned model before doing the Grey Wolf 
Optimisation. The system with GWO yields excellent results for the suggested model. Table 
5 shows that the proposed models with and without GWO, VGG16, ResNet101, Mo-
bileNetv3, EfficientNetB0, and DenseNet-169 achieved accuracies of 95.11%, 92.66%, 
91.22%, 91.20%, 91.54%, 90.23%, and 90.62%, respectively. 

Alignment optimization is a more successful method than feature and attribute optimi-
zation for identifying skin cancer with CNNs, since it adopts a holistic perspective of the 
entire process. Rather than concentrating exclusively on enhancing input data, it improves 
each phase—from data preparation and CNN design to hyperparameter fine-tuning and out-
come interpretation. This comprehensive viewpoint enables the model to discern intricate 
patterns and adjust to varied datasets, crucial for dependable medical diagnosis. Optimization 
of features and attributes, although beneficial, may constrain the model’s adaptability and 
capacity to generalize to novel or diverse scenarios. Integrating alignment optimization with 
GWO enables simultaneous refinement of many system components, resulting in a more 
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resilient, precise, and versatile model. This comprehensive strategy is more adept at addressing 
the practical issues of medical imaging, including variability and complexity, resulting in more 
dependable clinical outcomes. 

Table 6. Comparison of the suggested methodology to SOTA approaches using the HAM10000 
dataset. 

Model Accuracy (%) Precision (%) Recall (%) F1- Score (%) 

CNN [63] 91.44 96.57 93.56 95.31 

AlexNet [64] 85.00 82.20 89.0 87.02 

CNN-ResNet [18] 92.95 91.32 91.99 90.21 

DenseNet121 [65] 91.05 83.76 95.37 86.44 

CNN-ResNet-50 [66] 88.33 77.99 85.83 81.60 

MobileNetV2[67] 89.22 78.69 79.49 80.02 

Proposed 95.11 94.56 93.88 96.16 

 
Table 6 illustrates the performance of many models, including the proposed approach, 

on the HAM10000 skin lesion categorization dataset. Critical criteria, including accuracy, 
specificity, sensitivity, and F1-score, were employed to evaluate the models. The suggested 
model surpasses current state-of-the-art methods, attaining remarkable results across all met-
rics: 95.11% accuracy, 94.56% precision, 93.88% recall, and 96.16% F1-score. This significant 
enhancement can likely be attributed to advancements in feature extraction techniques, im-
proved classification algorithms, or the incorporation of ensemble approaches. 

5. Conclusions 

This paper presents an effective GWO and skin disease classification strategy for accu-
rately identifying skin diseases. Seven different types of skin disorders were investigated ex-
perimentally using HAM-10000 datasets. Each dataset is utilized with separate testing and 
training samples. For each dataset, performance is measured in terms of sensitivity, accuracy, 
specificity, precision, recall, F1 Score, and AUC similarity index, and the best results are 
achieved. The suggested segmentation results are 0.928 in accuracy, 0.946 in specificity, 0.917 
in sensitivity, 0.933. In comparison to cutting-edge approaches, the suggested GWO achieves 
accurate classification results with 95.11% accuracy, 96.16% F1-Score, 97.65% AUC, 93.88% 
recall, and 94.56% precision. 

Future studies seek to improve the suggested GWO-based skin disease classification 
technique by adapting it for real-time diagnostic systems in clinical settings, assuring speed 
and reliability. To increase its adaptability, the method may be evaluated on various large-scale 
datasets and developed to detect a wider spectrum of skin problems, including uncommon 
illnesses. Combining GWO with additional optimization techniques or deep learning models 
may increase its accuracy even more, while explainable AI (XAI) might make the system’s 
predictions more transparent and trustworthy to healthcare practitioners. Integrating other 
diagnostic tools, such as dermoscopic images or clinical data, might boost its usefulness while 
adapting the system for mobile or cloud platforms, making it more accessible in rural or re-
source-constrained places. Addressing issues such as class imbalance and implementing ad-
vanced data augmentation techniques may also increase its dependability across all skin con-
ditions. 
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