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Abstract: The proliferation of Internet of Things (IoT) devices has introduced significant security 

challenges, necessitating robust attack detection mechanisms. This study presents a comprehensive 

comparative analysis of ten supervised learning algorithms for IoT attack detection and classification, 

addressing the critical challenge of balancing detection accuracy with practical deployment constraints. 

Using the CICIoT2023 dataset, encompassing data from 105 IoT devices and 33 attack types, we eval-

uate Naive Bayes, Artificial Neural Networks (ANN), Logistic Regression (LR), k-NN, XGBoost, Ran-

dom Forest (RF), LightGBM, GRU, LSTM, and CNN algorithms based on some performance metrics. 

The comparative test results show superior performance to the traditional ensemble approach, with 

RF achieving 99.29% accuracy and leading precision (82.30%), followed closely by XGBoost with 

99.26% accuracy and 79.60% precision. Deep learning approaches also demonstrate strong capabilities, 

with CNN achieving 98.33% accuracy and 71.18% precision, though these metrics indicate ongoing 

challenges with class imbalance. The analysis of confusion matrices reveals varying success across dif-

ferent attack types, with some algorithms showing perfect detection rates for certain attacks while 

struggling with others. The study highlights a crucial distinction in IoT security: while high precision 

remains important, the potentially catastrophic impact of missed attacks necessitates equal attention to 

recall metrics, as evidenced by the varying recall rates across algorithms (RF: 72.19%, XGBoost: 

71.69%, CNN: 64.72%). These findings provide vital insights for developing balanced, context-aware 

intrusion detection systems for IoT environments, emphasizing the need to consider performance 

metrics and practical deployment constraints. 

Keywords: Deep Learning; Internet of Things; Intrusion Detection; Machine Learning; Network   

Security; Supervised Learning.  

 

1. Introduction 

The Internet of Things (IoT) has emerged as a cornerstone of global digital transfor-
mation, revolutionizing sectors including healthcare, industry, transportation, and smart cit-
ies. This technological paradigm enables critical processes such as remote medical monitor-
ing, infrastructure management, and home automation through the interconnection of bil-
lions of devices. However, this massive interconnection also introduces significant cyberse-
curity vulnerabilities, making IoT infrastructures prime targets for attackers due to their in-
herent limitations: restricted resources, diverse protocols, and the absence of universal secu-
rity standards [1], [2]. 

Previous research has explored various approaches to secure IoT environments[3]–[5]. 
While effective for predefined threats [6], traditional rule-based systems have proven insuffi-
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cient for evolving and unknown attacks. Machine learning (ML) and deep learning (DL) ap-
proaches have gained prominence due to their ability to identify complex behavioral patterns 
from large datasets. Angelin et al.[6] demonstrated the effectiveness of Random Forests (RF) 
for IoT environments, while Mall et al. [7] highlighted the potential of Deep Neural Networks 
(DNNs) for real-time analysis. Ding et al.[8] and Halbouni et al. [9] proposed hybrid archi-
tectures combining Convolutional Neural Networks (CNNs) and Long Short-Term Memory 
(LSTM) networks. Lightweight models have also been developed and evaluated for resource-
constrained IoT devices[10]–[16] but often lack robustness for sophisticated attacks.  

Each method presents distinct advantages and limitations. Rule-based systems offer in-
terpretability but lack adaptability to new threats[17]. Deep learning approaches demonstrate 
superior detection capabilities but require significant computational resources [18]–[20]. Tra-
ditional ML algorithms provide a balance but may struggle with complex attack patterns [21]–
[25]. Recent research by Kumar et al. [26] has explored unsupervised and semi-supervised 
techniques to address the impracticality of manual data labeling, introducing clustering algo-
rithms and federated learning approaches. 

The urgency of addressing these security challenges is underscored by high-profile inci-
dents like the Mirai botnet attack in 2016, which disrupted large portions of the internet[27]–
[32]. The proliferation of threats such as Distributed Denial of Service (DDoS) attacks, brute 
force attempts, spoofing, and malware targeting IoT devices can compromise sensitive data, 
cause service interruptions, or result in physical damage to critical infrastructures [33]–[37]. 
Current solutions often fail to balance detection accuracy with practical deployment con-
straints, particularly in resource-constrained environments. 

To address these challenges, this study conducts a comprehensive comparative analysis 
of ten supervised learning algorithms for IoT attack detection and classification. The CI-
CIoT2023 dataset [38], which includes data from 105 devices and 33 attack types, is utilized 
to evaluate and compare the performance of traditional ML and modern DL algorithms. This 
research makes several key contributions: (1) a systematic evaluation of algorithm perfor-
mance across multiple metrics, including accuracy, precision, recall, and F1-score; (2) identi-
fication of optimal algorithms for specific deployment scenarios; (3) analysis of the impact of 
class imbalance on detection performance; and (4) practical recommendations for implement-
ing intrusion detection systems in IoT environments. 

The remainder of this article is structured as follows: Section 2 provides a detailed review 
of related work in IoT attack detection and classification. Section 3 outlines the research 
methodology and the CICIoT2023 dataset. Section 4 examines the performance comparison 
of supervised learning algorithms. Section 5 discusses the findings and their implications. Fi-
nally, Section 6 concludes with key contributions and future research directions. 

2. Related Works 

The field of cybersecurity for IoT systems has seen the emergence of numerous innova-
tive methods aimed at improving attack detection and prevention. Meneghello et al. [1] dis-
cussed security threats in the IoT sector and proposed countermeasures such as encryption 
and intrusion detection systems (IDS). Additionally, Goel et al.[2] addressed IoT-specific vul-
nerabilities, while Koroniotis et al. [39] analyzed several machine-learning techniques using 
the UNSW-NB15 dataset to monitor malicious activities and trace botnets using unique iden-
tifiers. Similarly, Hodo et al. [40] explored using ANNs to detect DoS/DDoS attacks by dis-
tinguishing normal behaviors from attack patterns in a virtual environment. Ahmad et al. [4] 
investigated using RF and Extreme Learning Machines to enhance IDS accuracy. 

Regarding feature optimization and false-positive reduction, Samriya et al. [41] proposed 
combining deep learning with nature-inspired algorithms such as min-max normalization and 
ant colony optimization to reduce data dimensionality. The work of Deshmukh et al. com-
plemented this approach [42], and Javad et al. [43] integrated convolutional neural networks 
(CNNs) and autoencoders (AEs) to enhance IDS efficiency by reducing data features with 
autoencoders. In their publications, a number of authors have tested several machine learning 
algorithms on the UNSW NB15 and KDD99 datasets [44]–[50]. Furthermore, Pramilaranie 
et al.[51] proposed a cost-based random forest classifier (CRFC), which uses a cost matrix 
derived from feature importance to improve classification despite data imbalances. 
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Ge et al. [52] developed a framework to trace the origin of attacks, though their approach 
has not been tested for attack detection or false-positive evaluation. Additionally, Mah-
davinejad et al. [53] surveyed machine learning algorithms to extract patterns from IoT data, 
highlighting challenges related to the scale and velocity of real-time data. Baich et al. [54] 
examined binary and multi-class classification for attacks, while Kumar et al. [55] proposed a 
fuzzy CNN-based IDS to improve communication security. 

A similar approach is observed in the work of Sajid et al. [56], who discussed security 
issues in IoT cloud SCADA systems, emphasizing the importance of maintaining quality of 
service while ensuring security. In contrast, Samara et al. [57] studied intrusion detection tech-
niques for IoT networks, highlighting the challenges connected devices pose. 

Moreover, Xu et al. [58] utilized the recursive feature elimination (RFE) algorithm and 
the binary grey wolf heuristic optimizer (BGWO) to select the most relevant features, com-
bining this approach with SMOTE to address data imbalances. Additionally, research by Yin 
et al. [59], which utilized RNNs to extract data representations for intrusion detection, 
demonstrated the effectiveness of recurrent neural networks for this task. 

In botnet detection, Mbona et al. [60] demonstrated that machine learning techniques, 
combined with flow identifiers, were effective in identifying botnet intrusions. Their decision 
tree model achieved a false positive alert rate of 6.77%. Lastly, Beaver et al. [61] used machine 
learning methods to detect attacks in serial communications of remote endpoints, finding that 
nearest neighbors and RF performed best. 

This study aims to deepen the understanding of the performance of supervised learning 
algorithms for attack classification in IoT systems. The focus is on the comparative analysis 
of different supervised learning algorithms, evaluating their ability to accurately classify vari-
ous types of IoT attacks. 

3. Research Method 

3.1. Dataset Description and Collection 

This research utilizes the CICIoT2023 dataset[38], a comprehensive collection of IoT 
network activity records designed explicitly for cybersecurity analysis. The dataset comprises 
1,048,575 records across 47 columns, each representing distinct network flow characteristics 
essential for attack pattern detection and analysis. 

The dataset encompasses several key categories of variables that provide comprehensive 
network traffic analysis capabilities. The temporal measurements include flow and session 
durations, inter-arrival time intervals, and header length measurements, offering detailed in-
sights into the timing aspects of network communications. Network protocol indicators span 
across multiple layers, incorporating basic protocols such as TCP, UDP, ICMP, IPv, ARP, 
and DHCP, as well as application-level protocols including HTTP, HTTPS, DNS, Telnet, 
SMTP, SSH, and IRC. TCP flag measurements track connection states through fin, syn, rst, 
psh, ack, ece, and cwr flags. Statistical metrics provide deeper analytical capabilities through 
descriptive statistics such as total sums, minimums, maximums, averages, and standard devi-
ations, complemented by advanced metrics, including magnitude, radius, covariance, variance, 
and weight calculations. The dataset also includes comprehensive transmission rate measure-
ments across various network parameters. 

3.2. Attack Distribution Analysis 

The analysis of attack categories in the dataset reveals a complex and nuanced threat 
landscape, as illustrated in Figure 1. The distribution pattern indicates a clear hierarchy of 
threat prevalence, with a dominant attack category accounting for 15.38% of all recorded 
attacks. This is followed by a secondary significant threat category accounting for 11.56% of 
the total attacks. The intermediate threat landscape consists of several substantial attack cat-
egories, with representations of 9.66%, 8.81%, 8.74%, and 7.69%, respectively. These are 
complemented by less frequent but significant attack types, including 5.70% and 4.31% cate-
gories. The remainder of the attack landscape consists of several minor categories, each rep-
resenting less than 3% of total attacks yet potentially indicating emerging or sophisticated 
threat vectors that warrant continued monitoring. 
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Figure 1. Distribution of different attack categories within a data set 

3.3. Data Preprocessing Methodology 

As illustrated in Figure 2, the data preprocessing process begins with acquiring a dataset 
from the IoT_Intrusion.csv file containing forty-seven features related to IoT network traffic. 
These features include flow metrics, protocol indicators, and traffic patterns. The initial data 
exploration and cleaning phase ensures data quality and identifies potential anomalies or miss-
ing values in the dataset. 

Following data acquisition, we proceed with label encoding to transform categorical la-
bels into numerical values, a necessary step for subsequent model training. Feature selection 
is then performed, focusing on several essential categories, including flow metrics such as 
duration and rate, protocol indicators like HTTP and HTTPS, flag counts, and various statis-
tical measurements. Through feature importance analysis using ExtraTreesClassifier, the most 
relevant features are identified and retained to create a reduced feature set alongside the com-
plete feature set[62]. 

The data is then strategically divided into training and testing sets, maintaining a 70% 
allocation for training and 30% for testing. A fixed random state is used to ensure result 
reproducibility. This division is performed before scaling to prevent data leakage between the 
sets. The final preprocessing phase involves a structured normalization process. First, Stand-
ardScaler is applied to the training data, centering it and scaling to unit variance—an essential 
step given the diversity of scales and units across features. The same scaling parameters de-
rived from the training set are then applied to the test set to maintain consistency. This ap-
proach ensures that the test data remains unseen while preserving the statistical relationships 
within the dataset. This methodical preprocessing framework establishes a robust foundation 
for subsequent model training and evaluation, ensuring statistical validity and practical ap-
plicability for IoT intrusion detection. 
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Figure 2. Data Preprocessing Methodology 
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3.4. Model Evaluation 

3.4.1. Confusion Matrix 

The confusion matrix is a key tool for evaluating classification models. It compares pre-
dictions to actual classes, showing true positives (TP), true negatives (TN), false positives 
(FP), and false negatives (FN). This helps identify biases, especially in contexts like IoT attack 
detection, where errors can be critical. 

3.4.2. Accuracy  

Accuracy is the proportion of correct predictions over all samples, calculated using 
Equation (1). 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (1) 

It is functional but misleading with imbalanced datasets, as it doesn't differentiate the 
performance of minority classes. 

3.4.3. Precision 

Precision calculates the model's ability to avoid false positives using Equation (2). 

𝑝𝑟𝑒𝑐𝑖𝑠𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (2) 

It is crucial when false alerts can lead to costs or disruptions. However, it doesn't account 
for false negatives, so it should be balanced with recall. 

3.4.4. Recall 

Recall measures the model's ability to detect all positive instances, calculated using Equa-
tion (3). 

𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (3) 

It is critical when false negatives are costly. However, high recall may lead to too many 
false alarms, requiring a balance with precision. 

3.4.5. F1-score 

The F1-score combines precision and recall into a single harmonic measure, calculated 
using Equation (4). 

𝑓1 = 2 ×
𝑝𝑟𝑒𝑐𝑖𝑠𝑠𝑖𝑜𝑛 ∙ 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
 (4) 

It is especially useful for imbalanced data, reflecting a good balance between attack de-
tection and minimizing false alarms.  

3.4.6. Receiver Operating Characteristic - Area Under Curve 

The ROC curve evaluates the model's overall performance by plotting the true positive 
rate (TPR) against the false positive rate (FPR). The Area Under Curve (AUC) quantifies this 
performance, where 0.5 indicates random performance, and 1 indicates perfection. It is crucial 
for systems like IoT intrusion detection, allowing the comparison of models without setting 
a specific threshold. 

4. Performance Evaluation of Different Supervised Learning Algorithms in 
Attack Detection and Classification 

Detecting and classifying attacks are major challenges regarding network and IoT system 
security. These environments are exposed to various threats, ranging from Denial of Service 
(DoS) attacks to more complex intrusions such as malware-based attacks or ransomware. To 
meet these challenges, machine learning and deep learning algorithms have emerged as prom-
ising solutions, capable of analyzing massive volumes of data in real-time and detecting anom-
alous behavior with remarkable accuracy. 

Evaluating the performance of these algorithms is a crucial step in designing and imple-
menting an intrusion detection system (IDS). It enables us not only to compare the effective-
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ness of different models but also to identify their strengths and weaknesses in specific con-
texts. For example, a model may excel in detecting rare attacks thanks to its high sensitivity 
but suffer from a high false positive rate, making it less practical to use in a real environment. 

Metrics such as accuracy, recall, class-specific precision, and F1-score are often used to 
evaluate these models. These indicators help to understand how much a model can distinguish 
attacks from normal behavior while correctly minimizing misclassification. In addition, tools 
such as the confusion matrix and ROC-AUC curves offer an overview of model performance 
by considering the balance between different error categories. 

This section describes how various supervised learning algorithms, such as RF, artificial 
neural networks, XGBoost, perform when faced with attack detection and classification in 
IoT environments. We will also highlight the specific contexts in which each algorithm excels 
and the trade-offs they impose in terms of computational complexity, accuracy, and robust-
ness in the face of unbalanced data. 

4.1. Analysis of Performance Indicators: Precision, Recall, Accuracy and F1-Score 

The performance evaluation of the ten learning algorithms is primarily based on essential 
standard metrics: accuracy, precision, recall, and F1-score. These indicators provide a com-
prehensive and detailed perspective, enabling the assessment of both the models' ability to 
classify instances correctly and their capacity to handle the increasing complexity of intrusion 
detection in a modern IoT environment. Table 1 presents the main hyperparameters config-
ured for each model. The analysis of the results obtained using the Macro Average as the 
performance metric aggregation method, as summarized in Table 2, highlights a clear hierar-
chy among the different approaches.  

CNN demonstrates strong performance with an accuracy of 98.33% and a precision of 
71.18%, showing its excellent capacity to capture complex patterns in network traffic data. 
This performance aligns well with other deep learning approaches, as evidenced by the strong 
results of LSTM (97.60% accuracy) and GRU (96.87% accuracy). The collective excellence of 
deep neural approaches can be explained by their intrinsic ability to learn sophisticated hier-
archical representations of attack patterns, a crucial advantage in the dynamic and complex 
context of IoT security. 

Among traditional algorithms, RF emerges as the top performer with the highest accu-
racy (99.29%) and precision (82.30%) among all studied algorithms. This performance is par-
ticularly significant in IoT, where managing false positives is a major challenge. XGBoost 
follows closely behind with impressive metrics (99.26% accuracy, 79.60% precision). In com-
parison, k-NN maintains solid performance with an accuracy of 94.66% and a precision of 
68.26%, positioning itself as a viable alternative for resource-constrained systems. 

Table 1. Models Configuration. 

Model Parameter Configuration Values 

XGBoost Default parameters used Default values 

Naive Bayes (Gaussian) Default parameters used Default values 

Random Forest Default parameters used Default values 

Logistic Regression random_state 42 

LightGBM Default parameters used Default values 

k-NN n_neighbors (k)   k=5 

Artificial Neural Network (ANN) 

Input Layer Input_dim=n_features 

Hidden Layers [64, 32] 

Output Layer Num_classes (34) 

Activation Functions ReLU, Softmax 

Optimizer Adam 

Loss Function Categorical Crossentropy 

Batch Size 32 

Epochs 50 

Validation Split 0.2 
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Model Parameter Configuration Values 

GRU (Gated Recurrent Unit) 

Input Shape (n_features, 1) 

GRU Layers [128, 64] 

Dropout 0.3 

Dense Layers [64,34] 

Activation Functions ReLU, Softmax 

Optimizer Adam 

Loss Function Categorical Crossentropy 

Batch Size 32 

Epochs 50 

Validation Split 0.2 

LSTM (Long Short-Term 
Memory) 

Input Shape (n_features, 1) 

LSTM Layers [128, 64] 

Dropout 0.3 

Dense Layers [64, 34] 

Activation Functions ReLU, Softmax 

Optimizer Adam 

Loss Function Categorical Crossentropy 

Batch Size 32 

Epochs 50 

Validation Split 0.2 

CNN (Convolutional Neural 
Network) 

Input Shape (n_features, 1) 

Conv1D Layers [64, 32] 

Kernel Size 3 

Pool Size 2 

Dense Layers [64, 34] 

Activation Layers ReLU, Softmax 

Optimizer Adam 

Loss Function Categorical Crossentropy 

Batch Size 32 

Epochs 50 

Validation Split 0.2 

Table 2. Comparative Analysis of Algorithm Performance Metrics. 

Method Accuracy Precision Recall F1-Score 

Naive Bayes (Gaussian) 0.5896 0.4387 0.3996 0.3069 

Artificial Neural Networks (ANN) 0.9803 0.7006 0.6310 0.6469 

Logistic Regression 0.8022 0.6218 0.4832 0.4887 

k-Nearest Neighbors (k-NN) 0.9466 0.6826 0.6288 0.6395 

XGBoost 0.9926 0.7960 0.7169 0.7291 

Random Forest 0.9929 0.8230 0.7219 0.7355 

LightGBM 0.3601 0.1206 0.1103 0.0824 

GRU 0.9687 0.6166 0.6001 0.5926 

LSTM 0.9760 0.6237 0.6179 0.6116 

CNN 0.9833 0.7118 0.6472 0.6520 

 
The comparison of recall metrics reveals interesting insights. RF and XGBoost lead with 

72.19% and 71.69% recall rates, respectively, while deep learning algorithms maintain recall 
rates between 60-65%. While these levels are acceptable, they suggest room for improvement, 
which is particularly critical in IoT networks where an undetected attack could compromise 
the entire network. 
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The disappointing results of some algorithms deserve particular attention. The poor per-
formance of LightGBM (36.01% accuracy, 12.06% precision) and NB (58.96% accuracy, 
43.87% precision) contrasts sharply with their reputation in other application domains. This 
underperformance could be attributed to their difficulty handling the complexity and non-
linearity inherent to attack patterns in IoT networks. Logistic Regression (LR), with an accu-
racy of 80.22%, demonstrates the limitations of linear approaches in this highly non-linear 
context. 

The analysis of F1-scores shows that RF (0.7355) and XGBoost (0.7291) achieve the 
highest balanced performance, followed by CNN (0.6520) and ANN (0.6469). This hierarchy 
suggests that ensemble methods manage to maintain the best balance between detecting real 
attacks and minimizing false positives. The difference in F1-scores highlights the varying 
trade-offs made by each algorithm between precision and recall. 

The general superiority of traditional ensemble approaches (RF, XGBoost) must be nu-
anced by practical considerations. While deep learning approaches show strong performance, 
their computational complexity and resource requirements can represent a significant obstacle 
in some IoT contexts, particularly for edge devices with limited computing capabilities. In 
such situations, lighter algorithms like k-NN can better compromise performance and re-
source efficiency. 

This thorough analysis allows us to formulate precise contextual recommendations. RF 
or XGBoost architectures represent the optimal choice for critical IoT systems where maxi-
mum accuracy is paramount. RF offers the best trade-off in large-scale deployments where 
managing false positives is critical. For systems with significant resource constraints, k-NN 
presents a balanced alternative. Interestingly, more complex architectures like GRU and 
LSTM do not provide decisive advantages over CNN in this context, suggesting that algo-
rithmic sophistication is not always synonymous with better performance. 

4.2. Analysis and Evaluation Based on Confusion Matrices 

Analyzing the diagonal values of confusion matrices reveals significant insights into the 
performance of different network intrusion detection algorithms. The main diagonal repre-
sents correct classifications for each traffic class, directly measuring each model's accuracy. 
XGBoost demonstrates remarkably high performance for most attack classes. Diagonal val-
ues close to 1 are observed for critical classes such as DDoS-SynonymousIP_Flood, DoS-
SYN_Flood, and MITM-ArpSpoofing, indicating an almost perfect ability to identify these 
specific threats. Conversely, some models exhibit notable weaknesses for certain attack clas-
ses. The NB model shows significantly lower performance, with very low diagonal values for 
attacks such as SqlInjection, Uploading_Attack, and several DDoS variants. 

The graphical visualization (Figure 3) reinforces these quantitative observations, allow-
ing for an immediate visual interpretation of performance gaps between different algorithms. 
This graphical representation highlights accuracy variations particularly strikingly, comple-
menting the numerical analysis. Deep learning algorithms, including ANN, CNNs, and mod-
els like LSTM and GRU, demonstrate remarkable robustness across different attack classes. 
This performance suggests their superior ability to capture complex patterns in network traf-
fic data. This detailed analysis of confusion matrices highlights the importance of algorithm 
selection in network intrusion detection, emphasizing that performance can vary significantly 
depending on the specific type of threat being detected. 

4.3. Performance analysis using AUC scores 

The analysis of Area Under the Curve (AUC) values reveals exceptional performance 
for most machine learning algorithms in detecting different classes of network attacks. The 
models XGBoost, ANN, LSTM, CNN, and GRU stand out with consistently high AUC val-
ues, close to 1.00 for almost all attack categories, indicating remarkably precise classification 
capabilities. This performance suggests a very high ability to discriminate between malicious 
and legitimate traffic types. 

In contrast, the Naive Bayes(NB) and LightGBM models exhibit significantly lower per-
formance, with AUC values often around 0.50 for many attack classes, which is equivalent to 
random classification. This difference highlights the variability in performance depending on 
the algorithm used. Specific attacks such as SqlInjection, Uploading_Attack, and XSS show 
lower AUC values, suggesting particular challenges in their accurate detection. Conversely, 
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most models almost perfectly identify attacks like DDoS-SYN_Flood and DoS-TCP_Flood. 
The graphical visualization (Figure 4) associated with these data would provide a more intui-
tive way to highlight these variations in performance across different algorithms and attack 
types. 

 

Figure 3. Confusion Matrix - Main Diagonal Values 

5. Discussion of Results 

The in-depth analysis of the ten learning algorithms evaluated in this study, using the 
Macro Average, reveals significant trends in IoT intrusion detection, particularly regarding 
the impact of class imbalance on model performance. The obtained results require a nuanced 
interpretation, considering the observed disparity between accuracy and other performance 
metrics. 

The strong performance of deep learning approaches, notably CNN with 98.33% accu-
racy and 71.18% precision, must be interpreted in the context of significant imbalance be-
tween attack classes. This high accuracy and 64.72% recall reflect the models' tendency to 
perform better in most classes. This phenomenon is also observable for LSTM (97.60% ac-
curacy) and GRU (96.87% accuracy), where the gaps between accuracy and other metrics 
suggest unbalanced performance across different attack classes. 

Among traditional approaches, RF stands out with the highest overall precision (82.30%) 
and accuracy (99.29%), a particularly relevant result in the IoT context where managing false 
positives represents a major challenge. XGBoost follows closely with impressive performance 
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(99.26% accuracy, 79.60% precision), demonstrating a strong ability to handle class imbal-
ance. The k-NN algorithm, with 94.66% accuracy, also maintains balanced performance, po-
sitioning itself as a viable alternative for resource-constrained systems. 

The analysis of confusion matrices reveals varying success in classifying certain specific 
attacks. For instance, RF shows strong performance in detecting DDoS-HTTP_Flood (1.0), 
DNS_Spoofing (0.97), and Mirai-greeth_flood (0.97), while struggling with attacks like Back-
door_Malware (0.0) and SqlInjection (0.0). The ROC curves and AUC scores confirm these 
trends, with most algorithms achieving near-perfect AUC scores (1.0) for many attack classes, 
though performance varies significantly for certain attack types. 

While balancing metrics such as recall and specificity is crucial in fields like clinical set-
tings, where it enables more accurate and safer treatment decisions[63], and high accuracy 
plays a critical role in fraud detection by minimizing false alarms and ensuring genuine trans-
actions are not mistakenly flagged as fraudulent [64], intrusion detection in IoT poses unique 
challenges that demand a different approach to metric prioritization. 

 

Figure 4. Receiver Operating Characteristic-AUC scores 

The relatively strong F1-scores of the best algorithms (RF: 0.7355, XGBoost: 0.7291, 
CNN: 0.6520) take on added significance in the IoT context. These scores reflect a crucial 
trade-off between precision and recall, where false positives and negatives carry significant 
operational costs. The disappointing performance of certain algorithms, notably LightGBM 
(36.01% accuracy) and NB (58.96% accuracy), can be explained not only by their difficulty in 
handling the non-linearity of attack patterns but also by their sensitivity to class imbalance. 
LR, with 80.22% accuracy, demonstrates the limitations of linear approaches in this highly 
non-linear and imbalanced context. 
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Regarding practical recommendations, our analysis suggests that for critical IoT systems 
where precise attack detection is paramount, EF or XGBoost architectures represent the op-
timal choice despite class imbalance. This aligns with recent findings by Chirra[65], who 
demonstrated that ensemble approaches can better balance the preci-sion-recall trade-off in 
IoT security contexts. For large-scale deployments where managing false positives is critical, 
RF offers the best trade-off, which is particularly important in scenarios where security teams 
must efficiently allocate investigation resources. Systems with significant resource constraints 
will benefit from the k-NN approach, which maintains balanced performance despite imbal-
anced classes. 

This analysis highlights a crucial distinction between traditional cybersecurity domains 
and IoT security: while high precision remains important, the potentially catastrophic impact 
of missed attacks in IoT environments necessitates equal attention to recall. As demonstrated 
by [66], the interconnected nature of IoT systems creates a unique security landscape where 
both false positives and false negatives must be carefully managed. Future research should 
focus on developing algorithms to optimize this crucial balance, particularly in edge compu-
ting and resource-constrained IoT devices. 

6. Conclusion, Recommendations, and Future Perspectives 

The comprehensive evaluation of ten supervised learning algorithms using the CI-
CIoT2023 dataset has revealed significant insights into IoT network protection. Traditional 
ensemble approaches have demonstrated superior capabilities, with RF achieving 99.29% ac-
curacy and 82.30% precision, followed closely by XGBoost (99.26% accuracy, 79.60% preci-
sion). Deep learning approaches have also shown strong performance, with CNN achieving 
98.33% accuracy and 71.18% precision, followed by LSTM (97.60% accuracy) and GRU 
(96.87% accuracy). The observed disparity between accuracy metrics and other performance 
indicators across all algorithms highlights the significant impact of class imbalance in IoT 
attack detection. 

These findings directly align with the research objectives by demonstrating that while 
ensemble learning approaches offer superior raw performance, their practical implementation 
requires careful consideration of multiple factors. The analysis of confusion matrices reveals 
varying success in detecting specific attack types, with some algorithms showing perfect de-
tection rates for certain attacks (e.g., DoS-SYN_Flood, DDoS-SynonymousIP_Flood) while 
struggling with others (e.g., SqlInjection, XSS). This understanding has led to identifying op-
timal algorithms for specific deployment scenarios, with RF or XGBoost architectures prov-
ing most suitable for critical systems, RF for large-scale deployments requiring precise false 
positive management, and k-NN for resource-constrained environments. 

The study makes several significant contributions to IoT security research and practice 
by establishing a comprehensive framework for evaluating intrusion detection systems in IoT 
environments. The analysis of AUC values demonstrates the robust discriminative ability of 
most algorithms across various attack types, with many achieving near-perfect scores (1.0) for 
numerous attack classes. This highlights the potential for highly effective detection systems 
when properly implemented. Furthermore, the research highlights the impact of class imbal-
ance on detection performance and demonstrates the need for context-aware detection strat-
egies in IoT environments. 

Looking forward, several promising research directions warrant further investigation. 
The development of adaptive learning systems capable of dynamically adjusting precision-
recall trade-offs based on context remains a crucial area for exploration. The particularly poor 
performance of LightGBM (36.01% accuracy) and the relatively modest performance of NB 
(58.96% accuracy) suggest opportunities for improving traditional algorithms' resilience to 
class imbalance. Research into lightweight deep learning architectures designed explicitly for 
resource-constrained IoT environments could significantly improve practical implementa-
tions. The investigation of hybrid approaches combining multiple algorithms to leverage their 
strengths shows promise for enhancing detection capabilities, particularly given the comple-
mentary strengths demonstrated in the confusion matrices. Additionally, the integration of 
explainable AI could help security teams better understand and validate detection decisions. 
In contrast, new techniques for handling class imbalance in IoT attack detection could im-
prove overall system performance. 
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IoT networks' continuous evolution and security challenges necessitate ongoing research 
in these directions to develop more effective and efficient protection mechanisms. As IoT 
deployments continue to expand and diversify, the insights gained from this study provide a 
foundation for developing more robust and adaptable security solutions that can effectively 
protect increasingly complex IoT ecosystems while maintaining practical feasibility in real-
world deployments. The demonstrated success of ensemble methods, particularly RF and 
XGBoost, suggests that future research should focus on enhancing these approaches while 
addressing their current limitations in detecting certain types of attacks. 
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