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Abstract: This research investigates school scope classification using Deep Neural Networks (DNN), 

focusing on students living environments and educational opportunities. By addressing the interplay 

of socioeconomic and educational factors, the study aims to develop an analytical framework for un-

derstanding how environmental contexts shape academic trajectories. The research provides a nuanced 

understanding of the importance of features in educational classification by developing DNN models 

based on Spearman's Rank Correlation Coefficient (SRCC). The methodology employs machine learn-

ing techniques, integrating data wrangling, exploratory analysis, and multiple DNN models with K-

fold cross-validation. The study analyzes 677 student records from two schools. The research examined 

multiple model configurations. Results show that the 'All Data' model achieved 83.08% accuracy, the 

'Top 5' model 81.54%, and the 'Non-Top 5' model 79.23%. The SRCC-based approach revealed that 

while top correlated features are important, additional variables significantly contribute to model per-

formance. The study highlights the profound impact of family background, social environment, and 

educational contexts on school selection. Furthermore, it demonstrates DNN's capability to uncover 

intricate, non-linear relationships, offering actionable insights for policymakers to leverage machine 

learning's potential in developing targeted educational strategies. 

Keywords: Classification; Deep Neural Networks; Educational Analytics; Educational Interventions; 

Overfitting Prevention; School Scope. 

 

1. Introduction 

The environments in which students live profoundly shape their educational experi-
ences. Family and friends define the closest aspects of students' lived environments, mirroring 
research on how a student's surroundings can impact their learning process [1]–[3]. These 
studies demonstrate that the environment surrounding students can influence their educa-
tional outcomes. In line with this, classification techniques allow researchers to understand 
better how factors such as learning environment and social interaction affect educational suc-
cess[4]. Given the importance of school in students' lives[5], attention to these factors is es-
sential. 

Understanding these complex dynamics has become increasingly relevant, especially 
with the importance of family, friends, and school environments in influencing students' ed-
ucational process. Researchers have harnessed the deep data analysis capabilities of advanced 
technologies like Machine Learning (ML) to automate the identification of factors that influ-
ence students' educational development[6]. This has enabled a more structured understanding 
of the intricate environmental factors. Therefore, effective learning methods that match the 
characteristics of the data being analyzed are required to optimize the utilization of such ap-
proaches. While traditional ML models like Support Vector Machines(SVM) and Random 
Forests (RF) provide linear interpretations, they have limitations in capturing the complex. 
These non-linear relationships influence students' educational trajectories[7]. 

In the evolving landscape of educational research, applying advanced machine learning 
technologies has become increasingly relevant. Particularly, Deep Neural Networks (DNN) 
have emerged as a powerful approach to understanding complex educational dynamics[8]. 
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Unlike traditional ML methods or Recurrent Neural Network(RNN) models like Long Short-
Term Memory (LSTM) and Gated Recurrent Unit (GRU), DNNs offer unique capabilities in 
processing multidimensional data related to students' educational environments[9]. The 
choice of DNNs is fundamentally rooted in their ability to model intricate, non-linear rela-
tionships that conventional algorithms struggle to capture. This capability allows DNNs to 
identify much more complicated patterns than traditional machine learning algorithms, mak-
ing this technology ideal for applications requiring high reliability and precision[10]. Super-
vised Learning methods, for example, involve training a model with a pre-labeled dataset to 
learn the relationship between known inputs and outputs, facilitating its use in various sec-
tors[11]. 

Spearman's Rank Correlation Coefficient (SRCC) is often used to analyze the relation-
ship between variables in research contexts that do not rely solely on normal data distribution. 
The SRCC is effective for measuring the strength and direction of a monotonic relationship 
between two ordered variables, making it a very practical tool, especially in studies involving 
ranked data[12]. However, using SRCC also requires a normality test to ensure its suitability, 
whereas the Shapiro-Wilk test is recommended due to its ability to detect deviations from 
normality[13]. 

This study makes significant contributions to educational analytics. First, it introduces a 
new way to use advanced ML, specifically DNN, to classify school scope based on students' 
neighborhood environment, an area not widely studied before. Second, the research focuses 
on environmental factors like family background and social environment, providing a deeper, 
more complete understanding of how these variables influence school selection filling an im-
portant gap in existing literature. Third, the study integrates advanced feature selection strat-
egies and uses a multi-model approach, systematically employing SRCC to examine the impact 
of different variable combinations. This comprehensive method uncovers intricate patterns 
and complex, non-linear relationships that traditional approaches may miss. Ultimately, the 
research offers a sophisticated analytical framework that can inform policymakers and educa-
tors, potentially leading to targeted interventions and improved educational outcomes by con-
sidering the broader social context in which students live. 

2. Related Work 

The exploration of statistical tests and machine learning techniques has been pivotal in 
various research domains, including educational studies and reliability analysis. The simulation 
study compared the Kolmogorov-Smirnov, Skewness, and Shapiro-Wilk normality tests, em-
phasizing that selecting an appropriate normality test depends on the sample size and under-
lying data distribution[14]. This insight is particularly relevant to our study, where the Shapiro-
Wilk test assesses the normality of variables influencing school choice. 

Research highlighted the critical role of reliability in the design of DNN algorithms and 
their accelerators[8]. Mittal underscored that reliability should be a fundamental consideration 
across all abstraction levels in system design when utilizing classification and DNN method-
ologies. This perspective aligns with our approach, which integrates DNN alongside other 
machine learning techniques to ensure robust classification of school scopes based on stu-
dents' living environments. 

A review of various normality tests, including Shapiro-Wilk, Shapiro-Francia, Anderson-
Darling, Cramer-Von Mises, Lilliefors, and Jarque-Bera, concluded that the Shapiro-Wilk, 
Shapiro-Francia, and Anderson-Darling tests exhibit superior power compared to others[13]. 
This reinforces our methodological choice to utilize the Shapiro-Wilk test in analyzing the 
significance of life variables on school selection. 

Implementation of machine learning techniques, specifically supervised learning to pre-
dict student performance, achieved an accuracy rate of over 80%, demonstrating the efficacy 
of machine learning in predictive tasks[6]. These precedent supports using supervised learning 
within our machine learning framework to classify school scopes accurately. 

Investigating the correlation between personality traits and visiting places using SRCC, 
Pearson's linear correlation coefficient (PLCC), and Kendall's rank correlation coefficient 
(KRCC) indicated that SRCC provided more reliable outcomes than the other methods[12]. 
This finding justifies our application of SRCC to explore the relationship between students' 
living environments and school choices. 



Journal of Computing Theories and Applications 2024 (November), vol. 2, no. 2, Karyudi and Zubair. 292 
 

 

Employed various machine learning algorithms, including Naive Bayes (NB), Logistic 
Regression (LR), and SVM, alongside K-fold cross-validation, to effectively classify opinions 
regarding university student satisfaction[15]. Their research demonstrated that SVM, com-
bined with K-fold cross-validation, successfully identified key factors influencing satisfaction. 
This methodology is mirrored in our study, where we utilize K-fold cross-validation alongside 
SVM to enhance the classification accuracy of school scopes based on environmental varia-
bles. 

Unlike previous studies focused on predicting student performance using traditional ma-
chine learning, this research takes a novel approach by using a comprehensive DNN to clas-
sify school scope based on students' surrounding living environments. While previous re-
search has used data mining techniques like Decision Trees (DT), RF, and SVM to predict 
student achievement[16], our study investigates how environmental factors influence school 
selection. 

Table 1. Previous Research. 

Ref. Method Result 

[14] 

 

Kolmogorov-Smirnov, Skewness and 
Shapiro-Wilk.  

Shapiro-Wilk test gives better results than other tests 
for normal and non-normal distributions, and increas-

ing sample sizes increases test power. 

[8] Classification using DNN 
Reliability must be considered a key design considera-

tion at all levels of abstraction. 

[13] 
Shapiro Wilk, Shapiro Francia, Andeson 
Darling, Cramer Von Mises, Lilliefors, 

and Jarque Bera. 

The Shapiro Wilk test, Shapiro Francia test, and Ande-
son Darling test are the most powerful among the 

other tests. 

[6] ML, Supervised Learning, DT 
One Rule, Joint Reserve Intelligence Program, and DT 
accurately predict student academic performance with 

over 80% accuracy. 

[12] SRCC, PLCC, and KRCC. SRCC showed better results than PLCC and KRCC. 

[15] 
ML: NB, LR, SVM, and K-fold cross-

validation. 

SVM classification using K-fold cross-validation will 
contribute to determining which factors related to 
teachers' didactic strategies should be improved. 

[16] 

 

Classification using DT, RF, Neural 
Network, SVM 

The study demonstrates the effectiveness of data min-
ing techniques in predicting secondary student perfor-
mance, emphasizing the importance of previous aca-
demic results and various demographic and social fac-

tors. 

 
The exploration of educational analytics has witnessed significant advancements in re-

cent years, with researchers employing various ML techniques to understand complex educa-
tional dynamics. The studies in Table 1 provide a solid basis to our research, highlighting the 
critical need to choose suitable statistical tests and machine learning approaches to analyze 
and predict complex educational relationships. 

Building upon methodological innovations in educational data mining, our research in-
tegrates advanced feature selection strategies. For instance, the Local Lift Dependence Scale 
(LLDS) demonstrated the potential of multi-resolution feature selection, extending beyond 
classical approaches by analyzing local dependencies between variables[17]. Similarly, utilizing 
K-mean clustering revealed nuanced patterns in student behavior, highlighting the complexity 
of educational performance prediction[18]. 

The proposed methodology extends beyond the conventional performance prediction 
models by leveraging advanced supervised learning techniques. Where studies that explored 
probabilistic evaluation of classification models[19], our research introduces a multi-model 
approach that systematically examines the impact of different variable combinations. Devel-
oping DNN models based on the result of SRCC provides a more nuanced understanding of 
the importance of features in educational classification. 

Complementing neural network approaches, researchers applied Back Propagation and 
Radial Basis Function Networks to predict student performance with recognition rates ex-
ceeding 84%[20]. Our study innovatively addresses limitations by demonstrating that school 
scope determination is not merely a function of academic performance but a complex inter-
play of socioeconomic, familial, and environmental factors. 
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Unlike the wrapper techniques for handling imbalanced datasets proposed by previous 
researchers[21], and the penalized regression methods explored for improving research rep-
licability[22], we integrate a comprehensive feature selection strategy beyond traditional re-
weighting and regularization methods. 

The study's unique contribution lies in its ability to process and analyze multidimensional 
data using DNN, revealing intricate patterns that conventional ML algorithms struggle to 
capture. Focusing on the relationship between students' living environments and school scope 
offers a more holistic perspective on educational dynamics, potentially providing policymak-
ers and educators with actionable insights for targeted interventions. 

Critically, our approach differs from existing studies by predicting outcomes and under-
standing the underlying mechanisms that influence educational opportunities. The developed 
DNN model demonstrates superior capabilities in identifying complex, non-linear relation-
ships between environmental variables and school selection, thus offering a more sophisti-
cated analytical framework than traditional linear regression or classification techniques. 

3. Proposed Method 

3.1 Data Wrangling 

The research begins with data wrangling, which involves converting raw data into a more 
analyzable format. This procedure encompasses data cleaning, integration, and transfor-
mation. The dataset used in this research encompasses a variety of attributes related to stu-
dents' demographics, family background, and academic performance. For this data wrangling 
task, the powerful and flexible pandas package in Python was utilized[23]. Additionally, the 
scikit-learn library was employed for normalization[24]. 

Normalization is a crucial step, particularly for algorithms like neural networks, which 
are sensitive to the scale of input data. The scikit-learn library[24]. Provided various normali-
zation techniques, including MinMaxScaler, StandardScaler, and OneHotEncoder, which 
were utilized in this study. 

3.2 Exploratory Data Analysis 

Exploratory Data Analysis is conducted to comprehend the dataset's fundamental struc-
ture and underlying patterns thoroughly. This comprehensive process involves computing 
descriptive statistics, such as the mean, median, mode, and other relevant metrics, to under-
stand the data better. Additionally, the Shapiro-Wilk test is employed, leveraging the powerful 
scipy library in Python[25] to evaluate the normality of the data. This normality assessment 
helps determine the appropriate statistical techniques for the subsequent analysis. 

3.2.1 Shapiro Wilk 

The Shapiro-Wilk test is a normality test commonly used in frequency statistics. The null 
hypothesis of this test is that the population is normally distributed. If the p-value is less than 
the chosen alpha(𝑎) level, the null hypothesis is rejected, indicating that the data being tested 
does not come from a normal distribution, i.e., the data is not normal. Conversely, if the p-
value is greater than the selected level, the null hypothesis stating that the data comes from a 
normally distributed population cannot be rejected. This means the data follows a normal 
distribution and can be analyzed using statistical methods that assume normality, such as par-
ametric tests[13]. 

The Shapiro-Wilk equation can be written using Equation (1)[14]. 

𝑤 =
(∑  𝑛

𝑖=1 𝑎𝑖𝑥(𝑖))
2

∑  𝑛
𝑖=1 (𝑥𝑖 − 𝑥̅)2

 (1) 

Where 𝑎𝑖𝑥(𝑖) represents the i-th data point in the sorted sample, where 𝑎𝑖 is the sample size 

coefficient from the standard normal distribution table, and 𝑥(𝑖) is the i-th smallest value in 

the sample. The term 𝑥𝑖 refers to the i-th value of the sample data being tested, and 𝑥̅ is the 
sample mean. 

3.2.2 Spearman's Rank Correlation Coefficient (SRCC) 

SRCC is a nonparametric statistic that measures the strength and direction of a mono-
tonic relationship between two variables. Unlike Pearson's correlation, SRCC does not require 
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a linear relationship between the variables. It is based on the ranks of the observations rather 
than the actual values. 

To calculate SRCC, the observations of each variable are first ranked, and then the cor-
relation between the ranks is computed. This makes SRCC a useful tool for analyzing rela-
tionships in data that do not follow a normal distribution, as it is based on the ranks rather 
than the actual data values. The calculation of this coefficient can be carried out using the 
Equation (2)[12]. 

𝑝 =
∑ (𝑥𝑖 − 𝑥̅)(𝑦𝑖 − 𝑦̅)𝑖

√∑ (𝑥𝑖 − 𝑥̅)𝑖
2√∑ (𝑦𝑖 − 𝑦̅)𝑖

2

 
(2) 

Where 𝑥𝑖 and 𝑦𝑖 are the i-th values of the 𝑥 and 𝑦 sample data being tested, respectively, 

𝑥̅ and 𝑦̅ are the means of all values in the 𝑥 and 𝑦 sample data, respectively. 

3.3 Data Visualization 

Data visualization techniques transform raw data into graphical representations that fa-
cilitate interpretation. Methods like heatmaps, pie charts, treemaps, and box plots accentuate 
key patterns and trends within the data. These visual tools offer a more intuitive comprehen-
sion of the underlying data, unveiling insights that may not be readily discernible from raw 
numerical information. For this purpose, the Matplotlib library in Python was utilized[26], 
leveraging its flexibility and extensive plotting capabilities to create highly customizable and 
informative visualizations. 

3.4 Deep Neural Network 

 

Figure 1. Deep Neural Network Model Plan 
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In this project, based on Figure 1. Four different DNN models to understand the influ-
ence of certain features on model performance and identify which model is most effective in 
various contexts. The data training process divided the dataset into two main segments: train 
data and test data, with a ratio of 80% and 20% for test data. This division aims to ensure that 
the model can learn from various possible scenarios in the dataset and be tested with inde-
pendent data to verify the accuracy of the model's predictions. 

In addition, to improve the model's reliability and reduce the risk of overfitting, a cross-
validation technique, K-fold cross-validation, is applied during the training process. In K-fold 
cross-validation, the training data is divided into 'K' different subsets, with the model trained 
using 'K-1' subset as training data and the remaining subset as validation data. This technique 
allows utilization of the entire training data for training and validation, minimizing bias and 
providing a more stable estimate of the model's performance. 

Main Model ("All Data" Model): This is the most comprehensive model, using the entire 
dataset without restrictions on the features used. This model aims to understand the entire 
dataset's performance in machine learning and train it to handle various scenarios in the da-
taset. 

"Only Top 5 Data" model: This model uses exclusively the top five features identified 
as the most significant. It aims to test how well the model can perform with only the most 
crucial information. 

"With Top 5 Data" model: Unlike the previous model, this model uses the entire dataset 
but specializes on the top five features. This model provides insight into how these important 
features interact with other features in the dataset. 

The "Without Top 5 Data" model tests the dataset by removing the top five features to 
assess how effective the model is at predicting or classifying without relying on the most 
critical features. 

After the training process, different domains prioritize distinct performance metrics. 
School scope classification demands a holistic multi-metric evaluation approach. This nu-
anced methodology reflects the complex nature of categorizing school environments, where 
understanding the contextual characteristics requires a comprehensive and multidimensional 
assessment. 

Accuracy is the primary metric, capturing the model's overall correctness and providing 
a broad understanding of predictive capabilities. It offers stakeholders an intuitive and imme-
diate insight into the model's reliability, reflecting the fundamental ability to make precise 
school scope classifications. By measuring the proportion of correct predictions across all 
instances, accuracy provides a foundational view of the model's effectiveness in understand-
ing and categorizing school environment characteristics[19]. 

The loss metric provides insights into the model's internal performance, measuring pre-
diction error and model uncertainty. It helps researchers understand the learning process, 
identifying potential overfitting or underfitting scenarios. By guiding model refinement and 
optimization, the loss metric serves as a critical tool for the continuous improvement of clas-
sification models[19]. 

Precision focuses on the accuracy of positive classifications, which is crucial in identify-
ing specific school scope characteristics while minimizing false positive classifications. This 
metric ensures targeted and efficient categorization strategies, reducing potential misclassifi-
cation risks. By carefully filtering predictions, precision helps researchers design more accu-
rate environmental classifications[19]. 

Recall complements precision by capturing the model's ability to identify all relevant 
school scope instances. This metric ensures comprehensive identification of environmental 
characteristics and prevents overlooking critical contextual attributes. Recall supports a more 
comprehensive classification approach by minimizing missed detection of specific school en-
vironment categories [19]. 

The F1 score emerges as a critical metric that balances precision and recall, addressing 
the challenges inherent in imbalanced school scope classification datasets. By providing a 
harmonized view of model performance, the F1 score mitigates the limitations of single-met-
ric evaluation. This is particularly valuable in contextual classification, where class distribu-
tions may be uneven, ensuring a comprehensive and balanced assessment of predictive capa-
bilities[19]. 

The AUC-ROC score introduces a more sophisticated layer of analysis, demonstrating 
the model's ability to distinguish between different school scope categories. This metric 
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reveals nuanced classification capabilities by measuring the model's discriminative power 
across various environmental thresholds. Unlike binary classification approaches, the AUC-
ROC score helps researchers understand how well the model can rank and differentiate pre-
dictions, providing insights into the subtle variations in school environment characteris-
tics[19]. 

This method aims to develop robust and reliable DNN models, capable of making ac-
curate predictions under various conditions critical for real-world applications using machine 
learning technologies. Each model is evaluated based on performance metrics to determine 
which is most effective under different conditions. This allows optimization based on the 
most significant features for accurate predictions and effective classification. 

4. Results and Discussion 

This chapter presents the findings from the data analysis. The objective is to investigate 
the relationships and distributions of the diverse factors that influence the categorization of 
school scope based on students' surrounding living environments. By examining these factors, 
this study offers more profound insights into how the educational milieu can impact students' 
academic performance. 

The research utilizes a UC Irvine ML Repository dataset, specifically the "Student Per-
formance" dataset[27]. This dataset represents a meticulously curated collection of educa-
tional performance data, collected through a rigorous methodology involving school reports 
and a carefully designed supplementary questionnaire, undergoing a process of professional 
review and student piloting. 

The original survey encompassed 788 students, with 111 responses ultimately excluded 
due to incomplete identification details, resulting in a refined dataset of approximately 677 
student records. The questionnaire, strategically constructed with 37 closed-ended questions, 
comprehensively captured demographic, social/emotional, and school-related variables hy-
pothesized to influence student performance. 

Preliminary analysis suggests the dataset comprises a rich mix of approximately 15-20 
categorical variables and 17-22 numerical variables, potentially including features such as gen-
der, school type, parental education, grades, age, and study time. For a complete feature list 
and dataset characteristics, refer to [27]. 

The variable 'school' was used as the target for classification in this study. This variable 
includes two categories: 'GP' for Gabriel Pereira school and 'MS' for Mousinho da Silveira 
school. These two categories represent the educational institutions analyzed to evaluate and 
compare the environmental and demographic factors affecting students' performance. 

 

Figure 2. Shapiro Wilk of ranking data 

The analysis of Figure 2 indicates that the data distribution does not conform to the 
normal distribution assumption, as evidenced by the p-value being lower than the set signifi-
cance level. This suggests that the data does not meet the normality assumptions [14]. Dis-
regarding the findings of the normality test and presuming normal distribution would be in-
advisable, as it could result in inaccurate calculations and statistical inferences. When the data 
fails to meet the normality assumption, researchers should consider employing alternative 
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non-parametric methods or data transformation techniques to ensure the validity and relia-
bility of the analysis[13]. 

 

Figure 3. Heatmaps of correlations to 'school' data 

Correlation heatmaps in Figure 3 offer a useful way to visualize the relationships between 
variables in the dataset. These heatmaps use color gradients to represent the strength and 
direction of correlations, where darker/lighter colors indicate stronger/weaker correlations. 
The scale from -1 to +1 denotes the range from a perfect negative to a perfect positive rela-
tionship, while values near 0 suggest no correlation. Heatmaps are valuable for identifying 
variables with significant influence on each other, enabling further focused analysis on those 
variables. This correlation information is crucial for evaluating the classification accuracy[28]. 

 

Figure 4. Top 5 Correlations with Target 

Figure 4 shows the five variables most strongly linked to the target variable. Each bar 
indicates the strength of the correlation in order from highest to lowest. This identifies the 
key factors influencing the target, which is important for making informed decisions and de-
veloping strategies. Knowing the strongly correlated variables allows further study of their 
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relationships, as seen in previous classification model research[19]. These insights can guide 
how to improve model training best. 

 

Figure 5. Pie Chart of Binary data 

Figure 5 presents the proportional breakdown of various student attributes associated 
with their school environment. For instance, it indicates that most students attend the Gabriel 
Pereira school compared to the Mousinho da Silveira school, and there is a predominance of 
female over male students. This visual representation of the demographic composition facil-
itates comparisons across different student categories. As preliminary research [29] suggested, 
this type of visualization can provide valuable insights into the demographic factors that may 
influence educational policies and teaching approaches. 

 

Figure 6. Treemap of Mjob, Fjob, reason, and guardian data 
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Figure 6 presents a visual breakdown of parents' occupational profiles and the primary 
reasons students select their schools. The color-coded blocks denote the relative proportions 
for each category. For instance, the "other" occupation category is the most prevalent for 
mothers and fathers. Additionally, most students cite the available course offerings as the 
primary factor in their school choice. This graphical representation provides valuable insights 
into the socioeconomic and academic factors that may shape students' educational decisions, 
aligning with research emphasizing the importance of understanding the social context in the 
educational domain[29]. 

 

Figure 7. Distributed Data Plot of ranking data 

Figure 7 presents the median values of variables related to students' health, alcohol con-
sumption, and parental education levels, offering a snapshot of the general status of these 
attributes within the student population. This visualization serves to identify the overall con-
dition of factors influencing the student's lives and highlight potential areas requiring targeted 
interventions. This technique facilitates the rapid detection of common patterns or prevalent 
issues in educational datasets[29], enabling more informed decision-making and the develop-
ment of tailored strategies to address the student population's needs. 

 

Figure 8. Boxplot from the age feature 
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The boxplot in Figure 8 depicts the age distribution of the student population, showcas-
ing key statistical measures such as quartiles, medians, and outliers. The median student age 
is approximately 17, with some individuals exhibiting significantly higher ages. This visual 
representation effectively highlights the age distribution and exceptional cases that may war-
rant further investigation. As described in the literature[29], the utilization of boxplots aids in 
illustrating the statistical characteristics of the data and identifying potential anomalies, which 
can be crucial in educational research and practice. 

Based on the visualizations presented in Figure 5, Figure 6, Figure 7, and Figure 8, the 
dataset appears to exhibit imbalance, where the data from one class is significantly more prev-
alent than the other class[30]. This imbalance phenomenon is a common challenge in data 
analysis, as the disproportionate representation of classes can skew the results and lead to 
biased conclusions. When dealing with imbalanced datasets, it is crucial to carefully consider 
and address this issue to ensure accurate and reliable analysis and findings. 

Table 2. DNN Model Design 

Layer 
Type 

Output 
Shape 

Parameters Activation Note 

Input (None, 44) 44 input fea-

tures 

- The initial layer with 44 features represent-

ing student environment variables 

Dense (None, 128) 128 neurons ReLU The first hidden layer captures initial com-

plex non-linear relationships 

Dropout (None, 128) Rate: 0.3 - Aggressive regularization to prevent over-

fitting, unusually high dropout rate 

Dense (None, 32) 32 neurons ReLU Second hidden layer, further abstract fea-

ture extraction 

Dense (None, 32) 32 neurons LeakyReLU 

(α=0.02) 

Prevents neuron dying problem, allows 

small gradient for inactive units 

Dense (None, 16) 16 neurons Softplus Smooth, continuous activation function for 

non-linear transformation 

Dropout (None, 16) Rate: 0.3 - Additional regularization to enhance model 

generalization 

Dense (None, 8) 8 neurons ReLU Reduces feature dimensionality, extracts 

more abstract representations 

Dropout (None, 8) Rate: 0.3 - Final regularization layer before classifica-

tion 

Dense (None, 1) 1 neuron Sigmoid Binary classification output produces prob-

ability between 0 and 1 

 

The neural network model architecture in Table 2 is built using TensorFlow[31]. It starts 
with an input layer that has 44 features. The data then flows through dense layers with various 
activation functions and dropout layers for regularization. The first dense layer has 128 neu-
rons with ReLU activation, followed by a dropout layer. The second dense layer has 32 neu-
rons with ReLU activation, followed by LeakyReLU activation, which allows for a small gra-
dient when units are inactive. The third dense layer has 16 neurons with Softplus activation, 
followed by a dropout layer. The fourth dense layer has 8 neurons with ReLU activation, 
followed by a dropout layer. Finally, the model has a fifth dense layer with one neuron and 
Sigmoid activation, which is suitable for binary classification tasks as it produces values be-
tween 0 and 1[32]. 

The accuracy and loss graphs in Figure 9 show the model's performance using the entire 
dataset without variable selection. The training accuracy increases significantly during the in-
itial epochs, but the validation accuracy appears unstable, experiencing large fluctuations after 
a few iterations. The loss graph indicates that the training loss value decreases sharply in the 
beginning but tends to level off in the final epoch, while the validation loss is seen to increase 
again in the final stage, suggesting overfitting. This overfitting may occur because the model 
learns too extensively from the training data without adequately considering generalization to 
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the validation data. This aligns with the recommendation about the importance of feature 
selection to reduce the risk of overfitting[33]. 

Figure 10 shows the training performance of the model using only the five variables with 
the highest correlation to the target. The accuracy graph demonstrates more consistent in-
creases in training and validation accuracies, with less fluctuation than the previous model. 
This trend indicates greater stability, particularly in the validation data, suggesting improved 
generalization ability. The loss graph also reflects more stable results, where the training loss 
value decreases significantly without a large gap between the training and validation losses, 
implying less overfitting than the previous model. 

 

Figure 9. Training Results of Model with All Data 

 

Figure 10. Training Results only Top 5 Correlation 

Probabilistic metrics such as Precision, Recall, and F1 can thoroughly evaluate model 
performance[19]. In this context, the stability observed in Figure 10 can be attributed to using 
the most relevant variables, which allows the model to optimize the confidence in its predic-
tions. High model confidence in its predictions can also improve the interpretability and qual-
ity of the evaluation. 

Figure 11 depicts the model training performance when the five variables most corre-
lated with the target are excluded from the data. The accuracy graph exhibits more excellent 
stability than Figure 10, with both training and validation accuracies demonstrating a con-
sistent upward trend. While the validation accuracy doe s display minor fluctuations in 
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the final epochs, these fluctuations remain within reasonable limits. They are not substantial, 
suggesting the model maintains a degree of stability despite the omission of important varia-
bles. The loss graph indicates that the training and validation loss values decrease significantly 
in the initial training stages, with a relatively small disparity between them until the midpoint 
of the training epoch. However, in the final epoch, the validation loss increases while the 
training loss continues to decline. This observation suggests the model exhibits signs of over-
fitting toward the end of the training process, as noted in the literature[15], where excluding 
critical features can amplify the risk of bias and constrain the model's capacity to generalize 
effectively. 

 

Figure 11. Training Results without Top 5 Correlation 

 

Figure 12. Training Results with Top 5 Correlation 

Figure 12 demonstrates that the model trained using the five variables most strongly 
correlated with the target variable exhibits greater accuracy and loss metrics stability than the 
model that incorporated all variables without feature selection. On the left side of the graph, 
the training accuracy shows a gradual upward trend over 35 epochs, while the validation ac-
curacy attains consistently high values. This suggests the model can effectively learn the un-
derlying patterns in the data without exhibiting substantial signs of overfitting, as evidenced 
by the validation accuracy stabilizing at an elevated level after the initial training stages[15], 
[19]. 
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Meanwhile, in the graph on the right side, the training loss and validation loss decrease 
significantly at the beginning of training and start to approach stability at later epochs. Figure 
12 demonstrates that the model successfully minimizes the error on both data sets, indicating 
good generalization to the validation data. By focusing on the most relevant variables, the 
model achieved more optimal results, which shows that feature selection based on correlation 
can help improve model performance and efficiency[28], [33]. 

Utilizing the five variables with the highest correlation was an effective strategy for en-
hancing the model's accuracy and stability, aligning with the insight that feature selection can 
assist in reducing model complexity and improving interpretability[34]. 

 

Figure 13. Evaluation Model from All Model 

Based on Figure 13 shows a comparison of the various model performance metrics for 
four variable usage scenarios: All Data, Top 5, Non-Top 5, and Only Top 5. Each of these 
metrics provides insight into the impact of variable combinations on the classification model's 
predictive results. 

The Accuracy metric demonstrates that the model incorporating all variables, referred 
to as the "All Data" model, achieved the highest value of 0.8308, indicating it made the most 
precise predictions. This was followed by the "Top 5" model, which had an accuracy of 0.8154 
and performed reasonably well while utilizing a more limited set of variables. The "Non-Top 
5" model exhibited a slightly lower accuracy of 0.7923, while the "Only Top 5" model had 
the lowest accuracy of 0.7385. These findings confirm the significance of highly correlated 
variables but suggest that additional variables beyond the Top 5 can enhance the model's 
accuracy, aligning with insights from feature selection research [33], [34]. 

The Non-Top 5 model demonstrated the highest AUC-ROC Score of 0.8633, narrowly 
surpassing the performance of the All Data and Top 5 models. This suggests that while the 
Non-Top 5 variables lack a strong direct correlation with the target, they still contribute mean-
ingful information for distinguishing between the positive and negative classes. Conversely, 
the Only Top 5 model exhibited the lowest AUC-ROC Score of 0.7482. This corroborates 
the finding that relying exclusively on highly correlated variables, without incorporating other 
relevant factors, can diminish the model's capability to detect class variation[15]. 

The All Data model exhibited the strongest performance in the F1 Score metric, with a 
value of 0.8308, closely followed by the Top 5 model at 0.8090. The F1 Score, which balances 
Precision and Recall, indicates that the All Data and Top 5 models achieved more well-
rounded results regarding prediction accuracy and range. In contrast, the Non-Top 5 model 
recorded an F1 Score of 0.7842, while the Only Top 5 model had a lower value of 0.7111. 
This supports the literature suggesting that feature selection should consider factors beyond 
correlation to achieve optimal prediction[19]. 
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The Precision values for the All Data and Top 5 models are also relatively high, at 0.8308 
and 0.8138, respectively, indicating that these two models are more effective in accurately 
predicting the positive classes without generating excessive false positives. In contrast, the 
Non-Top 5 model has a lower Precision value of 0.7891, while the Only Top 5 model exhibits 
the lowest precision at 0.7386. These findings align with the results of previous studies, which 
demonstrate that including relevant features can enhance the accuracy of models in detecting 
the target class[28]. 

The All Data model achieves the highest Recall value of 0.8308, followed by the Top 5 
and Non-Top 5 models. The high Recall results in the All Data and Top 5 models suggest a 
stronger ability to correctly identify positive instances, with a lower risk of false negative er-
rors. In contrast, the Only Top 5 model recorded the lowest Recall value at 0.7385, indicating 
that incorporating additional variables can help improve the model's predictive range, in line 
with findings emphasizing the importance of feature combinations for maintaining model 
generalizability[19], [33]. 

These results indicate that using all available variables achieves the best performance 
across most metrics, while the Top 5 models also perform reasonably well. In contrast, mod-
els relying solely on the five most highly correlated variables tend to have the lowest perfor-
mance, suggesting that additional features not included in the Top 5 still significantly contrib-
ute to improving the prediction quality and the model's generalization. This finding supports 
the literature highlighting the importance of careful feature selection in achieving a balance 
between the accuracy and interpretability of classification models[19], [34]. 

 

Figure 14. Evaluation Loss Model Each Model 

Based on the loss values shown in Figure 14 for various combinations of model varia-
bles, there are significant differences in prediction error rates across the four scenarios: All 
Data, Top 5, Non-Top 5, and Only Top 5. The model utilizing all variables, or the All Data 
model, produces the lowest loss value of 0.4497, indicating the best performance in terms of 
error minimization. By leveraging all available information, this model can make more accu-
rate predictions without overlooking important aspects of the data. 

The model that uses the five variables with the highest correlation to the target, referred 
to as the Top 5 model, shows a slightly lower loss value of 0.4476, which is close to the 
performance of the All Data model. These findings suggest that a model focused on the most 
relevant variables can significantly reduce complexity while preserving performance. This is 
consistent with studies demonstrating that effective feature selection can reduce noise and 
improve model generalization without sacrificing important information[33]. 

In contrast, the model using the Non-Top 5 variables exhibits a higher loss value of 
0.4572. This suggests that variables with low correlation to the target contribute less to im-
proving prediction accuracy and may even introduce uncertainty into the model. This finding 
emphasizes the importance of selecting variables that significantly influence the target, as 
supported by previous research on effective feature selection[15]. 

The model that uses only the five variables with the highest correlation, referred to as 
the Only Top 5 model, exhibits the highest loss value of 0.5908. This suggests that while the 
top variables are essential, incorporating additional variables beyond the Top 5 can signifi-
cantly improve the model's predictive accuracy. Combining highly correlated and other vari-
ables provides more optimal results in minimizing the prediction error. This finding under-
scores the importance of maintaining a balanced approach to feature selection, considering 
not only the main variables but also the contribution of other variables for better overall 
performance[19], [34]. 

Models incorporating all available predictors or a strategic combination of the most sa-
lient predictors demonstrate superior performance, as evidenced by lower loss values, 



Journal of Computing Theories and Applications 2024 (November), vol. 2, no. 2, Karyudi and Zubair. 305 
 

 

compared to models relying on limited or less relevant variables. This suggests that a thought-
ful and balanced feature selection strategy is critical for optimizing classification model per-
formance. Such an approach effectively leverages the key predictors while also considering 
the potential value added by other variables to enhance the overall predictive accuracy [28]. 

5. Conclusions 

This research has successfully analyzed and verified the significant influence of family 
background and social environment on the scope of schools that students attend, using Deep 
Neural Networks technology. The results confirm that variables such as family socioeco-
nomic conditions and the local educational environment are important in determining stu-
dents' access to the quality and type of education. 

The findings demonstrate that the developed DNN model can effectively process and 
analyze complex data to identify patterns and relationships not easily observed through tradi-
tional analysis methods. The model's high accuracy and reliability prove its potential for map-
ping and improving targeted educational interventions. Specifically, the 'All Data' model of-
fers a comprehensive overview of education performance based on various factors, achieving 
an impressive accuracy of 83.08% and demonstrating its robust analytical capabilities. Mean-
while, the 'Top 5 Data' model effectively shows the influence of the five most essential vari-
ables in a more focused manner, with an accuracy of 81.54%. These models' high perfor-
mance, supported by an AUC-ROC score of 0.8633 and a low loss value of 0.4497, provides 
valuable insights into the key elements that could be targeted for more efficient and effective 
educational interventions. 

From a practical standpoint, the study's results can help policymakers and educators de-
velop better strategies for resource allocation and student support programs, particularly in 
socially and economically disadvantaged areas. By identifying and addressing critical factors 
that affect students' educational opportunities, significant improvements can be made to the 
quality of education. However, this study has limitations, particularly regarding the limited 
data coverage of a few schools in a specific region. Combining data from multiple sources 
and a wider area is recommended for future research to validate these findings and improve 
the model's generalizability. Furthermore, further exploration of the influence of individual 
factors such as student academic achievement and learning motivation may provide a deeper 
understanding of the dynamics of education. This conclusion confirms the great potential of 
using machine learning technology in education as an analytical tool and a strategic compo-
nent in education reform and learning policy. 
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