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Abstract: This study presents an advanced approach to multi-class skin lesion classification by lever-

aging an ensemble model comprising the Inception-V3, ResNet-50, and VGG16 architectures. The 

classification task focuses on categorizing skin lesions into distinct classes, including Melanoma, basal 

cell carcinoma (BCC), and squamous cell carcinoma (SCC), using the ISIC dataset, a comprehensive 

collection of dermoscopic images. In order to properly balance the dataset, the oversampling strategy 

is utilized, as some lesion types are underrepresented due to inherent imbalances in the dataset. By 

ensuring that the model is trained on a more representative dataset, this balancing improves the algo-

rithm's capacity to categorize all lesion types properly and impartially. By combining the complemen-

tary features of ResNet-50, Inception-V3, and VGG16, the ensemble technique improves the overall 

classification performance. ResNet-50 is chosen for its deep feature extraction capabilities, which help 

capture fine details in lesion patterns. Inception-V3 is selected for its multi-scale processing, allowing 

it to effectively analyze lesions at varying resolutions and sizes. VGG16 is included due to its simple 

yet highly effective architecture for image classification tasks. The ensemble model with data augmen-

tation significantly outperforms individual models in skin lesion classification for both the original and 

balanced ISIC datasets regarding accuracy, precision, recall, and F1-score. This method offers a robust 

solution for skin lesion classification, contributing to more accurate and reliable diagnostic tools in 

dermatology. 
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1. Introduction 

The three most prevalent forms of skin cancer, which is among the most common can-
cers worldwide, are Melanoma, BCC, and SCC. Early and precise diagnosis is essential to 
improve patient outcomes and enable effective treatment. The identification of skin lesions 
has historically depended mostly on dermatologists' knowledge, which can be laborious and 
subjective[1]–[3]. The increasing availability of dermoscopic images, combined with advance-
ments in deep learning, has opened new avenues enabling automated skin lesion classification, 
which could help medical professionals identify patients more quickly and accurately. 

This work focuses on classifying skin lesions into many classes using an ensemble of 
three cutting-edge: Inception-V3, VGG16, and ResNet-50. Each model has demonstrated 
significant success in various image classification tasks due to their distinct architectural ad-
vantages[4], [5]. VGG16 is known for its simplicity and depth, ResNet-50 for its ability to 
train very deep networks through residual learning, and Inception-V3 for its efficient multi-
scale processing. By combining these models in an ensemble, we aim to use their comple-
mentary abilities to increase classification accuracy for various skin lesion classes. 

A significant challenge in this domain is the imbalance in the available datasets, particu-
larly the ISIC dataset, which contains a disproportionate number of images for each lesion 
type. The model is more likely to accurately classify the majority classes while underperform-
ing the minority classes due to this imbalance, which might result in biased model predictions. 
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To address this issue, an oversampling technique is applied to balance the dataset, ensuring 
that each class is equally represented during training. This approach helps mitigate bias and 
enhances the model's generalization ability across different lesion types. 

Integrating the ensemble model with a balanced dataset through oversampling repre-
sents a novel approach to improving the accuracy and reliability of automated skin lesion 
classification. By providing a more equitable representation of lesion types and harnessing the 
power of multiple deep-learning models, this study aims to develop more effective diagnostic 
tools that can assist dermatologists in clinical practice. The contribution of this paper is: 
1. Introduced an ensemble method combining VGG16, ResNet-50, and Inception-V3 

models, leveraging their complementary strengths in feature extraction, depth, and multi-
scale processing for enhanced skin lesion classification accuracy. 

2. Tackled the challenge of class imbalance in the ISIC dataset by implementing an over-
sampling technique, ensuring equitable representation of all skin lesion types during 
training. 

3. Demonstrated that the ensemble model, trained on the balanced dataset, outperforms 
individual CNN models and traditional methods with evaluation criteria. 

4. Contributed to developing more accurate and reliable automated diagnostic tools, po-
tentially assisting dermatologists in making faster and more precise diagnoses, thereby 
improving patient outcomes. 
The remaining sections of this document are organized as follows: the relevant literature 

is explored in Section 2. An explanation of the suggested system architecture and its constit-
uent parts is provided in Section 3. The performance evaluation methodology is then de-
scribed in Section 4, which also details the experimental design and the metrics used. Section 
5 summarizes the study's main conclusions and closing thoughts on the investigation as a 
whole. 

2. Literature Review 

2.1. Related Works 

Previous studies highlight various deep-learning approaches to improve skin lesion clas-
sification. Study [6] introduced a knowledge distillation framework where a simpler student 
model learned from a more complex teacher model, significantly enhancing melanoma clas-
sification, especially for the minority class. Study [7] presented a CNN integrated with soft-
attention mechanisms, allowing the model to focus on critical dermatoscopic image segments, 
improving accuracy despite lesion variability. Study [8] combined an Extreme Learning Ma-
chine (ELM) with Teaching-Learning-Based Optimization (TLBO) to optimize parameter 
selection, resulting in improved classification accuracy, precision, recall, and F1-score for skin 
cancer detection, outperforming traditional machine learning models. 

Prior studies explore advanced deep-learning techniques for skin lesion classification. A 
study [9] conducted a detailed analysis using dermoscopy images, comparing CNN architec-
tures to identify the most effective model for distinguishing Melanoma from benign lesions. 
The deep CNN approach outperformed traditional methods, achieving high accuracy, preci-
sion, recall, and F1-score, demonstrating robustness across various scenarios. Study [10] em-
ployed the Inception-ResNet architecture, which excelled in feature extraction and learning 
efficiency, outperforming conventional and deep learning methods for melanoma detection 
with high classification accuracy. Study [11] utilized an adversarial framework with attention 
mechanisms to merge clinical and dermoscopic images, significantly improving classification 
performance by preserving key features from both modalities, resulting in superior accuracy, 
precision, recall, and F1-score. 

Earlier research presents various advanced methods for skin lesion classification. Study 
[3] developed a deep learning model to assess lesion symmetry, which is crucial for melanoma 
diagnosis, achieving significant improvements in accuracy, precision, recall, and F1-score over 
traditional methods by effectively distinguishing between symmetrical and asymmetrical le-
sions. Study [12] introduced the CS-AF framework, combining multiple classifiers with a cost-
sensitive approach to minimize misclassification errors, significantly improving accuracy, pre-
cision, recall, and F1-score while reducing false negatives. Study [13] systematically reviewed 
AI methodologies in skin cancer detection, highlighting the effectiveness of CNNs, SVMs, 
and ensemble models in improving diagnostic precision through advanced deep learning 



Journal of Computing Theories and Applications 2024 (November), vol. 2, no. 2, Zaw and Mon. 258 
 

 

techniques and integration with imaging technologies. Study [14] explored various deep learn-
ing models, including CNNs, for analyzing dermoscopic images, achieving substantial perfor-
mance improvements and high accuracy in classifying skin lesions, particularly excelling in 
recall and early detection. The author utilized [15] the K-nearest neighbor (KNN) classifier 
combined with the Gray Level Co-occurrence Matrix (GLCM) for classifying two types of 
skin cancer, with an average filter applied for pre-processing. A comprehensive analysis was 
performed on the ISIC dataset through 480 experiments, testing various dataset sizes using 
random sampling techniques with 3297, 1649, 825, and 210 images. Different KNN param-
eters, including the number of neighbors (k=1) and distance metrics (d=1 to 3), were evalu-
ated at angles of 0, 45, 90, and 135 degrees. The maximum accuracy achieved was 79.24%, 
79.39%, 83.63%, and 100% for the respective dataset sizes. An advanced automated system 
using Deep Neural Networks [16], specifically MobileNetV2, was presented to detect acute 
lymphoblastic leukemia (ALL) blast cells in microscopic blood smear images, achieving an 
impressive 97% accuracy. The system shows high sensitivity and specificity in identifying 
multiple ALL sub-types. Additionally, the study introduces innovative telediagnosis software 
that provides real-time support for clinicians, enabling prompt and accurate diagnosis of ALL 
subtypes from blood smear images. 

Despite advances in deep learning for skin lesion classification, several critical research 
gaps remain. Current models often focus on binary classification, neglecting the complexity 
of multi-class problems involving Melanoma, BCC, and SCC, leading to suboptimal general-
ization across lesion types. Additionally, the imbalance in medical datasets skews model per-
formance, particularly for underrepresented classes, with inadequate balancing strategies ap-
plied. While effective in specific cases, single-model approaches fail to capture the full varia-
bility of dermoscopic images, necessitating an ensemble approach to leverage diverse model 
strengths. Limited application of advanced data augmentation techniques restricts generaliza-
bility across diverse patient populations, and the lack of focus on model efficiency hampers 
real-time clinical deployment. This study addresses these gaps by proposing an ensemble 
model with enhanced multi-class performance, balanced training data, robust augmentation, 
and optimizations for clinical relevance. 

2.2 Oversampling 

One method for addressing the class imbalance in datasets—where some classes are 
underrepresented compared to others—is oversampling [17]. This is particularly important in 
machine learning and statistical modeling, where imbalanced data can lead to biased models 
that perform poorly on the minority class. Oversampling involves generating additional syn-
thetic samples or duplicating existing samples of the minority class to create a more balanced 
dataset. One common approach is the Synthetic Minority Over-sampling Technique 
(SMOTE), which creates synthetic samples by interpolating between existing minority class 
instances. Another method, called Random Oversampling, involves duplicating minority class 
instances until the desired balance is achieved. This system applies random oversampling. By 
employing these techniques, the model can learn more effectively from the minority class, 
thereby improving its performance and generalization. By preventing the model from becom-
ing biased in favor of the majority class and improving its ability to identify and categorize 
underrepresented instances, oversampling contributes to producing more accurate and de-

pendable predictions. Suppose the original number of minority class samples is 𝑛minority, 

and the total number of samples required for balance is 𝑛target. In that case, the number of 

samples to generate is used in Equation (1). 

𝑛generate = 𝑛target − 𝑛minority, (1) 

In random oversampling, the new dataset 𝑆new is constructed as Equation (2). 

𝑆new = 𝑆minority ∪ (Randomly duplicated samples from 𝑆minority) (2) 

2.3. VGG16 

The Visual Geometry Group at the University of Oxford developed the well-known 
deep learning model VGG16 [18] for picture categorization applications. Because of its deep 
convolutional neural network design, it is highly renowned for being user-friendly and 
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efficient. The model is a deep network that can recognize intricate patterns in images since it 
has 16 layers, 13 convolutional layers, and three fully linked layers. The convolutional layers 
use small 3x3 filters and are followed by max-pooling layers, which help reduce the spatial 
dimensions of the input while retaining essential features. VGG16's architecture emphasizes 
using smaller convolutional kernels and a deep network to enhance feature extraction capa-
bilities. Because of its capacity to learn rich, hierarchical representations of visual input, the 
model has had a significant impact on computer vision. It has demonstrated outstanding per-
formance on a number of benchmark datasets, including ImageNet. Its design has inspired 
numerous subsequent models and is a valuable tool for image classification and transfer learn-
ing applications. Its design is shown in Figure 1. 

 

Figure 1. VGG16 Architecture [19] 

2.4. ResNet-50 

ResNet-50 [20] is a deep convolutional neural network architecture designed to address 
the challenges of training very deep networks. Developed as part of the Residual Networks 
(ResNet) family by Microsoft Research, ResNet-50 stands out for its creative use of skip con-
nections, also known as residual connections, which lessen the effects of the vanishing gradi-
ent issue and increase training effectiveness. The "50" in ResNet-50 indicates that the network 
consists of 50 layers, making it a relatively deep network that balances complexity and per-
formance. The core idea behind ResNet-50 is to introduce residual blocks that allow the net-
work to learn residual mappings instead of the original unreferenced map-pings. These blocks 
consist of convolutional layers with shortcut connections that bypass one or more layers, 
facilitating the flow of gradients during backpropagation. Because of its design, ResNet-50 
can learn intricate features and patterns from massive amounts of data, leading to impressive 
accuracy on benchmark datasets like ImageNet. The architecture's ability to maintain high 
performance with increasing depth has made ResNet-50 a well-liked option for many com-
puter vision applications, such as segmentation, object detection, and picture classification. It 
is described in Figure 2. 

 

Figure 2. ResNet-50 Architecture[21] 

2.5. Inception-V3 

 Inception-V3[22] is a sophisticated convolutional neural network architecture developed 
by Google, known for its efficiency and high performance in image classification tasks. It is 
part of the Inception series, which focuses on optimizing the depth and width of neural net-
works to achieve better computational efficiency. Inception-V3 introduces several key inno-
vations, including inception modules that employ multiple convolutional filter sizes and pool-
ing operations within the same layer. This allows the network to capture various features at 
different scales. Additionally, Inception-V3 incorporates batch normalization and factorized 
convolutions to improve training speed and model performance. 
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Moreover, the network gains from dimensionality reduction by employing 1x1 convolu-
tions, which lower computational costs and parameter counts. These enhancements enable 
Inception-V3 to achieve state-of-the-art accuracy on benchmark datasets like ImageNet while 
maintaining a relatively low computational footprint. Its effectiveness has made it a well-liked 
option for several computer vision applications, including transfer learning, object identifica-
tion, and picture categorization[23]. Figure 3 presents its design. 

 

Figure 3. Inception-V3 Architecture[24] 

3. Proposed Method 

The proposed method introduces a novel ensemble approach that combines the 
strengths of multiple deep learning models—ResNet-50, Inception-V3, and VGG16—to ad-
dress the limitations of single-model architectures in multi-class skin lesion classification. This 
ensemble technique improves robustness and accuracy, particularly for underrepresented le-
sion types like squamous cell carcinoma (SCC). Unlike conventional methods, this approach 
integrates advanced oversampling to mitigate class imbalance and emphasizes clinically rele-
vant metrics such as recall and specificity over accuracy alone.  

 

Figure 4. System Design Overview 

Additionally, enhanced data augmentation techniques improve generalization across di-
verse patient populations. It aims to achieve high accuracy and robustness in identifying var-
ious skin lesions. The system employs a sophisticated ensemble approach, integrating three 
well-established convolutional neural networks— VGG16, ResNet-50, and Inception-V3—
to take advantage of each one's advantages and enhance classification performance. VGG16’s 
deep and consistent structure allows it to effectively identify subtle patterns and features cru-
cial for differentiating between various skin lesions. By creatively utilizing residual connec-
tions to lessen the vanishing gradient issue in deep networks, ResNet-50 enhances the system. 



Journal of Computing Theories and Applications 2024 (November), vol. 2, no. 2, Zaw and Mon. 261 
 

 

ResNet-50 allowed it to maintain performance and learn complex features from deep layers, 
enhancing its ability to accurately classify skin lesions by preserving important information 
and gradients during training. The multi-scale feature extraction enables Inception-V3 to cap-
ture diverse patterns and textures in the skin images, improving its ability to recognize differ-
ent lesion types. Its efficient use of factorized convolutions and dimensionality reduction bal-
ances computational efficiency and model performance. 

The proposed system incorporates an oversampling technique to address the challenge 
of class imbalance in the ISIC dataset. This approach generates synthetic samples for un-
derrepresented classes, thereby balancing the dataset and ensuring that all classes are equally 
represented. By doing so, the system mitigates the risk of biased predictions and enhances the 
reliability of the classification results. The VGG16, ResNet-50, and Inception-V3 outputs are 
combined with the ensemble model's predictions to yield a more dependable and accurate 
categorization. By utilizing each network's distinct capabilities, this integration improves di-
agnostic performance for classifying many skin lesions. The system design of this research is 
shown in Figure 4. 

3.1. Data Collection 

The process begins by collecting images from the International Skin Imaging Collabo-
ration (ISIC) dataset available on Kaggle[25], focusing on three types of skin lesions: mela-
noma (438 images), basal cell carcinoma (376 images), and squamous cell carcinoma (181 
images). ISIC Dataset is shown in Figure 5. The International Skin Imaging Collaboration 
(ISIC) gathered 2357 photographs of benign and malignant oncological illnesses to create this 
dataset. Except for melanomas and moles, whose photos are somewhat predominant, all pho-
tographs were sorted following the ISIC categorization, and each subgroup was comprised 
of the same number of images. The following illnesses are included in this ISIC dataset: basal 
cell cancer (376 images), actinic keratosis (114 images), dermatofibroma (95 images), Mela-
noma (438 images), nevus (357 images), benign keratosis with pigmentation (462 images), 
seborrheic keratosis (77 images), squamous cell carcinoma (181 images), and lesion in the vein 
(139 images). Melanoma (438 images), basal (376 images), and squamous (181 images) skin 
lesions were selected from this dataset to be included in the system evaluation. 

 

Figure 5. Sample of ISIC Dataset 

3.2. Pre-processing 

The dataset is then split into a training set, comprising 75% of the images, and a valida-
tion set, comprising the remaining 25%. To prepare the images for input into the neural net-
works, they are resized to 224x224 pixels for models like VGG16 and ResNet-50 and 299x299 
pixels for Inception V3. After resizing, the images are normalized, and the pixel values are 
transformed into a tensor form suitable for model training. Extra pre-processing techniques, 
like data augmentation (e.g., rotation, flipping, and zooming), significantly boosts model per-
formance by diversifying the dataset. These techniques involve center cropping to emphasize 
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central features, such as random rotation, grid distortion, horizontal and vertical flipping, op-
tical distortion, and affine transformations. Each is applied with a probability of 0.1 to intro-
duce controlled variations and distortions, enhancing the model’s robustness to varied input 
patterns. Table 1 depicts the image augmentation approaches. 

Table 1. Augmentation Approaches. 

Augmentation Approaches Parameter  Performance 

Center Crop True Crop to a 0.1 height-to-width ratio. 

Random Rotate  90 Rotate from - 90 to 90◦ with a probability of 0.1. 

Grid Distortion True Grid distorts with a probability of 0.1. 

Horizontal Flip True Flip horizontally with a probability of 0.1. 

Vertical Flip True Flip vertically with a probability of 0.1. 

Optical Distortion True Optical distort with a probability of 0.1. 

Affine True Affine with a probability of 0.1. 

Piecewise Affine True Piecewise Affine with a probability of 0.1. 

Transpose True Transpose with a probability of 0.1. 

 

3.3. Balancing the Dataset by Random Oversampling 

Given the imbalance in the dataset, where the number of images for each lesion type 
varies significantly, a random oversampling method is employed to balance the dataset. This 
stage makes sure that the imbalance in the number of photos does not cause the models to 
be skewed toward any certain class. This technique is crucial because the dataset contains 
various images for different classes, such as Melanoma, basal cell carcinoma (BCC), and squa-
mous cell carcinoma (SCC). In multi-class skin lesion classification tasks, applying random 
oversampling directly on images can be inefficient and potentially problematic due to in-
creased redundancy and risk of overfitting. Instead, oversampling is more effective when ap-
plied to vector or tabular data representations of images, such as feature vectors generated 
during the pre-processing pipeline. The typical workflow begins with reading and normalizing 
images to ensure consistent input quality. Following this, data augmentation techniques can 
be applied to increase diversity within each class, providing the model with varied represen-
tations of each lesion type. Once this augmented set of images is ready, a feature extraction 
process, often utilizing the intermediate layers of pre-trained CNN models, transforms the 
images into vectorized representations. These feature vectors capture essential characteristics 
of the lesions in a lower-dimensional format, which is more suitable for oversampling.  

 Random oversampling is applied to the feature vectors rather than the raw image data 
at this stage. This approach avoids the redundancy and resource intensity of duplicating large 
image files, focusing instead on balancing classes by duplicating these compact feature repre-
sentations. By oversampling at the feature level, the model receives a balanced dataset without 
excessive memory use or computational load, improving training stability. As depicted in Fig-
ure 4, this process follows a clear structure from image normalization and augmentation 
through feature extraction, allowing for balanced oversampling that enhances model perfor-
mance in classifying diverse skin lesion types while reducing overfitting risk. This approach 
mitigates the risk of biased predictions towards the majority class and enhances the model's 
ability to classify skin lesions across all classes accurately. Moreover, it fosters a more robust 
and reliable evaluation of the model's performance by reducing the impact of class imbalance 
on training outcomes. This balanced dataset enables our models, such as VGG16, ResNet50, 
and Inception V3, to learn effectively from all classes, improving overall classification accu-
racy and generalization capabilities in skin lesion diagnosis. 

3.4. Classification 

The training process involves using the training dataset to train the models for 150 
epochs to achieve high accuracy. Once the models reach the desired level of accuracy, they 
are saved for further use. Finally, the models—VGG16, ResNet-50, and Inception V3—are 
combined using an Ensemble Weighted Average method to leverage the strengths of each 
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model and improve the overall classification performance. Ensemble Weighted Average is 
mathematically depicted as Equation (3). 

𝑝′ =
1

𝑛
∑ 𝜎𝑖(�⃗�)

𝑛

𝑖=1

 (3) 

where 𝜎 is the weight values that multiply with the weight vector �⃗� and 𝑛 is the number of 
ensemble deep-learning models. 

The testing process begins by resizing the collected images to match the input require-
ments of the chosen deep learning models: 224x224 pixels for VGG16 and ResNet-50, and 
299x299 pixels for Inception-V3. This resizing ensures that the images are compatible with 
the architectures of these models. After resizing, the images are normalized to standardize the 
pixel values, which helps improve the training stability and performance of the models. The 
pixel values are then transformed into tensor form, making them suitable for neural networks 
to process. To improve the accuracy and resilience of the skin lesion classification, an ensem-
ble model that integrates the capabilities of ResNet-50, Inception-V3, and VGG16 is used to 
carry out the classification task. Initially, the system is tested on the unbalanced nature of the 
original dataset, which reflects the real-world distribution of skin lesion types. After over-
sampling and augmenting the dataset to achieve balance, the system is tested on a balanced 
dataset to solve the issues raised by this imbalance. These methods increase the representation 
of underrepresented classes, thereby mitigating the risk of biased predictions. Lastly, model 
evaluation is carried out to evaluate the ensemble model's performance in both balanced and 
unbalanced settings, offering information about the overall classification accuracy and the 
efficacy of the balancing procedures. 

4. Results and Discussion 

This method uses the ISIC dataset and the skin lesion dataset from Kaggle. Images of 
SCC, Melanoma, and BCC are taken from these datasets in order to classify them. The initial 
dataset's imbalance is used to test this system. Next, oversampling is used to test the system's 
balanced nature. For this suggested system study, the performance metrics' accuracy, recall, 
f-measure, and precision are assessed. Table 2 describes the system configurations for three 
models.  

Table 2. Model Configurations. 

Configuration VGG16 ResNet-50 Inception-V3 

Input Size 224x224 pixels 224x224 pixels 299x299 pixels 

Epochs 150 150 150 

Batch Size 32 32 32 

Loss function categorical_crossentropy  categorical_crossentropy categorical_crossentropy 

Optimizer SGD SGD SGD 

Learning rate 0.001 0.001 0.001 

Data Augmentation Center Crop 

Random Rotate  

Grid Distortion 

Horizontal Flip 

Vertical Flip 

Optical Distortion 

Affine 

Piecewise Affine 

Transpose 

Center Crop 

Random Rotate  

Grid Distortion 

Horizontal Flip 

Vertical Flip 

Optical Distortion 

Affine 

Piecewise Affine 

Transpose 

Center Crop 

Random Rotate  

Grid Distortion 

Horizontal Flip 

Vertical Flip 

Optical Distortion 

Affine 

Piecewise Affine 

Transpose 
  

Table 3 presents the results of VGG16 on the original and balanced dataset. The VGG16 
model's performance in skin lesion classification shows notable differences between unbal-
anced and balanced datasets, particularly after data augmentation. On the unbalanced dataset, 
VGG16 achieves moderate results with higher accuracy in Melanoma detection compared to 
Basal and Squamous cell carcinomas. After balancing the dataset through oversampling and 
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augmentation, the model's performance improves significantly across all classes, especially in 
Basal and Squamous cell carcinoma, where it demonstrates enhanced accuracy, precision, re-
call, and F1-scores. The balanced dataset allows VGG16 to achieve nearly perfect results in 
Melanoma classification, highlighting the importance of addressing class imbalance for more 
accurate predictions. 

Table 3. VGG16’s Results in Unbalanced and Balanced Dataset. 

Dataset Class Precision Recall F1-Score Accuracy 

 basal 0.85 0.78 0.81  

Unbalanced melanoma 0.80 0.91 0.85 0.80 

 squamous 0.67 0.57 0.61  

 basal 0.94 0.94 0.94  

Balanced melanoma 0.98 0.93 0.96 0.94 

 squamous 0.88 0.98 0.93  

 
The results of ResNet-50 on the original and balanced dataset are shown in Table 4. In 

classifying skin lesions using the ResNet-50 model, the performance metrics reveal significant 
differences between the unbalanced and balanced datasets, particularly after data augmenta-
tion. On the unbalanced dataset, ResNet-50 demonstrates strong precision but moderate re-
call for Basal cell carcinoma, with an F1-score of 0.84. The model's performance for Squa-
mous cell carcinoma is more varied, with challenges due to class underrepresentation, re-
flected in a lower F1-score of 0.75. However, ResNet-50 performs exceptionally well for Mel-
anoma, achieving an F1-score of 0.96. When evaluated on the unbalanced dataset, the system 
achieved an accuracy of 87%. The model's performance significantly improves across all clas-
ses when the dataset is balanced through oversampling and augmentation. With F1-scores 
ranging from 0.98 to 0.99, ResNet-50 almost reaches ideal metrics for SCC, Melanoma, and 
BCC, demonstrating the value of dataset balance in improving prediction accuracy. The sys-
tem showed significant improvements on the balanced dataset, achieving an overall accuracy 
of 98%. 

Table 4. ResNet-50’s Results in Unbalanced and Balanced Dataset. 

Dataset Class Precision Recall F1-Score Accuracy 

 basal 0.93 0.77 0.84  

Unbalanced melanoma 0.95 0.97 0.96 0.87 

 squamous 0.66 0.87 0.75  

 basal 0.99 0.97 0.98  

Balanced melanoma 0.99 0.99 0.99 0.98 

 squamous 0.96 1.00 0.98  

 
The findings of Inception-V3 on the original and balanced dataset are shown in Table 

5. The Inception-V3 model demonstrates significant differences in performance when classi-
fying skin lesions on unbalanced versus balanced datasets, both with augmentation. The sys-
tem achieved an overall accuracy of 85% on the unbalanced dataset. Also, it shows high sen-
sitivity for Basal cell carcinoma but lower precision, achieving a precision of 0.83, recall of 
0.92, and F1-score of 0.87. The model struggles with Squamous cell carcinoma, with lower 
scores across the board, while performing well on Melanoma with a precision of 0.94, recall 
of 0.91, and F1-score of 0.93. The balanced dataset significantly improved the system's per-
formance, reaching an accuracy of 98%. After balancing the dataset through oversampling, 
the model's performance improves dramatically across all classes, particularly achieving near-
perfect results for Mela-noma and significant enhancements for Basal and Squamous cell car-
cinomas. 

Table 6 displays the ensemble model's output on the original, balanced dataset. The en-
semble model performs much better in skin lesion classification with data augmentation when 
comparing balanced and unbalanced datasets. On the unbalanced dataset, the model achieves 
an accuracy by 0.90, a balanced performance for Basal cell carcinoma with a precision of 0.88, 
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recall of 0.90, and an F1-score of 0.89. Due to class imbalance, it performs poorly in the 
classification of squamous cell carcinoma (accuracy of 0.79, recall of 0.74, F1-score of 0.76), 
but does exceptionally well in the classification of Melanoma (precision of 0.95, recall of 0.96, 
F1-score of 0.96). With the dataset balanced through oversampling, the model's performance 
greatly improves across all categories, achieving near-perfect scores: precision, recall, and F1-
score of 0.99 for Basal cell carcinoma, 0.98, 1.00, and 0.99 for Squamous cell carcinoma, and 
0.99, 1.00, and 1.00 for Melanoma, showcasing enhanced accuracy by 0.99 and consistency. 

Table 5. Inception-V3’s Results in Unbalanced and Balanced Dataset. 

Dataset Class Precision Recall F1-Score Accuracy 

 basal 0.83 0.92 0.87  

Unbalanced melanoma 0.94 0.91 0.93 0.85 

 squamous 0.68 0.57 0.62  

 basal 1.00 0.97 0.98  

Balanced melanoma 0.98 0.99 0.99 0.98 

 squamous 0.96 1.00 0.98  

Table 6. Ensemble Model’s Results in Unbalanced and Balanced Dataset. 

Dataset Class Precision Recall F1-Score Accuracy 

 basal 0.88 0.90 0.89  

Unbalanced melanoma 0.95 0.96 0.96 0.90 

 squamous 0.79 0.74 0.76  

 basal 1.00 0.98 0.99  

Balanced melanoma 0.99 1.00 1.00 0.99 

 squamous 0.98 1.00 0.99  

 
As demonstrated by the skin lesion classification system's performance evaluation, the 

ensemble model with augmentation outperforms all individual models for both the original 
and balanced ISIC dataset produced by oversampling. Accuracy for ResNet-50, Inception-
V3, and VGG16 are 87%, 85%, and 80%, respectively; accuracy for the ensemble model that 
uses augmentation with the original dataset is 90%. With 99% accuracy on the balanced da-
taset, the ensemble model surpasses 94% by VGG16, 98% by ResNet-50, and 98% by Incep-
tion-V3. Table 7 compares the results of the research. Compared with existing literature, the 
proposed ensemble model for classification outperforms previous methods. 

Table 7. Model Configurations. 

Method Dataset Method Accuracy 

Ref [9] 

PH2 

CNN 

98.3 

ISIC 2016  80.47 

ISIC 2017  81.16 

HAM10000  81 

Ref [10] ISIC 2018 Inception-ResNet 96.21 

Proposed ISIC2018 Ensemble Model 99 

 

5. Conclusions 

This paper's results highlight the effectiveness of combining multiple deep-learning 
models to enhance classification performance across various skin lesion types. When used on 
a balanced dataset, the ensemble technique that integrates VGG16, ResNet-50, and Incep-
tion-V3 shows notable increases in model performance. Balancing the dataset through over-
sampling effectively mitigates the challenges associated with class imbalance, which is evident 
in the improved performance metrics across all skin lesion categories. The performance eval-
uation of the skin lesion classification system reveals that the ensemble model, enhanced with 
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data augmentation, consistently outperforms individual models on both the original and over-
sampled balanced ISIC datasets. Specifically, the accuracies of ResNet-50, Inception-V3, and 
VGG16 are 87%, 85%, and 80%, respectively. The ensemble model achieves an accuracy of 
90% on the original dataset and an impressive 99% on the balanced dataset, surpassing the 
individual models' accuracies of 94% (VGG16), 98% (ResNet-50), and 98% (Inception-V3). 
The ensemble model achieves near-perfect classification results, particularly for Melanoma, 
SCC, and BCC, showcasing the benefits of this approach in providing more reliable and con-
sistent diagnostic support. The results affirm that combining different architectures enhances 
the robustness and generalization of the model, leading to superior performance compared 
to individual models. This comprehensive approach advances the classi-fication and under-
scores the importance of data balancing and augmentation in developing effective machine 
learning solutions for medical image analysis. Despite these advancements, limitations remain, 
including the need for large computational resources and potential over-fitting due to the 
complexity of the ensemble model. Future work will focus on reducing the model’s compu-
tational overhead through further optimizations, such as more aggressive pruning and quan-
tization while exploring its applicability to real-time diagnosis on larger, more diverse datasets. 
Additionally, integrating attention mechanisms and exploring self-supervised learning tech-
niques could improve the model's robustness and clinical usability. 
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