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Abstract: Image denoising is a fundamental challenge in image processing, where the objective is to 

remove noise while preserving critical image features. Traditional denoising methods, such as Wavelet, 

Total Variation (TV) minimization, and Non-Local Means (NLM), often struggle to maintain the top-

ological integrity of image features, leading to the loss of essential structures. This study proposes a 

Cubical Persistent Homology-Based Technique (CPHBT) that leverages persistence barcodes to iden-

tify significant topological features and reduce noise. The method selects filtration levels that preserve 

important features like loops and connected components. Applied to digit images, our method demon-

strates superior performance, achieving a Peak Signal-to-Noise Ratio (PSNR) of 46.88 and a Structural 

Similarity Index Measure (SSIM) of 0.99, outperforming TV (PSNR: 21.52, SSIM: 0.9812) and NLM 

(PSNR: 22.09, SSIM: 0.9822). These results confirm that cubical persistent homology offers an effec-

tive solution for image denoising by balancing noise reduction and preserving critical topological fea-

tures, thus enhancing overall image quality. 

Keywords: Cubical Complex; Image Analysis; Persistent Homology; Sublevel Set Filtration; Topolog-

ical Data Analysis. 

 

1. Introduction 

Image denoising is a fundamental challenge in image processing, aiming to remove noise 
while preserving critical image features. Traditional denoising methods, such as wavelet-based 
techniques [1], total variation (TV) minimization [2], and non-local means (NLM) algorithms 
[3], wavelet transforms [4], have been widely adopted. However, these methods present cer-
tain limitations that impact their ability to maintain the topological integrity of image features, 
which is crucial for many applications. Wavelet Transforms efficiently reduce noise by de-
composing an image into different frequency components. However, they are highly sensitive 
to threshold selection, and improper thresholding can lead to the loss of significant topolog-
ical details, such as small loops and fine structures [1]. 

Additionally, wavelet-based methods assume smoothness, which makes them less effec-
tive for preserving complex or non-smooth structures in the data [4]. TV Minimization is 
known for its ability to preserve edges but often over smooth textures, leading to the loss of 
fine topological features [2]. Moreover, the success of TV minimization heavily depends on 
the choice of the regularization parameter, which can be difficult to tune correctly. Higher 
values can result in excessive smoothing, while lower values may not effectively reduce noise 
[5]. NLM Algorithms excel in texture preservation by comparing image patches, but they 
struggle to maintain global topological structures, which may result in the loss of significant 
features, particularly in images where the noise pattern is complex or non-repetitive [3]. Fur-
thermore, NLM is computationally expensive and relies heavily on selecting appropriate 
patch sizes, making it less practical for large datasets [6]. 

These limitations complicate extracting meaningful topological features from noisy data, 
particularly in images found in the digit dataset, where both local textures and global topo-
logical structures are essential for proper image analysis. In many cases, conventional methods 
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fail to adequately balance noise reduction with preserving significant features, leading to 
suboptimal results in downstream analysis tasks. 

Conventional denoising techniques, including median filtering [7] and sparse represen-
tation methods [8], have been extensively studied and applied across various contexts. These 
methods typically rely on local pixel information, making them effective in certain scenarios. 

Recent research has explored various applications of persistent homology in image de-
noising. One approach combines persistent homology with deep residual learning for three-
dimensional block-matching denoising, demonstrating improved effectiveness in removing 
Gaussian noise [9]. A novel topological loss function based on persistent homology has been 
proposed for low-light image denoising, specifically addressing the challenges posed by spa-
tially variant noise characteristics [10]. This method operates in the space of image patches, 
calculating topological invariants represented by persistence diagrams, thereby offering robust 
resistance to noise across multiple scales. In [11], the authors utilized cubical homology to 
efficiently extract topological features in image classification, combining it with machine 
learning for improved accuracy. Researchers in [12] proposed a preprocessing algorithm to 
recover topological information lost in noisy datasets, while the authors of [13] developed a 
multi-parameter persistence framework for image denoising using mathematical morphology, 
achieving results comparable to deep learning methods. 

In contrast to these conventional approaches, persistent homology offers a global per-
spective for denoising, capturing topological features that persist across different scales, mak-
ing it a promising tool for robust denoising [14]. Persistent homology has gained attention in 
recent years for its ability to capture the underlying structure of data, particularly in image 
processing, where preserving topological features such as edges, loops, and voids is crucial. 
Unlike traditional methods that may compromise global data structures, persistent homology 
provides a framework for analyzing data across multiple scales, preserving the most significant 
topological features while filtering out noise. 

Cubical persistent homology, which operates on cubical complexes, is especially advan-
tageous for image data, which is naturally represented as a grid of pixels. This approach con-
structs a sequence of nested cubical complexes, each representing the image at a different 
scale, and tracks the appearance and disappearance of topological features across these scales. 
The persistence of these features is recorded in a persistence diagram, where those with longer 
lifetimes are deemed more significant and less likely to be noise [15]. This global perspective 
allows for a more accurate distinction between noise and meaningful features, a limitation of 
traditional denoising methods. 

The foundations of persistent homology were established in [16], and [17], where the 
utility of this approach for analyzing simplicial complexes was demonstrated. However, these 
methods were not optimized for cubical complexes, which are better suited for image data. 
In [18], the authors addressed this gap by demonstrating the computational efficiency of cu-
bical complexes for image analysis. Their work paved the way for the application of cubical 
persistent homology in image denoising, particularly for datasets like Fashion-MNIST, where 
maintaining the integrity of topological features is crucial. While persistent homology has been 
computed using cubical complexes in studies such as [19], [20], and [21], none of these works 
have specifically applied this approach to image denoising. 

Despite the potential of persistent homology, its use in image denoising remains rela-
tively unexplored, with most research focusing on feature extraction and shape analysis [22] 
rather than noise reduction. Recent work in [15] provided a comprehensive review of persis-
tent homology applications, including cubical complexes, which demonstrated the effective-
ness of these methods in noisy data environments. The use of persistent homology for image 
denoising, focusing on extracting robust topological features, was explored in [23]. In [24], 
the utility of persistent homology for feature extraction from noisy data was demonstrated, 
but the method did not fully exploit the advantages of cubical complexes. The authors in [25] 
examined the computational aspects of persistent homology but did not focus on its applica-
tion to image denoising. Similarly, in [26], the use of persistent homology in analyzing noisy 
data was explored, but without providing a comprehensive methodology for filtration level 
selection. However, selecting an appropriate filtration level, the scale at which topological 
features are considered significant presents a complex challenge. This filtration level is crucial 
as it determines which features are preserved and removed as noise [24]. Current research 
often underestimates the complexity of choosing this threshold, especially in high-dimen-
sional data where interactions between topological features are intricate and non-linear [27]. 
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In [28], the researchers denoised images by removing unnecessary rows and columns and 
binarizing them during the preprocessing step to train hardware-embedded graphical models. 
However, they did not consider the significant topological features of the images during the 
binarization process. The absence of a systematic approach to selecting filtration levels has 
led to inconsistent results in previous studies, where either excessive noise is retained, or 
essential topological features are lost. 

Further contributions and objectives of this research are:  

• Propose a new method for selecting optimal filtration levels in persistent homology. 

• Highlight the limitations of traditional denoising techniques and show how persistent 
homology overcomes these issues. 

• Demonstrate that the method preserves key topological features like loops and con-
nected components while reducing noise. 

• Compare the method to existing techniques, showing superior PSNR and SSIM metrics 
results. 

• Introduce a robust framework for noise reduction in noisy data environments, maintain-
ing critical topological information.  
This paper is structured as follows: Section 2 details the mathematical background nec-

essary for understanding cubical complexes and persistent homology. Section 3 introduces 
the proposed methodology, including the filtration level selection and denoising techniques. 
Section 4 presents experimental results, demonstrating the efficacy of our approach on the 
digit dataset. Finally, Section 5 concludes the paper with a discussion of the implications of 
our findings and potential avenues for future research. 

2. Preliminaries 

2.1. Persistent Homology 

Definition: The 𝛼 -sublevel set of a function 𝑓: ℝ𝑛 → ℝ is the set 𝐿𝛼
−1(𝑓) =

{ 𝑥 ∈ ℝ𝑛 ∣∣ 𝑓(𝑥) ≤ 𝛼 }. The sublevel sets are of the form 𝑓−1((−∞, 𝛼]). In Fig. 1, we have 

the 𝛼-sublevel set 𝑓: ℝ2 → ℝ. 

 

Figure 1. Example of sublevel set. 

Let 𝑋 be a simplicial (cubical) complex. A function 𝑓: Σ(𝑋) → ℝ on the simplices (cu-

bes) of 𝑋 is a monotonic map if it maps each simplex (cube) to a value in ℝ in such a way 
that if 𝜏 is a face of 𝜎, then 𝑓(𝜏) ≤ 𝑓(𝜎). Given such a map 𝑓, the sublevel set filtration of 

𝑓 is the collection of simplicial (cubical) complexes, as in Equation (1), along with inclusion 
maps, in Equation (2) 

{ 𝑓−1(−∞, 𝛼] ∣∣ 𝛼 ∈ ℝ } (1) 

𝑓−1(−∞, 𝛼′] ⊆ 𝑓−1(−∞, 𝛼] (2) 

Here 𝑓 is known as a filter, and 𝛼 is the filtration index; for all 𝛼′ ≤ 𝛼 ∈ ℝ.  
While dealing with data, standard topological quantities might be very susceptible to 

noise as well as small geometric changes; persistent homology solves this issue by looking at 

a collection of spaces that are modeled by a cubical complex 𝑋 with a filter function 𝑓: 𝑋 →
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ℝ defining to each cell the scale that defines where this cube appears; these spaces are indexed 
by a real variable that typically represents the growing length scale. 

Definition [29]: From a filtered complex 𝑋, we derive inclusions of sub-level sets where 

𝛼′ ≤ 𝛼 as follows: 𝑓−1(−∞, 𝛼′]↪𝑓−1(−∞, 𝛼]. These inclusions produce linear transform 
between vector spaces, see Equation (3). 

𝐻𝑘(𝑓−1(−∞, 𝛼′])↪𝐻𝑘(𝑓−1(−∞, 𝛼]) (3) 

when degree-𝑘 homology with coefficients in 
ℤ

2ℤ
 is applied. The functor 𝐻𝑘(𝑓): (ℝ, ≤) →

𝑉𝑒𝑐ℤ/2ℤ that results from the post category (ℝ, ≤) to the category of vector spaces over the 

field 
ℤ

2ℤ
 is referred to as a persistence module. For more information, see [27]. 

As mentioned in [27], Gabriel’s Theorem from representation theory suggests that the 

persistence module 𝐻𝑘(𝑓) can be expressed as a combination of persistence modules con-

sisting of 
ℤ

2ℤ
 for 𝛼 values within the interval [𝑏, 𝑑), linked by identity maps, and being 0 

elsewhere. These modules are termed as interval modules 𝕀[𝑏,𝑑): 𝐻𝑘(𝑓) ≅ ⨁
𝑙∈𝐿

𝕀[𝑏𝑙,𝑑𝑙]. 

Each interval component 𝕀[𝑏𝑙,𝑑𝑙] signifies a degree-𝑘 homological feature that is born 

at 𝛼 = 𝑏𝑙  and vanishes at 𝛼 = 𝑑𝑙. In cases where the final space 𝑋 exhibits non-trivial ho-

mology, features persist indefinitely. These features have 𝑑𝑙 = ∞, and the corresponding in-

terval is referred to as essential. The degree-𝑘 persistence diagram of 𝑓 is the multiset, see 
Equation (4). 

𝐷𝑔𝑚𝑘(𝑓) = {[𝑏𝑙 , 𝑑𝑙)|𝑙 ∈ 𝐿}. (4) 

We write [𝑏𝑙 , 𝑑𝑙)𝑘 ∈ 𝐷𝑔𝑚𝑘(𝑓) to denote the homological degree of an interval and define 

the persistence diagram of 𝑓 as the disjoint union overall degrees, see Equation (5). 

𝐷𝑔𝑚(𝑓) = ⋃ 𝐷𝑔𝑚𝑘(𝑓)

dim(𝑋)

𝑘=0

. (5) 

Writing 𝐷𝑔𝑚𝐹(𝑓) for the multiset of finite intervals with 𝑑𝑙 < ∞, and 𝐷𝑔𝑚∞(𝑓) for the 

remaining essential ones, we obtain 𝐷𝑔𝑚(𝑓) = 𝐷𝑔𝑚𝐹(𝑓) ∪ 𝐷𝑔𝑚∞(𝑓). 
In persistent homology, several key topological variables, as shown in Table 1, define 

the structure and significance of features in an image. These variables are critical in distin-
guishing noise from important structures during image analysis. 

Table 1. Topological variables related to persistent homology. 

Variable Description Determination 

Birth Time The filtration value (or pixel intensity threshold) at 
which a topological feature appears. 

Represents when a feature begins 
to emerge in the image. 

Death Time The filtration value at which a topological feature 
disappears, indicating that it has merged with an-

other feature or has been filled in. 

Represents when a feature be-
comes irrelevant or absorbed. 

Persistence  
Diagram 

A diagram plotting the birth and death of topologi-
cal features across different filtration levels, 

providing a comprehensive overview of significant 
features. 

Used to visualize the lifetime and 
importance of each feature in a 

concise form. 

Persistent  
Barcode 

A visual representation of the persistence of fea-
tures, where longer bars correspond to more sig-

nificant features. 

Helps to identify which topologi-
cal features persist across multiple 
scales, distinguishing noise from 

critical structures. 

Dimension 

Topological dimension: 0 represents connected 
components, and 1 represents loops. Higher-di-
mensional features can also be captured, but this 

work focuses on dimensions 0 and 1. 

Determined automatically by com-
puting cubical homology on the 

image. 
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2.2 Filtration of Cubical Complex 

Definition: A set of 𝑛-cubes in ℝ𝑚 such that 0 ≤ 𝑛 ≤ 𝑚, and that every face of a cube 

in 𝒦 is also in 𝒦. The intersection of any two cubes of 𝒦 is either empty or a common 
face, is called a cubical complex. 

Through a nested sequence of subspaces or filtration, persistent homology [16], [17] 
facilitates us to calculate the topological properties of a space by providing a persistence dia-
gram that shows the connected components, loops, and voids that arise and disappear as we 
move through the filtration. Digital images are among the many situations in which it finds 
utility, such as the research of porous materials [30], hurricanes [31], or medical applications 
[32]. While simplicial complexes resulting from point clouds are commonly dealt with persis-
tent homology, since digital images consist of pixels (in dimension 𝑚 = 2) or voxels (for 

𝑚 ≥ 2), cubical complexes are the obvious choice because they mirror the regular grid of 
numbers used to store the image.  

From an image ℐ, a cubical complex can be created in two different ways: Voxels are 

represented by vertices in the V-construction 𝑉(ℐ) and by lines in the T-construction Top-

dimensional cubes are used by 𝑇(ℐ) to represent voxels. These constructions bear a striking 
resemblance to two distinct voxel connectivities found in classical digital topology. The V-
construction is consistent with what is referred to as "direct connectivity" in computer sci-

ence, in which each voxel has 2𝑚 neighbors if and only if its grid coordinates differ by one. 

Pixels with 𝑚 = 2 are 4-connected, and the closest neighbors are on the left and right, as 
well as above and below. The T-construction corresponds to indirect connectivity, where 

voxels are also connected diagonally, every voxel has 3𝑚 − 1 neighbors and pixels are 8-
connected. 

The fact that the persistent homology can differ significantly when calculated using the 
V and T-constructions for the same image should come as no surprise; (see Fig. 6 and 10) 
illustrates an example. Interior vertices of the T-construction correlate top-cells in the V-
construction, and vertices in the V-construction relate to top-dimensional cells in the T-con-
struction. 

Definition [29]: A grayscale digital image with 𝑚-dimensions (𝑝1, 𝑝2, ⋯ , 𝑝𝑚)is repre-

sented as a ℝ-valued array ℐ ∈ 𝑁𝑝1×𝑝2×⋯×𝑝𝑚
(ℝ). On an 𝑚-dimensional rectangular grid 

ℐ, it can be expressed equivalently as Equation (6). 

 ℐ: 𝐸 = ⟦1, 𝑝1⟧ × ⟦1, 𝑝2⟧ × ⋯ × ⟦1, 𝑝𝑚⟧ → ℝ, (6) 

Where ⟦1, 𝑝𝑖⟧ represents the set { 𝑛 ∈ ℕ ∣∣ 1 ≤ 𝑛 ≤ 𝑝𝑖 }. The image domain is another term 

for the index set, 𝐸, of ℐ  (Fig. 2). Take note of that when 𝑚 = 2, elements 𝑞 ∈ 𝐸  are 

termed pixels, and if 𝑚 ≥ 3, they are defined as voxels. The grayscale value of 𝑞 is repre-

sented by the value ℐ(𝑞) ∈ ℝ. 
The canonical topology on 𝐸 ⊆ ℤ𝑚 ⊂ ℝ𝑚 makes it a completely disconnected discrete 

space, making it difficult to analyze such images via their sub-level sets using persistent ho-
mology. Regular cubical complexes model grayscale digital images to infer a meaningful to-
pology on the image, which more accurately stands for the perceived connectivity of the 
voxels [33]. 

Building a filtered cubical complex from an image ℐ: 𝐸 → ℝ can be done in two popular 
ways. As demonstrated in [30], one approach involves representing the voxels as the cubical 
complex's vertices. This cubical complex is known as vertex construction or simply V-con-
struction. The second approach, known as top-cell construction, or T-construction, treats 
voxels as top-dimensional cells. As stated in [33], the top-cell structure matches the indirect 
adjacency model, while the vertex construction correlates to the graph-theoretical direct ad-
jacency utilized in conventional digital image processing. Additionally, these adjacent models 
are known as the open as well as closed digital topologies, respectively. Fig. 2 shows a digit 
image and its corresponding pixel values as an array. 
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(a) 

 

(b) 

Figure 2. Image of (a) Digit 8 and; (b its array. 

The process of extracting the V-construction from an image is illustrated in Figs. 3 to 5. 

   

Figure 3. Filtration level 0-2. 

   

Figure 3. Filtration level 3-5. 

The other filtrations were performed in a similar manner. Their results are shown in Fig. 
5. 

   

Figure 5. Filtration level 14 -16. 

We used the Gudhi Python package to calculate the persistence of the cubical complex 
constructed using V-construction and displayed the resulting Persistence Diagram and Bar-
code (see Fig. 6). 
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Figure 6. Persistent diagram and barcode of V-construction of digit image 8. 

Figs. 7 to 9 provide examples of how the T-construction is generated from an image. 

   

Figure 7. Filtration level 0 -2. 

   

Figure 8. Filtration level 3 - 5. 

The remaining filtrations were performed in a similar manner, as depicted in Fig. 9. 
 

   

Figure 9. Filtration level 14 - 16. 

Then, we calculated the persistence of the cubical complex constructed through T-con-
struction and displayed the corresponding Persistence Diagram and Barcode (see Fig. 10). 
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Figure 10. Persistent diagram and barcode of T-construction of digit image 8. 

3. Proposed Method 

In image denoising using cubical persistent homology, the process begins by represent-
ing the image as a cubical complex, where each pixel's intensity serves as its value. We then 
inverted the pixel values to highlight different features, creating a reversed image. By system-
atically adjusting the intensity threshold, we generated a series of cubical complexes, each 
capturing the emergence and disappearance of topological features like edges and textures. 
These features are visualized in a persistence diagram, where the birth and death of features 
are plotted. Persistent features, which remain over a wide range of thresholds, are identified 
as significant, while short-lived ones are considered noise. Focusing on these long-lasting fea-
tures, we reconstructed the image with reduced noise, ensuring that essential details are pre-
served. This process effectively differentiates noise and meaningful structures, enhancing the 
image quality while maintaining its core characteristics. The result is a denoised image that 
retains important topological features and reduces unnecessary noise, demonstrating the ro-
bustness and precision of cubical persistent homology in image processing. 

3.1. Finding Actual Significant Topological Features 

Our goal is to identify the significant topological features of digit images based on their 
typical shape. If an image's significant topological features cannot be directly identified (e.g., 
when black loops are significant), we will reverse the image array by subtracting its grayscale 
intensity values from 255. This reversed image will then be used to determine the significant 
topological features. For instance, persistence calculations reveal four loops in the original 
image of the digit 8, as illustrated in Fig. 11. 

 
(a) 

 
(b) 

 
(c) 

Figure 11. (a) Original image; (b) its barcode; (c) image of digit 8 with wrong features. 

To correctly identify the features of the digit 8, we reverse the image array and convert 
it into a reversed image. 
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(a) 

 
(b) 

 
(c) 

Figure 12. (a) Reversed image; (b) reversed image with right features; (c) its persistent barcode. 

From this reversed image, we observe two loops in the correct positions relative to the 
usual shape of the digit 8, as shown in Fig. 12. In conclusion, if the significant topological 
features of an image are represented by relatively white pixels, cubical persistent homology 
can be applied directly to the image. However, suppose the significant features are represented 
by relatively black pixels. We should reverse the image array by subtracting its grayscale in-
tensity values from 255 before applying cubical persistent homology to find the significant 
topological features. 

3.2. Denoising Image Digits 

After computing the cubical persistent homology of digit images, we identify significant 
topological features such as connected components and loops. Cubical persistent homology 
enables effective image denoising. At any given filtration level, the image's shape can be ob-
served. 

First, we determine the specific filtration level at which the significant topological fea-
tures are preserved and the usual shape of the image remains intact. We then denoise the 
image by fixing this filtration level and choosing from the options shown in Fig. 13 for further 
processing. 

 

Figure 13. Procedure of denoising an image. 
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3.3. Algorithm and Theoratical Foundations 

Algorithm 1. Selecting Optimal Filtration Level 
INPUT: Grayscale Image as an Image Array.   
OUTPUT: Optimal filtration level as a set. 
1: For each dimension 𝑑, compute the lifetimes of topological features (death − birth) 

and store these as pairs (Birth𝑖, Death𝑖). 

2: For each dimension 𝑑, sort the computed pairs (Birth𝑖, Death𝑖) in descending order 

based on their lifetimes (i.e., Death𝑖 − Birth𝑖). 

3: From the sorted pairs, identify the set of significant topological features 𝑆𝑑 for each 

dimension 𝑑. 

4: For each identified significant feature 𝑓𝑖 = (Birth𝑖, Death𝑖) ∈ 𝑆𝑑 , represent it as a 
closed-open interval 𝐼𝑖 = [Birth𝑖, Death𝑖). 

5: Consider each closed-open interval 𝐼𝑖 as a set 𝑇𝑖 for each dimension 𝑑. 

6: Compute the intersection 𝑋𝑑 = ⋂ 𝑇𝑇∈𝑇𝑑
 of all sets 𝑇𝑖 corresponding to the signifi-

cant topological features in each dimension 𝑑. 

7: If the intersection 𝑋𝑑 is empty, then select the interval with the maximum lifetime 
from the set of significant intervals 𝑆𝑑  for each dimension 𝑑, and represent it as 

𝑇𝑚𝑎𝑥𝑑
. 

8: Compute the set difference 𝑌𝑑 = 𝑋𝑑 ∖ ⋃ 𝑇𝑇∈𝑇𝑑
𝑐 , where 𝑇𝑑

𝑐 represents the sets of in-

significant topological features in each dimension 𝑑 . If 𝑋𝑑  is empty, replace 𝑋𝑑 

with 𝑇𝑚𝑎𝑥𝑑
. 

9: Compute the final intersection 𝑍 = ⋂ 𝑌𝑑
𝐷

𝑑=0
 across all dimensions 𝑑 to obtain the 

optimal filtration level. 

 

Theorem 1. Let ℱ𝑑 = {𝑓𝑖 = (Birth𝑖, Death𝑖)}𝑖=1
𝑛𝑑  be a set of topological features in dimension 𝑑. The 

lifetimes of these features, defined as Lifetime
𝑖

= Death𝑖 − Birth𝑖, can be ordered in a non-increasing se-

quence, resulting in a unique sequence. 
 

Proof of Theorem 1. Consider each 𝑓𝑖 ∈ ℱ𝑑  with Birth𝑖  and Death𝑖 such that 0 ≤
Birth𝑖 ≤ Death𝑖. The lifetime of 𝑓𝑖 is given by: Lifetime𝑖 = Death𝑖 − Birth𝑖 

Since Birth𝑖 and Death𝑖 are real numbers with Birth𝑖 ≤ Death𝑖, it follows that Lifetime𝑖 ≥
0. 
Define the ordering relation ≥ on ℱ𝑑 such that for any two features 𝑓𝑖 and 𝑓𝑗, we say 𝑓𝑖 ≥
𝑓𝑗 if and only if Lifetime𝑖 ≥ Lifetime𝑗. This relation is reflexive, antisymmetric, and transi-

tive, satisfying the properties of a total order. Therefore, the lifetimes can be arranged in a 

non-increasing sequence: Lifetime1 ≥ Lifetime2 ≥ ⋯ ≥ Lifetime𝑛𝑑
 

If Lifetime𝑖 = Lifetime𝑗 for some 𝑖 ≠ 𝑗, the sorting procedure is still well-defined and yields 

a unique sequence by maintaining the order of appearance or applying secondary sorting cri-
teria. 
Thus, the ordering of lifetimes is both well-defined and unique. 
 
Proposition 2. For each dimension 𝑑, the set of significant topological features 𝒮𝑑 is non-empty, provided 

the threshold 𝜏 or selection criteria 𝜎𝑑 is appropriately defined. 

Proof of Proposition 2. Let ℱ𝑑 be the set of topological features in dimension 𝑑 with life-

times Lifetime𝑖 = Death𝑖 − Birth𝑖 . Define the threshold 𝜏 ≥ 0 such that: 𝒮𝑑 = {𝑓𝑖 ∈
ℱ𝑑: Lifetime𝑖 ≥ 𝜏} 
Alternatively, let 𝜎𝑑 be a selection criterion that identifies significant features based on per-

sistence or other topological considerations. Define: 𝒮𝑑 = {𝑓𝑖 ∈ ℱ𝑑: 𝑓𝑖 satisfies 𝜎𝑑} 

Since ℱ𝑑  is non-empty, and 𝜏  or 𝜎𝑑  is defined to include at least one feature (e.g., 𝜏 = 0 
or criteria based on the longest lifetime), it follows that 𝒮𝑑 ⊆ ℱ𝑑 and 𝒮𝑑 ≠ ∅. 

Thus, 𝒮𝑑 is non-empty under appropriately defined conditions. 
 

Theorem 2. For any significant feature 𝑓𝑖 = (Birth𝑖, Death𝑖) ∈ 𝒮𝑑, the conversion to the closed-open 

interval [Birth𝑖, Death𝑖) is well-defined. 
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Proof of Theorem 2. Let 𝑓𝑖 = (Birth𝑖, Death𝑖) represent a significant topological feature in 

dimension 𝑑, where Birth𝑖, Death𝑖 ∈ ℝ with Birth𝑖 ≤ Death𝑖. Define the closed-open in-

terval: 𝐼𝑖 = [Birth𝑖, Death𝑖) = { 𝑡 ∈ ℝ ∣∣ Birth𝑖 ≤ 𝑡 < Death𝑖 }. 
Existence: Since Birth𝑖 ≤ Death𝑖, the set 𝐼𝑖 is non-empty. The closed-open interval includes 
all real numbers from Birth𝑖 up to, but not including, Death𝑖. By definition, there exists at 

least one real number 𝑡 ∈ [Birth𝑖, Death𝑖), confirming that 𝐼𝑖 ≠ ∅. 

Well-Defined Nature: The interval 𝐼𝑖 is well-defined because it satisfies the properties of a 

closed-open interval: it contains its left endpoint Birth𝑖 (i.e., Birth𝑖 ∈ 𝐼𝑖), and does not con-

tain its right endpoint Death𝑖 (i.e., Death𝑖 ∉ 𝐼𝑖). This ensures that the feature's start (birth) 
and end (death) are distinctly represented in the filtration process. 

Thus, the conversion of 𝑓𝑖 to the interval [Birth𝑖, Death𝑖) is well-defined. 
 
Proposition 2. Each interval 𝐼𝑖 = [Birth𝑖, Death𝑖) in ℐ𝑑 can be uniquely represented as a set of integers: 

𝑇𝑖 = {𝑘 ∈ ℤ: Birth𝑖 ≤ 𝑘 < Death𝑖} 
 
Proof of Proposition 2.  Consider the closed-open interval 𝐼𝑖 = [Birth𝑖, Death𝑖), where 

Birth𝑖, Death𝑖 ∈ ℤ . Define the corresponding set of integers: 𝑇𝑖 = {𝑘 ∈ ℤ: Birth𝑖 ≤ 𝑘 <
Death𝑖} 
Since 𝑇𝑖 consists of all integers between Birth𝑖 (inclusive) and Death𝑖 (exclusive), the set 𝑇𝑖 

uniquely represents the interval 𝐼𝑖. No two distinct intervals 𝐼𝑖 and 𝐼𝑗 can produce the same 

set 𝑇𝑖, ensuring uniqueness. 
 
Thus, the conversion from intervals to sets of integers is both well-defined and unique. 

 

Theorem 3. Let 𝑇𝑑 = { 𝑇𝑖 ∣∣ 𝑖 ∈ 𝐼𝑑 } represent the collection of sets corresponding to significant topolog-

ical features in dimension 𝑑. If 𝑋𝑑 = ⋂ 𝑇𝑇∈𝑇𝑑
 is the intersection of all such sets for dimension 𝑑, then 

either: 

1. The intersection 𝑋𝑑 ≠ ∅, or 
2. If the intersection is empty, the interval with the maximum lifetime is chosen as a proxy for the intersection. 
 
Proof of Theorem 3. We begin by considering 𝑇𝑑, the collection of sets corresponding to 

the significant topological features in dimension 𝑑. These sets are derived from closed-open 

intervals 𝐼𝑖 = [Birth𝑖, Death𝑖), where each 𝐼𝑖 represents the persistence of a topological fea-

ture in dimension 𝑑. 

Each 𝑇𝑖 ∈ 𝑇𝑑 is derived from the persistence interval 𝐼𝑖 = [Birth𝑖, Death𝑖). By the defini-

tion of persistent homology, Death𝑖 > Birth𝑖,meaning 𝐼𝑖 is a non-empty interval. Since each 

interval is non-empty, the corresponding set 𝑇𝑖 is also non-empty: 𝑇𝑖 ≠ ∅ for all 𝑖 ∈ 𝐼𝑑. 
This guarantees that all sets 𝑇𝑑 = {𝑇𝑖} are non-empty. 
For finite collections of non-empty sets, the intersection is non-empty if a common element 

exists among them. That is, for all 𝑇𝑖 ∈ 𝑇𝑑, if there exists a common filtration level that be-

longs to each 𝑇𝑖, the intersection: 𝑋𝑑 = ⋂ 𝑇𝑇∈𝑇𝑑
 is non-empty. The set 𝑋𝑑 represents the 

collection of filtration levels where significant topological features in dimension 𝑑 coexist. If 

such common filtration levels exist, 𝑋𝑑 ≠ ∅. 
If the intersection 𝑋𝑑 = ⋂ 𝑇𝑇∈𝑇𝑑

 is empty, it means there are no common filtration levels 

shared by all significant features in dimension 𝑑. In this case, the intersection fails, i.e., 𝑋𝑑 =
∅. 
To address this scenario, we select the interval corresponding to the topological feature with 

the maximum lifetime in dimension 𝑑 . Let the lifetime of a feature 𝑖  be Lifetime𝑖 =
Death𝑖 − Birth𝑖. Then, we choose the interval 𝐼max ∈ 𝑇𝑑 such that (see Equation (7)). 

Lifetimemax = 𝑚𝑎𝑥
𝑖∈𝐼𝑑

(Death𝑖 − Birth𝑖). (7) 

This ensures that even if no common filtration level exists, the most significant topological 
feature (i.e., the one that persists for the longest time) is preserved. 

Thus, the intersection of significant topological features in dimension 𝑑, 𝑋𝑑 , is non-empty. 

If, however, 𝑋𝑑 = ∅, we select the interval with the maximum lifetime as a proxy for the 
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intersection. This ensures the preservation of the most persistent and important topological 

feature in dimension 𝑑. 

Hence, 𝑋𝑑 ≠ ∅ or the interval with the maximum lifetime is selected.  
 

Corollary 1. The set difference 𝑌𝑑 = 𝑋𝑑 ∖ ⋃ 𝑇 𝑇∈𝑇𝑑
𝑐 is non-empty for each dimension 𝑑. 

 

Proof of Corollary 1. From Theorem 3, we know that 𝑋𝑑 = ⋂ 𝑇 ≠ ∅
𝑇∈𝑇𝑑

. 

1. Union of Insignificant Features: Consider the set ⋃ 𝑇𝑇∈𝑇𝑑
𝑐 , which represents the union of 

all insignificant feature sets in dimension 𝑑. Since these are insignificant, they do not neces-
sarily contain the filtration levels associated with significant features. 

2. Set Difference Retains Significant Features: The set difference: 𝑌𝑑 = 𝑋𝑑 ∖ ⋃ 𝑇𝑇∈𝑇𝑑
𝑐  re-

moves only those elements from 𝑋𝑑 that are present in the union of insignificant features. 

Given that 𝑋𝑑  consists entirely of significant filtration levels, and ⋃ 𝑇𝑇∈𝑇𝑑
𝑐  contains ele-

ments from insignificant features, the set difference 𝑌𝑑 retains some elements from 𝑋𝑑 that 
are not part of insignificant features. 

Since 𝑋𝑑 is non-empty, and the removal of insignificant levels cannot eliminate all elements 

from 𝑋𝑑 , it follows that 𝑌𝑑 ≠ ∅. 
 

Theorem 4. The final intersection of the results across all dimension 𝑍 = ⋂ 𝑌𝑑  
𝐷

𝑑=0
 is non-empty. 

 

Proof of Theorem 4. Let 𝑌𝑑 be the non-empty set derived from the set difference in each 

dimension 𝑑 as shown in Corollary 1, so 𝑌𝑑 ≠ ∅ for all 𝑑 = 0,1, … , 𝐷. 
Intersection of Non-Empty Sets Across Dimensions:   

   The final set 𝑍 is defined as: 𝑍 = ⋂ 𝑌𝑑 .
𝐷

𝑑=0
 Since each 𝑌𝑑 is non-empty and represents 

the set of significant filtration levels in dimension 𝑑, their intersection will also be non-empty 

by the finite intersection property. This is because the elements in 𝑍 are precisely those fil-

tration levels that are common to all dimensions, and each 𝑌𝑑 contains significant filtration 

levels. Thus, 𝑍 ≠ ∅. 

Proposition 3. Let 𝑍 = {𝑧1, 𝑧2, … , 𝑧𝑚} be the set of filtration levels obtained from the final intersection 

in Theorem 4, where 𝑧1 < 𝑧2 < ⋯ < 𝑧𝑚. Then, the minimum filtration level 𝑧1 ∈ 𝑍 preserves all sig-
nificant topological features identified during the filtration process. 

Proof of Proposition 3.  Let ℱ𝑗 = { 𝐹𝑖
𝑗

= [𝑏𝑖
𝑗
, 𝑑𝑖

𝑗
) ∣∣ 𝑖 ∈ 𝐼𝑗 } be the family of closed-open 

intervals representing significant topological features in dimension 𝑗, where 𝑏𝑖
𝑗
 and 𝑑𝑖

𝑗
 de-

note the birth and death times of the 𝑖-th topological feature in dimension 𝑗. The set 𝑍 is 

defined as: 𝑍 = ⋂ (⋂ 𝐹𝑖
𝑗

𝑖∈𝐼𝑗

∖ ⋃ 𝐹𝑖
𝑗

𝑖∉𝐼𝑗

)
𝑑

𝑗=0
 where 𝐼𝑗  indexes the significant features 

in dimension 𝑗. 

Let 𝑧1 = 𝑚𝑖𝑛𝑍. For any 𝑧 < 𝑧1, 𝑧 ∉ 𝐹𝑖
𝑗
 for at least one 𝑖 ∈ 𝐼𝑗 and some 𝑗, which implies 

that the corresponding topological feature is not fully captured at level 𝑧. 

Since 𝑍 is formed by intersecting intervals 𝐹𝑖
𝑗
 where significant features exist, 𝑧1 is the first 

level where all such features are captured 𝑧1 = inf (⋂ (⋂ 𝐹𝑖
𝑗

𝑖∈𝐼𝑗

∖ ⋃ 𝐹𝑖
𝑗

𝑖∉𝐼𝑗

)
𝑑

𝑗=0
) 

Therefore, selecting 𝑧1 ensures that all significant topological features are preserved. 
 

Corollary 2. Let 𝑧1 = 𝑚𝑖𝑛𝑍, where 𝑍 is as defined in Proposition 3. Then, using 𝑧1 for image denoising 
preserves all significant topological features while modifying other pixels according to the denoising process. 
 
Proof of Corollary 2. Let ℐ = { 𝐼(𝑥) ∣ 𝑥 ∈ 𝐷 } represent the pixel intensities of the image, 

where 𝐷 is the image domain. During the filtration process, each pixel's intensity 𝐼(𝑥) de-
termines its inclusion in the cubical complex. 



Journal of Computing Theories and Applications 2024 (November), vol. 2, no. 2, Al-Imran, et al. 234 
 

 

At filtration level 𝑧1, the cubical complex 𝐾(𝑧1) includes precisely those features that cor-

respond to intervals 𝐹𝑖
𝑗
 from Proposition 3. 

For any 𝑧 < 𝑧1, there exists at least one interval 𝐹𝑖
𝑗
 for some 𝑖 and 𝑗 such that 𝑧 ∉ 𝐹𝑖

𝑗
, 

implying that not all significant features are included at level 𝑧. 

The denoising process preserves the intensities 𝐼(𝑥) of pixels for which 𝐼(𝑥) ≤ 𝑧1  and 

modifies the intensities for pixels with 𝐼(𝑥) > 𝑧1. Since 𝑧1 is the earliest level at which all 
significant features are captured, the denoising process preserves these features while remov-
ing noise. 

Thus, using 𝑧1 for denoising ensures the preservation of all significant topological features. 

Theorem 5. The minimum filtration level 𝑧1 = 𝑚𝑖𝑛𝑍 from Proposition 3 is optimal in the sense that it 
is the earliest level at which all significant topological features are preserved. For any 𝑧 > 𝑧1, the same features 

are preserved, but for any 𝑧 < 𝑧1, some features will be lost. 

Proof of Theorem 5. Let 𝑧1 = 𝑖𝑛𝑓𝑍, where 𝑍 is defined as Equation (8). 

𝑍 = ⋂ (⋂ 𝐹𝑖
𝑗

𝑖∈𝐼𝑗

∖ ⋃ 𝐹𝑖
𝑗

𝑖∉𝐼𝑗

)

𝑑

𝑗=0

 (8) 

with 𝐹𝑖
𝑗

= [𝑏𝑖
𝑗
, 𝑑𝑖

𝑗
) as the intervals representing significant topological features in dimension 

𝑗. 

1. Preservation at 𝑧1: For each 𝐹𝑖
𝑗
, 𝑧1 ∈ 𝐹𝑖

𝑗
, implying that all significant topological features 

are included at level 𝑧1. 

2. No Preservation Below 𝑧1: If 𝑧 < 𝑧1, then 𝑧 ∉ 𝐹𝑖
𝑗
 for at least one 𝑖 ∈ 𝐼𝑗 and some 𝑗, 

meaning that not all significant features are captured. 

3. Preservation Above 𝑧1: For any 𝑧 > 𝑧1, 𝑧 ∈ 𝐹𝑖
𝑗
for all 𝑖 ∈ 𝐼𝑗 and 𝑗, hence 𝑧 includes all 

significant features, but at a later stage. 
Thus, 𝑧1 is the earliest filtration level at which all significant topological features are pre-
served, making it the optimal choice. 

4. Results and Discussion 

4.1. Data Sets Preparation 

The digit datasets for digits 0 to 9, as depicted in Fig. 14, used in this study are obtained 
from the Scikit-Learn load_digits function, which is based on the 'Optical Recognition of 
Handwritten Digits' dataset from the UCI Machine Learning Repository [34]. This dataset 
consists of 5,620 samples, where each digit is represented as an 8x8 grayscale image, resulting 
in 64 features per image. The pixel intensity values range from 0 (black) to 16 (white) and are 
derived by downsampling from an original 32x32 grid. The dataset includes ten classes cor-
responding to the digits 0 to 9, with 3,823 samples allocated for training and 1,797 samples 
for testing. 

It was processed to determine the minimum filtration level to prepare the dataset for 
analysis using an algorithm based on cubical persistent homology. This filtration level helps 
identify the essential topological features of the images while filtering out noise. In the filtra-
tion level selection, several variables and parameters are crucial for computing persistence 
diagrams and identifying significant topological features, as described in Table 2. During de-
noising, certain variables directly affect how well noise is removed while preserving essential 
features. 

Table 2. Variables Related to Filtration Level Selection and Affecting the Denoising Process in 
CPHBT 

Variable Description Determination 

Filtration Level A key threshold in cubical persistent homology 
represents the scale at which topological features 

Determined by analyzing persis-
tence diagrams and applying 
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Variable Description Determination 

(such as connected components and loops) are 
considered significant. 

Algorithm 1 to find the most ap-
propriate threshold. 

Threshold 

(Lifetime) 

Represents the minimum persistence (birth-death) 
a topological feature must have to be considered 

significant. Features with persistence values below 
this threshold are considered noise, while features 

above this threshold are retained. 

This threshold is determined em-
pirically based on analysis of per-
sistence diagrams, e.g., features 

with persistence greater than 3 for 
dimension 0 and 8 for dimension 

1 are retained. 

Reversing the 
Image 

Before computing the persistent homology, the 
image is reversed (i.e., pixel intensities are sub-

tracted from 255), transforming black loops into 
significant topological features. 

This is a fixed step to ensure that 
black features (such as loops) are 

treated as topologically significant. 

Denoising 
Threshold 

The level at which pixel values are either retained 
or transformed during the denoising process. Pix-
els below the selected filtration level are preserved, 

while those above are converted to white (255). 

This is set by selecting the maxi-
mum filtration level from the per-
sistence diagram (e.g., 12 in our 

experiments). 

   

   

   

 

. Figure 14. Images of digits 0-9. 
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4.2. Results and Discussion 

In this study, we focus on denoising an image of the digit "8" (refer to Fig. 15(a)). Ini-
tially, Gaussian noise was selectively added to pixels with values less than or equal to 3, re-
sulting in what we refer to as the "noisy image" (Fig. 15(b)). To begin the denoising process, 
we recognized that the black loop structure in the digit "8" is a significant topological feature. 
Consequently, we transformed the noisy image into its "reversed image" by subtracting each 
pixel value from 16. Persistent homology was then computed for this reversed image, and its 
persistence barcode was visualized in Fig. 16.  

 
(a) 

 
(b) 

Figure 15. (a) Original image of digit 8; (b) Noisy image of digit 8 

 
(a) 

 
(b) 

Figure 16. (a) Reverse image; (b) Its persistent barcode. 

Following the persistent homology analysis, we applied Algorithm 1 to determine the 
optimal filtration level set, which represents the significant topological features: 
The Persistence of the complex of reversed image are: 
[(1, (3.0, 15.921535410346554)), (1, (6.0, 14.819259943647056)), (1, (12.60644539988603, 
14.118956022240548)), (0, (0.0, inf)), (0, (13.188238808415711, 15.426177086436232)), (0, 
(0.0, 1.0)), (0, (0.0, 1.0)), (0, (1.0, 2.0)), (0, (12.546933661202885, 13.321862582375353)), (0, 
(15.275028088705957, 15.426177086436232))] 
The persistence of the complex (dimension, lifetime, (birth, death)) in descending order of 
lifetime for each dimension: 
Dimension 0: 
(0, inf, [0.0, inf)), (0, 2.23793827802052, [13.188238808415711, 15.426177086436232)), (0, 
1.0, [0.0, 1.0)), (0, 1.0, [0.0, 1.0)), (0, 1.0, [1.0, 2.0)), (0, 0.7749289211724673, 
[12.546933661202885, 13.321862582375353)), (0, 0.15114899773027446, 
[15.275028088705957, 15.426177086436232)). 
Dimension 1: 
(1, 12.921535410346554, [3.0, 15.921535410346554)), (1, 8.819259943647056, [6.0, 
14.819259943647056)), (1, 1.512510622354517, [12.60644539988603, 
14.118956022240548)). 
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The threshold (lifetime) is determined empirically based on analysis of persistence dia-
grams, e.g., features with persistence greater than 3 for dimension 0 and 8 for dimension 1 
are retained. Filtered [birth, death) pairs greater than or equal to the input lifetime value for 
each dimension: 
Dimension 0: [0.0, inf) 
Dimension 1: [3.0, 15.921535410346554), [6.0, 14.819259943647056) 

These are our expected significant topological features. Filtered [birth, death) pairs less 
than the input lifetime value for each dimension: 
Dimension 0: [13.188238808415711, 15.426177086436232), [0.0, 1.0), [0.0, 1.0), [1.0, 2.0), 
[12.546933661202885, 13.321862582375353), [15.275028088705957, 15.426177086436232) 
Dimension 1: [12.60644539988603, 14.118956022240548) 

These are our insignificant topological features. 
Then for dimension 0:  
[0, 𝑖𝑛𝑓) ∖ {[13.188238808415711, 15.426177086436232)  ∪ [0.0, 1.0)  ∪   [0.0, 1.0)  

∪ [1.0, 2.0) ∪ [12.546933661202885, 13.321862582375353)
∪ [15.275028088705957, 15.426177086436232)}
= [0, inf)[0,2) ∪ [12.546933661202885,15.426177086436232)
= [2.0,12.546933661202885)   ∪ [15.426177086436232, inf) 

And for dimension 1: 
{[3.0, 15.921535410346554)  ∩  [6.0, 14.819259943647056)} 

\[12.60644539988603, 14.118956022240548)
=  [6.0, 14.819259943647056)
\[12.60644539988603, 14.118956022240548)
= [6.0, 12.60644539988603)  
∪  [14.118956022240548, 14.819259943647056)    

And finally, 
{[2.0, 12.546933661202885)  ∪ [15.426177086436232, 𝑖𝑛𝑓)}

∩ {[6.0, 12.60644539988603)  
∪  [14.118956022240548, 14.819259943647056)}
=   [6.0, 12.546933661202885)   

We can now select any filtration level from the set [6.0,12.546933661202885). The most 
suitable maximum filtration level 12 was selected from the filtration level set. All pixel values 
below or equal to the filtration level were left unchanged to denoise the image, while the 
remaining pixels were converted to white. This process produced the "filtered reversed im-
age" (see Fig. 17(a)). Afterward, the persistent barcode of the filtered reversed image was 
analyzed (see Fig. 17(b)).). By reversing the filtered reversed image, we restored its original 
orientation, generating the "denoised image" (Fig. 17(c)). 

 
(a) 

 
(b) 

 
(c) 

Figure 17. (a) filtered reverse image; (b) persistent barcode of filtered reverse image; (c) denoised 
image. 

4.2.1. Comparison of Denoising Methods 

Next, we applied several standard denoising methods, including Wavelet, Total Variation 
(TV), and Non-Local Means (NLM), to the noisy image and visualized their respective de-
noised outputs. Fig. 18 presents the results of various denoising methods. Wavelet denoising 
(Fig. 18(a)) performed poorly compared to TV (Fig. 18(b)), NLM (Fig. 18(c)), and the CPHBT 
(Fig. 18(d)). Among these, the denoised image produced by CPHBT is visually superior to 
the others. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 18. (a) Wavelet denoised image; (b) TV denoised image; (c) NLM denoised image; (b) 
CPHBT denoised image. 

4.2.2. Persistent Barcode Analysis 

The persistence barcode provides insights into the topological features preserved by each 
denoising method. Since the black loops are significant in each denoised image, we reversed 
those images before computing persistent homology to capture and analyze the topological 
features accurately. The barcode of the Wavelet denoised image shows that a significant loop 
was mistakenly removed, as illustrated in Fig. 19(a). In contrast, the barcodes for TV and 
NLM indicate that minor topological noise remains in the images while essential topological 
features are preserved, as depicted in Fig. 19(b) and Fig. 19(c). However, the CPHBT barcode 
(see Fig. 19(d)) demonstrates its effectiveness by eliminating minor noise, such as small short-
lived loops and small connected components, while preserving the critical topological struc-
tures (i.e., a single connected component and two long-lasting loops). 

 
(a) 

 
(b) 
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Figure 19. Persistent barcode of (a) Wavelet denoised image; (b) TV denoised image; (c) NLM de-
noised image; (b) CPHBT denoised image. 

4.2.3. Quantitative Metrics 

We evaluated the denoising methods using the Peak Signal-to-Noise Ratio (PSNR) and 
Structural Similarity Index Measure (SSIM) by comparing the original image with the denoised 
outputs, as presented in Table 3. 

Table 3. Quantitative Comparison of Denoising Methods. 

Method PSNR SSIM 

Wavelet 10.540533 0.457425 

Total Variation 21.522293   0.981153 

Non-Local Means 22.092906   0.982235 

CPHBT 46.882901   0.990351 

 

As observed in the table, while the SSIM scores for most methods are quite similar, 
Wavelet denoising underperforms in terms of image quality. Furthermore, the CPHBT 
method demonstrates superior PSNR and outperforming Wavelet, TV, and NLM. 

The primary objective of this ablation study is to determine how the choice of filtration 
levels influences the preservation of significant topological features and the overall quality of 
the denoised images. By systematically varying the filtration levels during the denoising pro-
cess, we can assess the trade-off between noise reduction and the retention of meaningful 
image structures. We conducted experiments using a range of filtration levels, grouped into 
the following categories: 

• Low Filtration Levels (1-5): These levels capture minimal features. 

• Moderate Filtration Levels (6-12): These levels aim to balance noise reduction with pre-
serving significant features. 

• High Filtration Levels (13-15): These levels may lead to over-smoothing, potentially 
eliminating essential details. 
For each filtration level, we calculated key evaluation metrics, such as Peak Signal-to-

Noise Ratio (PSNR) and Structural Similarity Index Measure (SSIM). We analyzed the corre-
sponding persistent barcodes to identify the preserved topological features. 

As seen in Table 4, the ablation study demonstrated that: 

• Low Filtration Levels (1-5): These levels failed to preserve many significant topological 
features, leading to low PSNR and SSIM scores, reflecting poor denoising performance. 

• Moderate Filtration Levels (6-12): These levels offered the best trade-off between noise 
reduction and feature preservation. Notably, the filtration level 12 yielded relatively high 
PSNR and consistent SSIM scores, indicating that these moderate levels are optimal for 
denoising. 
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• High Filtration Levels (13-15): Although these levels reduced noise, they also removed 
essential details, leading to slightly lower PSNR and SSIM scores than moderate filtration 
levels. 

Table 4. PSNR and SSIM for Different Filtration Levels. 

Filtration level PSNR SSIM 

15 45.500545   0.988865 

14 45.634178   0.989086 

13 45.835854   0.987911 

12 46.882901   0.990351 

11 47.475986   0.987884 

10 47.475986   0.987884 

9 47.475986   0.987884 

8 47.475986   0.987884 

7 41.961486   0.961314 

6 39.902026   0.939693 

5 38.240093   0.902840 

4 36.826417   0.880955 

3 35.077155   0.791092 

2 34.547521   0.753172 

1 32.693208  0.584335 

1 32.693208  0.584335 

 
The persistent barcode analysis (see Fig. 20) also reflects this, with low levels failing to 

capture key topological features, moderate levels successfully preserving important loops and 
components while reducing topological noises, and high levels risking the loss of valuable 
details due to over-smoothing. 

This ablation study confirms that the filtration level selection is a critical factor in the 
effectiveness of our cubical persistent homology-based denoising method. By carefully choos-
ing the filtration level, we can optimize the balance between noise reduction and the preser-
vation of significant topological features, ultimately enhancing the overall quality of the de-
noised images. 
However, despite its effectiveness, the proposed methodology has certain limitations that 
should be considered. One limitation is the handling of complex image structures. The 
method may encounter challenges when applied to complex images with intricate noise pat-
terns or where the significant topological features are not easily distinguishable from noise. 
In such cases, the performance of the denoising process may degrade. Additionally, the accu-
racy of the denoising process is highly dependent on the resolution and quality of the input 
images. Images with low resolution or poor contrast may lead to less precise identification of 
significant topological features, potentially affecting the overall quality of the denoised output. 
The methodology also involves extensive calculations to determine the lifetimes of topologi-
cal features and their intersections across multiple dimensions, which can be computationally 
intensive, particularly for large datasets or high-dimensional data. Furthermore, while the ap-
proach demonstrated promising results on handwritten digit images, its generalization to 
other types of images, especially those with different noise characteristics or more complex 
structures, requires further validation and refinement. 
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Figure 20. Persistent barcode of denoised image of digit 8 for filtration level 1-15. 

5. Conclusions 

In this study, we applied the Cubical Persistent Homology-Based Technique (CPHBT) 
for denoising images, focusing on the digit "8" from the Optical Recognition of Handwritten 
Digits dataset. By leveraging the topological insights provided by persistent homology, our 
approach effectively filtered out noise while preserving essential features, such as black loops, 
that characterize the digit. When compared to conventional denoising methods like Wavelet, 
Total Variation (TV), and Non-Local Means (NLM), the CPHBT method demonstrated su-
perior results, achieving the highest PSNR and SSIM scores and producing visually clearer 
images with preserved key structures. 

However, the CPHBT approach also comes with several limitations. First, the compu-
tational complexity of persistent homology calculations can be prohibitive, particularly for 
larger images or real-time applications, where performance is crucial. Second, the method's 
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sensitivity to filtration level selection can affect the quality of denoising, as choosing the 
wrong threshold may either leave too much noise or inadvertently remove important features. 
Third, the approach has been applied to grayscale images, limiting its applicability to broader 
image types, such as color images or high-resolution datasets, without further adjustments. 
Lastly, the current method primarily focuses on topological structures, which may not fully 
account for other image characteristics important in specific domains (e.g., texture or color 
fidelity). 

In future work, improving the computational efficiency of persistent homology algo-
rithms, extending the technique to handle color images, and exploring adaptive methods for 
automatically determining optimal filtration levels could enhance the scalability and general 
applicability of the technique across various image denoising tasks. 
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