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Abstract: The scheduling and resource allocation procedure is an essential component of cloud re-

source management. Effective resource allocation is severely hampered by the task arrival rates' erratic 

and unclear behavior. To prevent under or overusing resources, an effective scheduling strategy is 

necessary. To improve scheduling and allocation performance, a multi-objective optimization tech-

nique is presented for the best resource allocation and task scheduling inside scientific workflow da-

tasets in a heterogeneous environment. In the first stage, the system calculates four key metrics: Com-

munication Cost, Computation Cost, Earliest Finished Time on a particular VM, and Total Task 

Length for a specific scientific workflow dataset. These metrics provide a comprehensive understand-

ing of the resource requirements and help make informed scheduling decisions. In the second stage, 

tasks are clustered using the K-Means clustering algorithm. This clustering groups similar tasks to-

gether, making managing and scheduling them easier. In the third stage, the proposed resource alloca-

tion algorithm allocates the clustered tasks to the appropriate VMs. This step ensures that the tasks are 

assigned to the best-suited resources, optimizing the overall system performance and resource utiliza-

tion. By following this multi-stage process, the system aims to achieve optimal resource allocation and 

task scheduling, thereby improving the efficiency and effectiveness of cloud resource management. 

The proposed method significantly outperforms PSO, CSO, and GWO by consistently achieving lower 

Makespan—under 400 units at 50 tasks—while maintaining high resource utilization rates above 0.75, 

demonstrating superior efficiency in task execution and resource management. 

Keywords: Cloud resource management; K-Means clustering; Resource allocation; Task scheduling; 

Resource utilization. 

 

1. Introduction 

Cloud computing has revolutionized the execution of complex scientific workflows by 
providing a flexible, scalable, and cost-effective platform for managing large-scale computa-
tional tasks. These workflows typically consist of numerous interdependent tasks that require 
efficient scheduling and resource allocation to optimize performance. However, the inherent 
unpredictability and variability of task arrival rates in cloud environments pose significant 
challenges to effective resource management. Inefficient scheduling can lead to underutiliza-
tion or overutilization of resources, negatively impacting overall system performance. This 
research suggests a multi-objective optimization technique for heterogeneous cloud environ-
ments that optimizes resource allocation and task scheduling in scientific workflow datasets 
[1], [2]. The proposed method aims to enhance the efficiency of scheduling and resource 
allocation through a structured, three-stage approach. In the initial stage, the system computes 
four fundamental metrics for each scientific workflow dataset: Communication Cost, Com-
putation Cost, Earliest Finished Time on a particular Virtual Machine (VM), and Total Task 
Length. These metrics provide a comprehensive understanding of the resource requirements 
and execution characteristics of each task, forming the basis for informed scheduling deci-
sions. The second stage involves clustering tasks using the K-Means clustering algorithm. By 
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grouping similar tasks based on the calculated metrics, this clustering approach facilitates 
more efficient management and scheduling. Clustering helps to categorize tasks into manage-
able subsets, improving the overall scheduling process. The suggested resource allocation al-
gorithm is used in the last phase to allocate the clustered jobs to the best-suited virtual ma-
chines. This ensures that tasks match the best-suited resources, optimizing performance and 
resource utilization. 

 K-means clustering was chosen to enhance cloud task scheduling because it efficiently 
groups tasks with similar resource requirements, improving the dynamic allocation of re-
sources in large-scale cloud environments. Its simplicity, scalability, and quick convergence 
make it suitable for handling large datasets commonly encountered in cloud systems. K-means 
help optimize resource utilization, reduce task completion time, and improve load balancing 
by clustering tasks based on their resource needs. Combined with multi-objective optimiza-
tion, this clustering approach enables dynamic resource allocation, where resources can be 
scaled and distributed in real-time to meet varying workload demands and improve cloud 
performance efficiency. This paper makes several key contributions to the field of cloud re-
source management: 

• Introduces a novel multi-objective optimization method that balances various conflict-
ing objectives, such as minimizing communication and computation costs while maxim-
izing resource utilization and task completion time. 

• Develops a comprehensive metric-based approach to understand and characterize the 
resource requirements of tasks, providing a solid foundation for effective scheduling. 

• Utilizes the K-Means clustering algorithm to group tasks with similar characteristics, en-
hancing the manageability and efficiency of the scheduling process. 

• Proposes a resource allocation algorithm that dynamically assigns tasks to the most suit-
able VMs, ensuring optimal use of available resources. 

• Demonstrates significant improvements in task scheduling and resource allocation per-
formance through extensive experimentation with scientific workflow datasets. 
By addressing the challenges of task scheduling and resource allocation in cloud envi-

ronments, this research contributes to advancing efficient and effective cloud computing so-
lutions, particularly for scientific workflows. The proposed multi-objective optimization 
method not only enhances performance but also provides a scalable and reliable approach to 
managing complex computational tasks in heterogeneous cloud environments.  

The remaining sections of this document are organized as follows: We explore relevant 
literature in Section 2 and background theory relevant to the topic in Section 3. An explana-
tion of the suggested system architecture and its constituent parts is provided in Section 4. 
Subsequently, Section 5 outlines the performance evaluation approach, providing insight into 
the metrics applied and the experimental design. Section 6 provides a summary of the study's 
main findings as well as closing thoughts on the overall research. 

2. Literature Reviews 

Cloud computing, characterized by its pay-as-you-use billing model, offers distributed 
infrastructure and services [3], [4]. The increasing complexity and diversity of scientific work-
flows present significant issues for cloud providers regarding load balancing and resource 
provisioning. Despite a wealth of research on workflow scheduling in cloud systems, many 
techniques fail to consider the necessity of addressing several competing goals. In order to 
address these problems, a novel workflow scheduling approach utilizing the Firefly Algorithm 
(FA) was presented in research [5]. This approach considers several competing goals, includ-
ing Makespan, dependability, server workload, and resource usage. The FA seeks to balance 
loads and maximize resource utilization by determining which cloud servers suit each process. 

Furthermore, a rule-based methodology allocates assignments to appropriate virtual ma-
chine instances, reducing makespan and meeting deadlines. Google cluster traces are used to 
assess the suggested approach, and in-depth simulation runs are conducted to look at the FA's 
control settings to improve performance. According to experimental results, the suggested 
approach performs better than current algorithms regarding Makespan, dependability, re-
source usage, and server load balancing, among other Quality-of-Service (QoS) metrics. Re-
search [6] presented a novel multi-objective minimum weight method for Pareto front com-
putation, enhancing the FR-MOS scheduling algorithm with PSO and fuzzy resource man-
agement to optimize diversity. Key objectives include reliability, cost, resource utilization, risk 
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probability, and Makespan. The proposed minimum weight optimization (MWO) strategy 
assists in selecting optimal trade-offs among these goals. Evaluated against five decision-mak-
ing methods using scientific workflows, MWO effectively balances consumer and provider 
interests, outperforming other strategies regarding competing objectives. To determine the 
Pareto front, a novel multi-objective minimal weight technique is presented in a study [7] that 
considers competing goals, including Makespan, cost, dependability, resource consumption, 
and risk likelihood. The suggested minimal weight optimization (MWO) technique balances 
the interests of service providers and customers by adaptively calculating inertia weights. This 
helps identify the best trade-offs. The multi-objective scheduling algorithm with MWO 
(MOS-MWO) is compared with the conventional multi-objective scheduling method (MOS) 
using typical scientific workflows. The efficiency of MOS-MWO is demonstrated by the re-
sults, which show that it achieves a better QoS satisfaction rate. In order to effectively sched-
ule scientific activities, research [8] presented a unique multi-objective scheduling technique 
called FR-MOS. It uses particle swarm optimization (PSO) and fuzzy resource management. 
The algorithm seeks to guarantee reliability while minimizing costs and Makespan. Its coding 
technique takes into account both the order of data transmission and the task execution lo-
cation at the same time. Based on performance criteria, simulation findings show that FR-
MOS performs much better than the basic MOS algorithm based on PSO. This paper pre-
sented a Task Scheduling-Decision Tree (TS-DT), a multi-objective task scheduling technique 
tailored for various scenarios [9]. A novel method for allocating and executing application 
tasks more efficiently is introduced: TS-DT. In performance testing, TS-DT was compared 
with three different algorithms: Heterogeneous Earliest Finish Time (HEFT), Q-Learning in 
conjunction with HEFT (QL-HEFT), and Technique for Order of Preference by Similarity 
to Ideal Solution with the Entropy Weight Method (TOP-SIS-EWM). The results demon-
strate that TS-DT outperforms HEFT, TOPSIS-EWM, and QL-HEFT by reducing 
Makespan by 5.21%, 2.54%, and 3.32%, increasing resource usage by 4.69%, 6.81%, and 
8.27%, and increasing load balancing by 33.36%, 19.69%, and 59.06%, respectively. 

In order to achieve better load balancing, a study [10] presented Load Balancing HEFT 
(LB-HEFT), that is a modification to the HEFT algorithm. LB-HEFT's performance was 
evaluated by comparing it to both the original HEFT algorithms and the E-HEFT. Outper-
forming both E-HEFT and HEFT, the results show that LB-HEFT considerably improves 
load balancing by 43.49% and 72.59% on average, improves resource utilization by 2.28% 
and 5.61% on average, and lowers Makespan by 7.55% and 3.75% on average. In order to 
achieve better load balancing, a study [11] presented Load Balancing HEFT (LB-HEFT), a 
modification to the HEFT algorithm. LB-HEFT's performance was evaluated by comparing 
it to both the original HEFT algorithms and the E-HEFT. Outperforming both E-HEFT 
and HEFT, the results show that LB-HEFT considerably improves load balancing by 43.49% 
and 72.59% on average, improves resource utilization by 2.28% and 5.61% on average, and 
lowers Makespan by 7.55% and 3.75% on average. In the study [12], job scheduling problems 
in cloud computing settings are addressed through metaheuristic and hybrid metaheuristic 
algorithms. We created metaheuristic algorithms by combining a greedy approach (GR) with 
genetic algorithms (GA), differential evolution (DE), and simulated annealing (SA). 

Furthermore, we developed hybrid metaheuristic algorithms called GA-SA and DE-SA, 
which are also paired with a greedy strategy. These methods' virtual machine load balancing 
and completion time were used to evaluate them. According to the results, the average com-
pletion time of the DE-SA algorithm was higher than that of the separate DE and SA algo-
rithms when the number of tasks increased. Additionally, tests showed that hybrid algorithms 
enhanced the average standard deviation of virtual machine loads and the average completion 
time for specific task groups. GWO and PSO, two well-known meta-heuristic algorithms, are 
combined to create the suggested algorithm known as PSO–GWO [13]. The experiment's 
findings demonstrate that, compared to the normal Particle Swarm Optimization and Grey 
Wolf Optimization algorithms, the PSO–GWO algorithm reduces the average total execution 
time and cost. The main research question we tackle in this work is the possible trade-off 
between the cost of using virtual machines and their Makespan [14]. We suggest using the ant 
colony algorithm (ACO) in conjunction with the heterogeneous earliest end time (HEFT) to 
minimize them. Three different real-world science workflows are used for experimental sim-
ulations, which also account for the characteristics of the Amazon EC2 cloud platform. The 
suggested method outperforms FR-MOS, PEFT-ACO, and basic ACO based on the experi-
mental results.  



Journal of Computing Theories and Applications 2024 (November), vol. 2, no. 2, Lwin. 205 
 

 

The scheduling problem is solved by the hybrid algorithm described in a study [15] based 
on the MHPSLP mathematical model. It divides the problem into smaller subsets, such as 
scheduling task bags and allocating resources using the mixed integer linear mathematical 
(MILP) model. Compared to other scheduling algorithms, this method's advantage is a de-
crease in the cost of completed tasks under deadline constraints. The issue of energy con-
sumption and effective resource usage in virtualized cloud data centers is discussed in the 
article [16]. The suggested technique is predicated on job classification and thresholds in order 
to improve resource consumption and scheduling effectiveness. Workflow tasks are prepro-
cessed in the first phase by separating jobs with longer execution times and more dependen-
cies into different queues in order to prevent bottlenecks. Tasks are categorized in the fol-
lowing phase according to the intensity of resources needed. Particle Swarm Optimization 
(PSO) is the final step in choosing the optimal schedules. Experiments validated the suggested 
method. Results from comparisons using benchmark datasets are shown. The outcomes 
demonstrate the suggested algorithm's superior efficacy over the other algorithms compared 
to in terms of makespan and load balancing. This publication[17] proposed a novel workflow-
scheduling method that considers task priorities and efficiently schedules jobs onto matching 
virtual resources. The approach used to model this process was the whale optimization algo-
rithm. Workflowsim simulator was used for extensive simulations. It was compared to the 
current PSO, CS, ACO, and GA algorithms. Ultimately, it was determined from the simula-
tion findings that the energy consumption, Makespan, and migration time were all signifi-
cantly reduced. 

3. Proposed System 

The proposed system for multi-objective task scheduling in a cloud environment begins 
by accepting input in the form of a scientific workflow dataset and a set of virtual machines 
(VMs) designated for task execution. This initial stage involves defining the tasks within the 
workflow and the available computational resources. Once the inputs are defined, the system 
calculates several critical metrics for each task on each VM. These metrics include Total 
Length of Task (TTL), which measures the cumulative length of the instructions of tasks 
assigned to each virtual machine (VM); Earliest Finish Time (EFT), which calculates the ear-
liest time a task can be completed on a given VM; and VM-based Task Parent (TP), which 
indicates whether a task has a parent task on the same VM, taking into account the commu-
nication cost between related tasks. The proposed system design is shown in Figure 1. 

 

Figure 1. Proposed System Design 
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After calculating these metrics, the K-Means clustering algorithm is used to group tasks 
with similar characteristics. Clustering tasks based on their attributes allows for more efficient 
handling and allocation, as similar tasks are grouped, reducing the complexity of scheduling 
decisions and improving overall system efficiency. Each cluster represents a set of tasks with 
similar computational and communication requirements, which can then be managed collec-
tively. In the next stage, the system utilizes a resource allocation algorithm to assign each 
cluster of tasks to the most appropriate VM. This allocation strategy considers the computa-
tional and communication requirements of the tasks within each cluster, ensuring that the 
selected VMs can handle the workload effectively. This step is crucial for optimizing the use 
of cloud resources and minimizing execution time. 

Finally, the system evaluates performance using key metrics such as Makespan and Re-
source Utilization. Makespan refers to the total time required to complete the entire work-
flow, while Resource Utilization measures resource use efficiency. By optimizing these objec-
tives, the system aims to enhance the overall performance and efficiency of task scheduling 
and resource allocation in the cloud environment. Integrating these stages ensures that the 
system can handle complex scientific workflows with optimal resource utilization, achieving 
high-performance computing outcomes. 

Creating subsets within a dataset where items in the same group are more similar to each 
other than to those in different groups is the main goal of clustering. K-means clustering is a 
straightforward and effective method among the many clustering techniques accessible in data 
mining. K-Means is well-known for its speed and simplicity of use, and it is particularly effec-
tive at handling datasets with a single attribute compared to other data clustering algorithms. 
Consequently, to minimize Makespan and guarantee an equitable workload allocation among 
the virtual machines (VMs), the suggested method uses K-Means clustering to create task 
clusters. 

"K" stands for the number of clusters that need to be defined beforehand in K-Means 
clustering. The procedure's first step is randomly choosing a centroid value for every cluster. 
After that, iteratively allocating jobs to the closest centroid, iteratively recalculates centroid 
values depending on the cluster members until convergence is achieved. This method effi-
ciently groups tasks with comparable computational and communication properties. A bal-
anced workload is achieved across all VMs by assigning these clustered tasks to appropriate 
VMs based on their processing capacity. By clustering tasks and considering VM capabilities, 
the system optimizes resource utilization, minimizes execution time, and achieves load bal-
ancing, enhancing overall performance in a cloud environment. 

The suggested method optimizes resource allocation and work scheduling in a cloud 
environment by incorporating a number of essential characteristics. In Algorithm 1 (Task 
Clustering using K-Means Clustering), the variables are as follows: the input is a workflow of 

tasks, and the output is task clusters. The algorithm begins by selecting 𝑘 random instances 

as the centroids of the clusters. The number of clusters, 𝑘, is predefined, and the algorithm 

then computes the Euclidean distance (𝑑) between each task 𝑇𝑖 and each centroid 𝑆𝑗. The 

distance formula is 𝑑(𝑇𝑖, 𝑆𝑗) = √(𝑇𝑖 − 𝑆𝑗)2, which measures how close a task is to a cen-

troid. Each task Ti is assigned to the task cluster 𝑇𝐶𝑗 where the distance 𝑑(𝑇𝑖, 𝑆𝑗) is the 
smallest. After all tasks are assigned to clusters, the mean µ of all task lengths in each cluster 

𝑇𝐶𝑗 is recalculated as the new centroid 𝑆𝑗. This process repeats until convergence, meaning 
the centroids no longer change or another stopping criterion is met. 

In Algorithm 2 (Resource Allocation Algorithm), the variables include the input, which 
consists of task clusters and a list of VMs, and the output, which involves assigning tasks to 

clusters. Here, n is the number of task clusters, 𝑧 is the number of tasks, and m is the number 

of VMs. The algorithm iterates over each cluster 𝑐, each task 𝑡, and each VM 𝑣, aiming to 
assign tasks to VMs based on the same Euclidean distance formula used in clustering. This 
ensures that tasks are allocated to VMs in a manner that minimizes the difference between 
the task and the centroid, improving the efficiency of resource allocation in the cloud envi-
ronment. 

 The Computation Cost (CP) of every task on every VM is the main emphasis of Feature 
1. In order to ensure that the system can evaluate the processing demands and assign jobs to 
VMs that can manage the workload effectively, this feature computes the computational re-
sources needed for each task. By understanding the computation cost, the system can make 
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more informed decisions about where to assign tasks, balancing the load and preventing re-
source overutilization or underutilization. 

 

Algorithm 1. Task Clustering using K-Means Clustering Algorithm 
INPUT: Workflow of tasks 
OUTPUT: Task clusters 

1: Select 𝑘 random instances as the centroids 
2: Until clustering converges or other stopping criteria:  

3: For each instance 𝑇𝑖 
4: Find the Euclidean distance d between each 𝑇𝑖 and centroids 𝑆𝑗 of all the task clus-

ters 𝑑(𝑇𝑖, 𝑆𝑗) = √(𝑇𝑖 − 𝑆𝑗)2 

5: Assign Ti to the task cluster 𝑇𝐶𝑗 such that 𝑑(𝑇𝑖, 𝑆𝑗) is minimal 

6: For each task cluster 𝑇𝐶𝑗, find the mean as 𝑆𝑗 =  µ(𝑇𝐶𝑗) where µ is the mean of all 

task lengths in cluster 𝑗 

 

Algorithm 2. Resource Allocation Algorithm 
INPUT: Task Clusters and VMs List 
OUTPUT: Task clusters 
1: For 𝑐 = 1 to 𝑛, Do // 𝑛 is the number of clusters 

2: For 𝑡 = 1 to 𝑧, Do // 𝑧 is the number of task 

3: For 𝑣 = 1 to 𝑚, Do // 𝑚 is the number of VMs 

4: Find the Euclidean distance d between each 𝑇𝑖 and centroids 𝑆𝑗 of all the task clus-

ters 𝑑(𝑇𝑖, 𝑆𝑗) = √(𝑇𝑖 − 𝑆𝑗)2 

5: Assign Ti to the task cluster 𝑇𝐶𝑗 such that 𝑑(𝑇𝑖 , 𝑆𝑗) is minimal 

6: For each task cluster 𝑇𝐶𝑗, find the mean as 𝑆𝑗 =  µ(𝑇𝐶𝑗) where µ is the mean of all 
task lengths in cluster 𝑗 

 
 Assigning the Task to the VM with the Earliest Finish Time (EFT) is Feature 2. This 

feature shortens the workflow's overall Makespan by prioritizing allocating jobs to VMs that 
can finish them the fastest. The system maximizes productivity and reduces waiting times by 
automatically choosing the VM with the quickest estimated completion time for incoming 
tasks. This guarantees that jobs are finished as soon as possible. 

 The third feature is about the Total Length of Tasks (TTL) Allotted to Each Virtual 
Machine. TTL stands for Task-to-Virtual Machine cumulative length of instructions. This 
feature ensures that no VM is overworked by helping to understand how the workload is 
distributed among the virtual machines. By monitoring and balancing the total length of tasks 
across all VMs, the system can achieve better load balancing, improving performance and 
resource utilization. 

 The idea of the VM-based Task Parent (TP), which determines whether a task has a 
parent task on the same VM, is introduced in Feature 4. This feature is represented by a binary 
value, where one denotes the presence of a parent task, and zero indicates no parent. It con-
siders the communication cost between tasks, as tasks with parent-child relationships may 
require data exchange. By identifying and managing parent tasks, the system can optimize the 
scheduling process to minimize communication delays and costs, further enhancing overall 
efficiency. 

 These features collectively enable the system to manage task scheduling and resource 
allocation effectively, ensuring optimal performance, reduced Makespan, and balanced work-
load distribution in a cloud environment. 

4. Results and Discussion 

A simulator from the CloudSim toolkit was used to assess the performance of the sug-
gested solution. A Windows 10 computer with 8GB of RAM was used for the trials. Four 
different virtual machine (VM) kinds and four different job types were taken into considera-
tion for the experiment. The four types of Virtual Machines (VMs)—Small, MI (Memory 
Intensive), CI (Compute Intensive), and Large—are each designed to handle specific work-
loads based on their resource capacities. The Small VM is typically equipped with limited 
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processor power and memory, making it suitable for lightweight tasks like basic web hosting 
or small-scale applications. The Memory Intensive (MI) VM is designed for applications that 
require substantial memory but moderate processing power, such as large databases or in-
memory analytics. The Compute Intensive (CI) VM offers high CPU performance, making it 
ideal for CPU-heavy tasks like scientific computations and real-time processing. Lastly, the 
Large VM combines both high processing power and memory, making it capable of handling 
complex, resource-demanding tasks such as enterprise applications and large-scale simula-
tions. Each VM type ensures optimal performance by aligning resource allocation with the 
specific needs of the task, enhancing efficiency in cloud environments.  

As shown in Table 1, the number of virtual machines (VMs) for each kind was fixed at 
20, and the task lengths were randomly generated within a predetermined range. Table 2 pro-
vides the task parameter settings. To assess the system's performance, the number of tasks 
was varied from 100 to 500. The results were then compared with those obtained using ex-
isting algorithms, specifically Particle Swarm Optimization (PSO)[18], Cuckoo Search Opti-
mization (CSO) [19], and Grey Wolf Optimizer (GWO)[20]. This comparison provides a 
benchmark for evaluating the efficiency and effectiveness of the new approach. In order to 
replicate a genuine cloud computing environment, two scenarios were included in the exper-
iment: one with comparatively fewer jobs and one with a few high amounts of HADF tasks. 
This setup mirrors common conditions in cloud environments, where certain types of tasks 
dominate the workload, posing challenges for scheduling and resource allocation strategies.  

In Table 1, MIPS stands for Million Instructions Per Second, which measures the com-
putational speed of each VM, indicating how many instructions a VM can process in one 
second. RAM (GB) refers to Random Access Memory in gigabytes, which represents the 
memory capacity of each VM. The VMs are categorized as Small (S), MI, CI, and Large (L), 
where Small VMs have lower MIPS and RAM, while MI and CI VMs specialize in memory 
and computational power, respectively. Table 2 shows the task parameter settings, with the 
Length (MI) representing the task length in terms of Million Instructions. Tasks are catego-
rized similarly to the VMs: S for small tasks (100–1000 MI), MI for memory-intensive tasks 
(1000–4000 MI), CI for compute-intensive tasks (8000–10000 MI), and L for large tasks 
(4000–10000 MI). These abbreviations streamline resource allocation and task scheduling dis-
cussions in cloud environments. 

Table 1. Virtual machines with speed and memory. 

VM Small MI CI Large 

MIPS 1000 2000 8000 8000 

RAM (GB) 1 8 2 8 

Table 2. Parameter settings of tasks. 

VM Small MI CI Large 

Length (MI) 100-1000 1000-4000 8000-10000 4000-10000 

 
The simulator generates tasks of various kinds within the given range using a random 

number generator. Ten percent of the jobs in scenario 1 were of the 𝑇𝑗𝑠 type, and the re-

maining ten percent were of the 𝑇𝑗𝑐, 𝑇𝑗𝑚, and 𝑇𝑗𝑙 types. To model the suggested approach, 
a few presumptions are: 
1. Tasks and virtual machines (VMs) are diverse in character, with each task being inde-

pendent and assigned to a single VM. 
2. Presume that each job is assigned to a single virtual machine (VM) and that no task is 

interrupted while it is executed. 
3. The resources needed for a task are always less than what is available. 

This section assesses and contrasts the simulation results for measures like Makespan 
and resource utilization. The tasks are completed in batches of 100–500. Table 3 describes 
the parameter settings for this system. Figure 2 presents Makespan results and Figure 3 de-
scribes resource utilization for different algorithms. 
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Table 3. Parameter settings. 

Parameter K-Means PSO GWO CSO 

Number of Clusters (K) 
Dynamic, 

based on workload 
N/A N/A N/A 

Initialization Method K-Means++ 
Random Initiali-

zation 
Random Initiali-

zation 
Random Initiali-

zation 

Distance Metric Euclidean Distance N/A N/A N/A 

Max Iterations (K-Means) 300 N/A N/A N/A 

Population Size N/A 30 30 30 

Max Iterations (Optimiza-
tion) 

N/A 100 100 100 

Inertia Weight (w) N/A 0.7 N/A N/A 

Cognitive Coefficient (c1) N/A 1.5 N/A N/A 

Social Coefficient (c2) N/A 1.5 N/A N/A 

Alpha, Beta, Delta N/A N/A 
Dynamic (lead-

ers) 
N/A 

Discovery Rate (pa) N/A N/A N/A 0.25 

Random Walk Probability N/A N/A N/A 
Based on Lévy 

flight 

 

Figure 2. Makespan results 

 

Figure 3. Resource Utilization 
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The makespan time determined by the suggested approach is consistently less than that 
of the other three algorithms as the number of tasks rises. The Makespan, which measures 
the total time required to complete all scheduled tasks, is significantly reduced in the proposed 
method when compared to traditional approaches like PSO, GWO, and CSO. This improve-
ment is attributed to the K-Means clustering technique, which optimally groups tasks based 
on resource similarity, allowing for more efficient dynamic resource allocation. The Makespan 
is shortened by minimizing idle time and ensuring that tasks are assigned to the most appro-
priate resources, leading to faster task completion times. 

The suggested strategy consistently yields a greater utilization value in the trial than the 
other three algorithms. Additionally, Resource Utilization is enhanced by the mul-ti-objective 
optimization process, which prioritizes not only minimizing Makespan but also maximizing 
the use of available computational resources. The proposed system ensures that VMs are 
allocated tasks in a balanced manner, avoiding overloading certain machines while under-
utilizing others. This balanced allocation increases overall cloud system efficiency, re-duces 
task completion delays, and ensures optimal usage of CPU and memory resources across 
different VM types. Overall, the proposed method demonstrates clear advantages in both 
Makespan and Resource Utilization, optimizing task scheduling and resource allocation in a 
dynamic cloud environment. 

The comparison of makespan and resource utilization clearly shows that the proposed 
method outperforms other algorithms (PSO, CSO, and GWO). For Makespan, the proposed 
method consistently delivers lower total time across all task numbers, with a makespan of just 
under 400 units at 50 tasks. In contrast, PSO exceeds 400 units, and both CSO and GWO 
approach 410 units. This suggests that the proposed method efficiently executes tasks faster 
due to its multi-objective optimization, which balances task allocation and resource usage 
better than the other algorithms. The proposed method's dynamic clustering using k-means 
also ensures optimal task grouping, minimizing delays. Regarding resource utilization, the 
method maintains consistently high utilization rates above 0.75, even with 50 tasks, while 
other algorithms like CSO and PSO fall below this threshold. For example, at 40 tasks, the 
proposed method achieves nearly 0.8 utilization, outperforming GWO and CSO. These re-
sults emphasize the method's effectiveness in minimizing Makespan and maximizing resource 
efficiency, making it ideal for environments that require both. 

5. Conclusions 

In this study, we have developed and demonstrated a comprehensive approach to multi-
objective task scheduling for scientific workflows within cloud environments. Our method-
ology effectively addresses the complex challenges associated with optimizing computation-
ally intensive scientific tasks by considering multiple conflicting objectives, such as execution 
time, resource utilization, and power consumption. By leveraging the scalability and flexibility 
of cloud resources, our approach dynamically provisions computing resources to match var-
ying workloads, ensuring optimal performance. Integrating advanced metrics, including Com-
munication Cost, Computation Cost, Earliest Finished Time on specific virtual machines 
(VMs), and Total Task Length, forms the foundation for informed decision-making in re-
source allocation. The use of the K-Means clustering algorithm to group similar tasks further 
enhances scheduling efficiency, while our specialized resource allocation algorithm ensures 
that tasks are assigned to suitable VMs based on their specific computational and communi-
cation needs by minimizing the Makespan, and maximizing resource utilization by comparing 
other task scheduling algorithms. This study emphasizes how crucial advanced scheduling 
methods are to maximizing cloud resource management for workflows in science. However, 
certain limitations were identified in the study. One of the key challenges is the scalability of 
the proposed method when dealing with extremely large datasets and high numbers of tasks. 
Although the method performs well in the tested scenarios, further optimization may be re-
quired for environments with more complex and larger-scale tasks. Additionally, the study 
focuses mainly on CPU and memory resources, while other aspects, such as network band-
width and energy consumption, could also play significant roles in cloud task scheduling. 
Future work could explore these areas and further refine the approach to make it applicable 
in broader cloud computing contexts. In order to improve task scheduling and resource allo-
cation even further, future research could investigate the integration of sophisticated ma-
chine-learning techniques and real-time modifications. To sum up, our mul-ti-objective task 
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scheduling approach offers a solid and scalable response to the difficulties associated with 
managing cloud resources, boosting the effectiveness and productivity of scientific study and 
hastening scientific advancements. 
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