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Abstract: The Internet of Things (IoT) is an innovative technology that makes our environment 

smarter, with IoT devices as an integral part of home automation. Smart home systems are becoming 

increasingly popular as an IoT service in the home that connects via a network. Due to the security 

weakness of many devices, the malware is targeting IoT devices. After being infected with malicious 

attacks on smart devices, they act like bots that the intruders can control. Machine learning methods 

can assist in improving the attack detection process for these devices. However, the irrelevant features 

raise the computation time as well as affect the detection accuracy in the processing with many features. 

We proposed a machine learning-based IoT security framework using feature correlation. The feature 

extraction scheme, one-hot feature encoding, correlation feature selection, and attack detection imple-

ment an active detection mechanism. The results show that the implemented framework is not only 

for effective detection but also for lightweight performance. The proposed system outperforms the 

results with the selected features, which have almost 100% detection accuracy. It is also approved that 

the proposed system using CART is more suitable in terms of processing time and detection accuracy. 
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1. Introduction 

Many intrusions have been targeting IoT devices in recent years due to their popularity 
and challenges, such as limited resources, using default passwords by users, etc. Therefore, 
developing a good detection system for these devices is necessary. Many studies have been 
conducted in the past, but the emergence of different types of malwares is not enough to 
effectively detect different types of attacks. Among the attack detection systems, intruders 
can circumvent the signatures, but these kinds of methodologies can be found in the public 
detection systems. Another possible approach is based on the anomaly-based system. The 
machine learning-based system is also a type of anomaly-based system. Machine learning-
based methods can support the system with better results but cannot be embedded into the 
IoT devices to perform as a host-based system. Therefore, a machine learning-based system 
can be implemented as a network-based detection system on a middleware device or a cloud 
server. 

Today, mobile and IoT infrastructure are growing, and attackers are targeting these de-
vices, so security issues are more challenging on these devices. Cybercriminals are intensifying 
their attempts to create malware attacking IoT devices, reached up three times as in 2017. 
About 121,588 malware samples were collected in 2018 by Kaspersky Lab [1]. The number 
of malicious challenges increased nearly ten-fold to nearly 249 million malicious attempts in 
December 2019. Trend Micro recorded almost 194 million brute force logins from the botnet 
attacks challenge from 2019 to 2020 by capturing the attacks [2]. IoT devices can be attacked 
once connected to the Internet. Figure 1 shows a general increase in the percentage of organ-
izations experiencing successful cyberattacks that were experienced in the years 2019 through 
2023. The data suggests that cyber threats are becoming more sophisticated and frequent. 
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The consistently high or increasing frequency of successful attacks underscores the necessity 
for robust cybersecurity strategies[3]. 

 

Figure 1. Percentage of successful attacks (2014 – 2023)[3] 

Due to the immoderate encounter rates of malware attacks in the ASEAN region, the 
cyber-security IVO research is implemented to monitor the network, find the vulnerabilities, 
and improve the detection algorithms[4]. The machine learning approach is a reliable mech-
anism for malicious attacks on IoT devices because of the capability of the detection attacks' 
essential differences. Many attack detection works were used in well-known datasets, such as 
KDDCUP99[5] and KDD-NSL[6], but these are not suitable for attack detection in IoT net-
works because they have no IoT malware attack patterns. IoT-23 is applied in this study, and 
it is a state-of-the-art dataset[7] that was captured by using real IoT devices. It includes mali-
cious patterns, different types of attacks, and benign records, capturing the most challenging 
attacks from the Mirai botnet. 

The proposed attack detection framework has 4 phases: feature extraction, feature se-
lection, feature encoding, and machine-learning based attack detection. The feature extraction 
mechanism, which is shown in Algorithm1, is proposed for performing real-time attack de-
tection capability. Many public datasets, such as KDD99, NSL-KDD, and BoT-IoT, can be 
available for attack detection. However, KDD99 and NSL-KDD datasets are outdated and 
less relevant for IoT attack detection. BoT-IoT dataset is a modern dataset, but its records 
are based on the simulation of IoT data. The IoT-23 dataset is also modern, providing the 
data in a realistic environment with real IoT devices. Therefore, the IoT-23 dataset is applied 
to attack building for the machine learning-based attack detection model. It is suitable for 
modern attack detection, but the challenge is the size and complexity of its dataset. It contains 
large volumes of data with extensive network traffic captures. There are also many features 
included in the original dataset. This will require a high resource demand and may reduce the 
detection accuracy. The correlation measurement can evaluate the features' dependency on 
the target variable, and Chi-Squared can evaluate the correlation of categorial features[8]. 
However, the IoT-23 dataset includes continuous variables. Therefore, a feature selection 
mechanism called the Pearson correlation method, is applied to reduce unimportant features 
in the system. It will support the system in achieving maximum detection performance, sim-
plify data input, and produce more accurate results. A one-hot encoding mechanism is used 
to smooth machine learning classification using the nominal features in the original dataset. 
The CART algorithm is applied in the proposed system as an attack detection. Generally, it 
is a popular machine learning method to get high detection rates for the cyber-attack protec-
tion system. Naive Bayes is also applied to compare with the CART results, and it is the most 
straightforward and fast classification algorithm. 
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The hypothesis of the proposed system is focused on the efficacy of feature selection in 
improving the performance of machine learning algorithms for detecting cyber-attacks in IoT 
environments. Using the Person correlation-based feature selection method will reduce the 
number of useful features for attack detection. In addition, it will reduce the computational 
complexity of performing machine learning processes.  

The experiment results indicate that the detection results with selected features are im-
proved, especially in terms of the processing time and detection rate in Naïve Bayes[9]. Be-
sides, the results with the CART algorithm outperformed the result of Naïve Bayes. There-
fore, it can be observed that the CART algorithm is suitable for the proposed system, and the 
unnecessary features may cause a high processing demand without supporting high detection 
accuracy. 

The contributions of the proposed system are: 
1. The feature extraction mechanism was capable of real-time attack detection in an IoT 

environment. 
2. The feature selection process is faster processing and better detection accuracy by re-

ducing the number of features. 
3. The implementation of the CART algorithm on better performance in both the detec-

tion accuracy and the response time. 
The paper is organized into five sections as follows. The current challenges of cyber-

attacks and detection systems are introduced in Section 1. The related work of the cyber-
attack detection approaches and the methodologies are discussed in Sections 2 and 3. Section 
4 presents the proposed system and the experimental results, and the paper concludes in 
Section 5. 

2. Literature Review 

Many attack detection proposals were widely based on well-known network datasets, like 
KDDCUP99[10], and its development (KDD-NSL). The various machine learning algo-
rithms were used to analyze the NSL-KDD dataset in [11] using the classification algorithm 
and are available in the WEKA tool. But, these datasets are for conventional networks and 
not the IoT environment. So, some researchers have used it for recent attack detection based 
on the modern dataset, Bot-IoT [12]. Deployed using the random forest regressor algorithm 
to extract new features from the dataset. 

The proposals [13], [14] were implemented with a signature-based detection system, 
showing that formal snort rules are insufficient for the detection system. Their proposals were 
focused on a conventional network; the signature-based system cannot detect unknown at-
tacks because these approaches are based on pre-defined attack signatures. 

The system [15] proposed the cut-off value of correlation to select some of the best 
features for the Intrusion Detection System. The Pearson correlation of the feature selection 
method is used to reduce the features of the NSL-KDD dataset and implement classification 
methods, namely SVM, KNN, and RF. Their results showed that selected features slightly 
reduced the computation time, but the detection accuracy also degraded and was not as good 
as using all original features with these three algorithms. 

The application of machine learning to intrusion detection in IoT environments has seen 
significant advancements, moving beyond traditional datasets like KDDCUP99 and NSL-
KDD to more relevant datasets such as Bot-IoT and IoT-23. The work of N. Abdal-Gawad 
et al. [16] illustrates the use of deep learning models on the IoT-23 dataset to identify and 
mitigate complex IoT-based attacks. Their research employed Adversarial Autoencoders 
(AAE) and Bidirectional Generative Adversarial Networks (BiGAN) to achieve high detec-
tion accuracy, demonstrating the potential of advanced neural networks in handling IoT traf-
fic anomalies. Similarly, N. Saini et al. [17] utilized the UNSW-NB15 dataset to develop a 
hybrid ensemble learning model, combining random forest and XGBoost for enhanced in-
trusion detection, reporting improvements in detection accuracy compared to conventional 
approaches. 

A significant trend in recent literature is the integration of explainable AI (XAI) to en-
hance the interpretability of intrusion detection systems. For instance, M. Keshk et al. [18] 
applied SHAP (SHapley Additive exPlanations) values to a machine learning-based detection 
system using the TON_IoT dataset. This approach provided insights into feature importance 
and decision-making processes, thus addressing the "black box" nature of traditional machine 
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learning models. Furthermore, Baahmed et al.[19] leveraged XAI techniques to interpret the 
decisions made by graph neural networks (GNNs), which were trained on the IoT dataset, 
offering a transparent and robust framework for IoT security. 

Another emerging focus is optimizing feature selection methods for improving detection 
efficiency. Y. N. Kunang et al. [20] introduced a novel autoencoder-based feature selection 
technique applied to the BoT-IoT dataset, effectively reducing the feature set while maintain-
ing high detection performance. Moreover, K. Ren et al. [21] developed a reinforcement 
learning-based feature selection framework, tested on the CSE-CIC-IDS2018 dataset, to se-
lect relevant features during training. Their approach led to a reduction in computational 
overhead and an improvement in the detection capabilities. These advancements highlight 
the ongoing efforts to adapt intrusion detection methodologies to IoT networks' specific 
challenges, enhancing accuracy and efficiency. 

3. Methodology 

The proposed malware attack detection system has two main parts, shown in Figure 2.  

 

Figure 2. The proposed attack detection model 

The first is the model training part, and the second is the attack detection part. The dataset is 
loaded in the model training phase to process one-hot encoding to prepare categorical data for numer-
ical records. After that, the Pearson correlation algorithm selects the feature. Once the important fea-
tures are selected, the attack detection model is trained using the CART algorithm. Moreover, it in-
forms the selected features of the network traffic detection mechanism to perform the attack detection 



Journal of Computing Theories and Applications 2024 (November), vol. 2, no. 2, Htwe, et al. 155 
 

 

mechanism effectively. In the attack detection phase, raw network traffic data is captured to get the 
pcap files. After getting the raw data, feature extraction processing is performed, and a few features are 
extracted by matching them with the category of the selected features. Then, attack detection is per-
formed using the CART algorithm. If the attack is detected, the system will generate an alert. If any 
malicious pattern is not detected, the system will continue the attack detection is performed as the 
background process. 

3.1. Feature Extraction 

There are five phases in the proposed feature extraction mechanism (see Algorithm 1). 
The first one is for capturing the network traffic data using TShark[22] to get the raw data 
packets from the network and prepare them into packet data. Another phase is packet data 
manipulation to extract basic features using Python libraries, such as Scapy and Pandas. The 
next phase is for the Python script preparing for automation of the feature-preparing process. 
The next step is to extract the sophisticated features by CICFlowMeter [23] and Zeek [24]. 
Then, the feature aggregation process is done on the features set, and the feature cleaning 
mechanism is done by handling missing values and One-Hot encoding. It is readily the feature 
for attack detection with a machine learning algorithm. The final process is necessary to match 
the final extracted features with the selected features by the feature selection process. 

 

Algorithm 1. Feature Extraction 
INPUT: pcap_data, which TShark captures 
OUTPUT: features_df 
1: Initialize Data Structures 

   a. packets ← ReadPcap(pcap_data) 
   b. features ← ∅    

2: Extract Basic Features 
   for each packet in packets, do 
       time ← ExtractTime(packet) 
       src_ip ← ExtractSrcIP(packet) 
       dst_ip ← ExtractDstIP(packet) 
       src_port ← ExtractSrcPort(packet) 
       dst_port ← ExtractDstPort(packet) 
       protocol ← ExtractProtocol(packet) 
       length ← ExtractLength(packet) 
       feature ← {time, src_ip, dst_ip, src_port, dst_port, protocol, length} 

       features ← features ∪ {feature} 
   end for 

3: Convert Extracted Features to DataFrame 
   features_df ← ConvertToDataFrame(features) 

4: Advanced Feature Extraction 
   if UseCICFlowMeter then 
       cic_df ← ExtractUsingCICFlowMeter(pcap_data) 
   end if 
   if UseZeek then 
       zeek_df ← ExtractUsingZeek(pcap_data) 
   end if 

5: Aggregate and Preprocess Features 
   if cic_df exists then 
       features_df ← Merge(features_df, cic_df) 
   end if 
   if zeek_df exists then 
       features_df ← Merge(features_df, zeek_df) 
   end if 
   features_df ← HandleMissingValues(features_df) 
   features_df ← OneHotEncode(features_df) 

6: Return Final DataFrame 
   return features_df 
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There are 21 features, including the class label, extracted from network traffic data col-
lected from the original dataset. These are shown in Table 1. 

Table 1. Original features from the dataset 

No. Features Description 

1 fields-ts Flow start time 

2 uid Unique ID 

3 id.orig-h Source IP address 

4 id.orig-p Source port 

5 id.resp-h Destination IP address 

6 id.resp-p Destination port 

7 proto Transaction protocol 

8 service Http, ftp, smtp, ssh, dns, etc. 

9 duration Record total duration 

10 orig-bytes Source to destination transaction bytes 

11 resp-bytes Destination to source transaction bytes 

12 conn-state Connection state 

13 local-orig Source local address 

14 local-resp Destination local address 

15 missed-bytes Missing bytes during transaction 

16 history-orig-pkts History of source packets 

17 orig-ip-bytes Flow of source bytes 

18 resp-pkts Destination packets 

19 resp-ip-bytes Flow of destination bytes 

20 tunnel-parents Traffic tunnel 

21 label Attacks or benign 

3.2. One-Hot Encoding 

One-hot encoding is a crucial data preprocessing technique in machine learning, partic-
ularly when dealing with categorical data. This method transforms categorical variables into a 
binary (0 or 1) vector representation, allowing algorithms to process categorical data more 
effectively [25]. It converts categorical data into a binary matrix with a unique vector of zeros 
and ones representing each category. This technique ensures that categorical variables are 
transformed into a format suitable for machine learning algorithms that require numerical 
input. Each unique category in a categorical variable is assigned a new binary column. If a 
categorical feature has k distinct values, one-hot encoding converts it into k binary columns. 
For each instance, the column corresponding to the categorical value is set to 1, and all other 
columns are set to 0. 

3.3. Feature Selection 

The Pearson correlation algorithm selects the most relevant features from the dataset. 
It is a well-known correlation-based algorithm, and its similarity measures between variables 
or features of a dataset. Pearson correlation, commonly used in coefficient (ρ), which means 
the Linear correlation coefficient, is a measurement of two random variables' dependence[26]. 
Its linear correlation is higher, and the correlation coefficient's absolute value is stronger if 
the relationship between the two features is closer to some linear function. It is based on the 
equation (1), which is for the coefficient ρ, on the values xi on variables X and the values yi 
on the variables Y. 

 𝜌
𝑐𝑜𝑣(𝑋, 𝑌)

√𝜎2(𝑋)𝜎2(𝑌)
 (1) 

 
Therefore, this measurement can investigate the redundancies for which feature strongly 

correlates to some features. There are 21 features extracted from network packet data. The 
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Pearson correlation method calculates the features ranking and arranges their values by de-
scending order. The threshold value higher than 0.5 decides the most important feature set. 
After selecting the most important features, there are only six features designated. The se-
lected features are shown in Table 2. 

Table 2. The selected features from the dataset 

No. Features Description 

1 id.resp_p Destination port 

2 orig_bytes Source to destination transaction bytes 

3 history_org_pkts History of source packets 

4 id.orig_h Source IP address 

5 resp_ip_bytes The flow of destination bytes 

6 resp_bytes Destination to source transaction bytes 

3.4. CART 

It is a classification and regression tree algorithm for building prediction models from 
data. The data is partitioned recursively, and a simple prediction model is fitted within each 
partition to obtain the detection model. This partitioning can be presented graphically as a 
decision tree. These trees are planned for subordinate factors that take a predetermined num-
ber of unordered qualities, with expectation mistake estimated regarding misclassification 
cost, and furthermore for subordinate factors that review nonstop or requested discrete qual-
ities, with forecast blunder normally estimated by the squared distinction between the noticed 
and anticipated qualities [27]. CART uses a generalization of the binomial variance called the 
Gini index which is shown in equation (2). It supplies the sum of the squared probabilities of 
each class, and i is from 1 to the possible number of classes. 

𝐺𝑖𝑛𝑖 = 1 − ∑(𝑃𝑖)2 (2) 

This calculation can handle the missing values. It will be ignored in the analysis if the 
dependent variable of a case is missing. It will also be ignored if all predictor variables of a 
case are missing. The case is disregarded if the case weight is missing, zero, or negative. The 
case is disregarded if the recurrence weight is missing, zero, or negative. 

3.5. Naïve Bayes(NB) 

The NB is famous for its simple principle and widely used supervised algorithm for 
predictive modeling. Its classifier belongs to categorize traffic as normal or abnormal for at-
tack detection, using the Bayesian theorem. It requires strong independent assumptions be-

tween the features. The main process of Naïve Bayes is based on equation (3). 𝑃(𝐴|𝐵) rep-
resents the posterior probability, 𝑃(𝐵|𝐴) represents the likelihood, 𝑃(𝐴) represents the 

marginal likelihood and 𝑃(𝐵) represents the prior probability. It has many attributes make 
NB user-friendly, and the training process is fast and easy. 

𝑃(𝐴|𝐵) =
𝑃(𝐵|𝐴)𝑃(𝐴)

𝑃(𝐵)
 (3) 

4. Experimental Results 

The dataset applied to the proposed system is called IoT-23 [28]. Stratosphere Labora-
tory, CTU University, and Avast develop it. The dataset contains IoT devices' labeled network 
traffic captures (PCAP files), including benign and malicious traffic. Traffic is categorized into 
attacks and normal traffic behaviors. It includes traffic from real IoT devices under different 
conditions, such as normal operation and DDoS attacks, captured by the Mirai attack.  

4.1. Performance Evaluation 

CART is a learning algorithm that is supervised for both classification and regression. It 
also can be used for predictive modeling problems. Python libraries are used to implement 



Journal of Computing Theories and Applications 2024 (November), vol. 2, no. 2, Htwe, et al. 158 
 

 

this algorithm in the system, especially sci-kit-learn. The selected datasets are initially uploaded 
to a learning program implemented in the Python Programming language. There are five folds 
categorizations with attack and benign data for the performance evaluation. Among them, 
66% of the dataset is used for system training, and the remaining one-third is used for testing. 
Both classification and feature selection are implemented in Python. The evaluation results 
are computed by equation (4), based on the confusion matrix. 

𝐴𝑐𝑐 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (4) 

In the notations of the above equation, Acc represents the accuracy measurement for 
the attack classification, TP represents the number of attack classes correctly classified, TN 
denotes the number of benign classes correctly classified, FP signifies the number of attack 
classes incorrectly classified, and FN is for the number of the benign class is incorrectly clas-
sified. 

The distribution attack and benign data in each fold are shown in Figure 3. In IoT attack 
datasets, benign records comprise only a small percentage of the data. This is because normal 
traffic is relatively rare compared to the substantial volume of traffic generated during attack 
conditions. In the experiments, no over-sampling or under-sampling methods were applied. 
This decision ensures that the results are derived from the original data, providing a more 
realistic evaluation of the dataset's inherent characteristics. 

 

Figure 3. The distribution of attack and benign records 

4.2. Result Discussion 

4.2.1 Attack Detection Accuracy 

The attack detection accuracy by CART is shown in Table 3. It compares the perfor-
mance metrics for both of using all features versus selected features across five folds. Alt-
hough there are measurement criteria, the accuracy, precision, true positive rate (TPR), true 
negative rate (TNR), false positive rate (FPR), and false negative rate (FNR) are considered 
for evaluation of the attack detection mechanism because these are more comprehensive and 
suitable for scenarios where the balance between different types of errors is critical. They 
provide a detailed understanding of the model's performance, especially in attack detection, 
where the consequences of misclassification can be significant. TPR focuses on capturing 
actual positive cases and can also refer to recall or sensitivity. Precision is extremely high for 
all features, with selected features showing perfect precision in all folds. Thus, many classifi-
cation and prediction scenarios evaluate precision, recall, and accuracy [29], [30]. These meas-
urements are important for evaluation in attack detection. The higher precision indicates a 
lower false positive rate, and recall is also important because missing an attack will result in 
severe consequences. According to the results, the proposed model achieves near-perfect ac-
curacy with all features, but the selected features consistently result in perfect accuracy. The 
TPR is perfect for both all and selected features across all folds. TNR is slightly lower for all 
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features compared to selected features, which consistently achieve a perfect TNR. The FPR 
is very low for all features but is completely eliminated with selected features. The FNR is 
zero for both all features and selected features. Using selected features results in slightly better 
performance across all metrics, with perfect scores in every fold, indicating that feature selec-
tion improves the model's overall effectiveness. 

Table 3. The attack detection accuracy by CART 

Fold Features Accuracy Precision TPR TNR FPR FNR 

1 
All features 99.99 99.92 100.00 99.99 < 0.001 0.000 

Selected features 100.00 100.00 100.00 100.00 0.000 0.000 

2 
All features 99.99 99.99 100.00 99.92 0.001 0.000 

Selected features 100.00 100.00 100.00 100.00 0.000 0.000 

3 
All features 99.99 99.99 100.00 99.92 0.001 0.000 

Selected features 100.00 100.00 100.00 100.00 0.000 0.000 

4 
All features 99.99 99.99 100.00 99.92 0.001 0.000 

Selected features 100.00 100.00 100.00 100.00 0.000 0.000 

5 
All features 99.99 99.99 100.00 99.92 0.001 0.000 

Selected features 100.00 100.00 100.00 100.00 0.000 0.000 

 
The attack detection accuracy by Naïve Bayes is shown in Table 4. It evaluates the Naive 

Bayes's performance using all features versus selected features across five folds. It shows high 
accuracy with both all and selected features, with a slight decrease for selected features in 
some folds. Precision is very high for both feature sets, but there's a notable drop in Fold 1 
with selected features. The TPR is consistently high for both all and selected features, though 
it drops slightly for selected features in some folds. TNR is perfect or near perfect for both 
feature sets. The FPR is extremely low or zero for both feature sets. The FNR is low, with 
slight increases for selected features in some folds. 

Table 4. The attack detection accuracy by Naïve Bayes (NB) 

Fold Features Accuracy Precision TPR TNR FPR FNR 

1 
All features 99.99 99.84 99.45 99.99 < 0.001 0.543 

Selected features 99.89 84.05 99.37 99.90 0.104 0.638 

2 
All features 99.99 100.00 99.99 100.00 0.000 < 0.001 

Selected features 99.92 100.00 99.92 100.00 0.000 0.076 

3 
All features 100.00 100.00 100.00 100.00 0.000 0.000 

Selected features 99.93 100.00 99.93 100.00 0.000 0.070 

4 
All features 99.99 100.00 99.99 100.00 0.000 < 0.001 

Selected features 99.88 100.00 99.88 100.00 0.000 0.124 

5 
All features 99.99 100.00 99.99 100.00 0.000 < 0.001 

Selected features 99.86 100.00 99.86 100.00 0.000 0.140 

 
Tables 3 and 4 show high accuracy, but the selected features with CART achieve perfect 

accuracy across all folds, while Table 4 shows a slight decrease in some folds with selected 
features. CART shows perfect precision with selected features in all folds, while Naive Bayes 
shows a drop in Fold 1 with selected features. The detection accuracy with CART achieves a 
perfect TPR with selected features, whereas the accuracy with Naive Bayes has minor de-
creases in some folds. Both results show high TNR, but the CART achieves perfection with 
selected features, while Naive Bayes shows minor variations. Both classifiers maintain very 
low or zero FPR, with the CART achieving zero across all folds with selected features. The 
CART shows zero FNR with selected features, while the Naive Bayes shows slight increases 
in FNR for selected features in some folds. 
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(a) 

 

(b) 

Figure 4. Confusion matrix for attack detection with CART (a) All features; (b) Selected features. 

 

(a) 

 

(b) 

Figure 5. Confusion matrix for attack detection with Naïve Bayes(a) All features; (b) Selected fea-
tures. 

The detection accuracy with the confusion matrix by CART is shown in Figure 4. The 
accuracy of using all original features is shown in Figure 4 (a), and the result of applying the 
selected features is shown in Figure 4 (b). The result comparisons are also presented with 
Figure 5, a classification by Naïve Bayes, including using all features in Figure 5 (a) and se-
lected features in Figure 5 (b). The detection accuracy with CART showed slightly better 
overall performance with selected features, achieving perfect scores across all metrics and 
folds. However, the performance with Naive Bayes, while still showing high performance, 
indicates minor drops in accuracy, precision, TPR, and increases in FNR for selected features 
in some folds. The results with Naive Bayes suggest that while feature selection improves 
computational efficiency, it may lead to a slight decrease in some performance metrics com-
pared to the previous results. On the other hand, the performance with CART is not only 
better in detection accuracy but also improves computational efficiency. 

4.2.2 Procession Time Comparison 

Table 5 shows CART's training and testing times across five different folds, comparing 
the performance when using all features versus selected features. In fold 1, the training time 
is 3.3 seconds, while the testing time is 0.06 seconds using all features. When using selected 
features, the training time is significantly reduced to 0.16 seconds, with a testing time of 0.02 
seconds. In fold 2, the training time is 0.6 seconds, and the testing time is 0.03 seconds while 
using all features. When applying only the selected features, the training time drops to 0.09 
seconds, and the testing time is 0.02 seconds. In fold 3, the training time is 0.71 seconds, with 
a testing time of 0.04 seconds for all features. When using the selected features, the training 
time is reduced to 0.11 seconds, with the testing time at 0.02 seconds. In fold 4, the training 
time is 0.9 seconds, and the testing time is 0.06 seconds if all features are applied. When using 
only the selected features, the training time decreases to 0.07 seconds, and the testing time is 
0.02 seconds. In the final fold, the training time is 1.09 seconds, with a testing time of 0.05 
seconds for all features. When applying the selected features, the training time reduces to 0.09 
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seconds, and the testing time is 0.02 seconds. Across all folds, the training and testing times 
are consistently lower when using selected features compared to using all features. The re-
duction in training time is particularly notable, suggesting that feature selection significantly 
improves the efficiency of the training process without compromising the testing perfor-
mance. 

Table 5. Processing Time Comparison by CART 

Fold Features Training (seconds) Testing (seconds) 

1 
All features 3.3 0.06 

Selected features 0.16 0.02 

2 
All features 0.6 0.03 

Selected features 0.09 0.02 

3 
All features 0.71 0.04 

Selected features 0.11 0.02 

4 
All features 0.9 0.06 

Selected features 0.07 0.02 

5 
All features 1.09 0.05 

Selected features 0.09 0.02 

 
Table 6 also compares training and testing times for Naive Bayes's across five folds, 

considering all features and selected features. For most folds, using selected features signifi-
cantly reduces both the training and testing times compared to using all features. This indi-
cates that feature selection improves the efficiency of the training process and results in faster 
testing. As an all comparison, training time is longer with all features, and the testing time also 
benefits from reduction. Overall, feature selection appears to be advantageous for improving 
computational efficiency. 

Table 6. Processing Time Comparison by Naïve Bayes 

Fold Features Training (seconds) Testing (seconds) 

1 
All features 3.78 0.2 

Selected features 0.67 0.07 

2 
All features 2.44 2.02 

Selected features 0.64 0.07 

3 
All features 2.37 0.24 

Selected features 1.58 0.12 

4 
All features 2.91 0.23 

Selected features 1.09 0.11 

5 
All features 2.88 0.27 

Selected features 0.65 0.1 

 
CART consistently shows faster training and testing times compared to Naive Bayes, 

especially when using selected features. Feature Selection greatly improves the efficiency of 
both algorithms, but the impact is more pronounced in CART. CART appears to be the better 
choice for computational efficiency based on the provided data. 

 

4.2.3 Results Comparison 

A comparison of the results is also done by the related research, which uses the same 
dataset. Y. Liang [31] focused on the attack detection model using machine learning methods 
to detect the attacks. They evaluated the performance by combining the dataset with several 
attacks. The study [32] proposed a machine learning model for anomaly detection in IoT 
networks. They evaluated the performance with machine learning algorithms, including Naïve 
Bayes and a decision tree algorithm (Random Forest).  
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Table 7. Results Comparison 

Model 
Decision Tree Naïve Bayes 

Accuracy Precision Recall Accuracy Precision Recall 

Y. Liang et al. [31] 0.73 0.77 0.73 0.30 0.85 0.30 

N. A. Stoian [32] 1.00 1.00 1.00 0.23 0.76 0.23 

Ours 1.00 1.00 1.00 0.99 0.97 0.99 

 
Table 7 shows the results of comparing the proposed system with other related systems. 

The results in the study [31] are conducted by Random Forest (a decision tree algorithm), and 
Naïve Bayes. Decision Tree and Naïve Bayes conduct the results in the study [32]. The pro-
posed model is conducted by CART (a decision tree), and Naïve Bayes. The results of the 
proposed system are based on the average values of the tested in each fold with selected 
features, which are shown in Tables 3 and 4. According to the overall results in these studies, 
the decision tree-based model consistently performs better, particularly in the proposed sys-
tem, because it achieves perfect results with selected features. The study [32] also provides 
perfect accuracy, but these are conducted using the Random Forest algorithm. Basically, 
CART is computationally simpler and faster than Random Forest. Besides, it is more suitable 
for fewer features. In the Naïve Bayes model, the proposed system provides higher accuracy 
than other studies. Therefore, the proposed system enhances the effectiveness of the other 
models. 

5. Conclusions 

More attacks focus on IoT devices because of their computational resources for deploy-
ing formal protection systems. The proposed system is for detecting attacks with a lightweight 
framework. Thus, the proposed system adopted the Pearson correlation feature selection 
method for reducing irrelevant features. The correlation coefficient was investigated between 
the features on the IoT-23 dataset. For real-time attack detection purposes, the feature-ex-
tracting mechanism is implemented. In addition, the CART algorithm is applied for building 
the attack detection model and compared with the performance of Naïve Bayes. The experi-
ment results indicated that CART could detect the attacks with 100% accuracy, even reducing 
many features. Naïve Bayes performance also achieved up to 99.93% with the selected fea-
tures while reducing the number of features from 21 to 6. The experiment results indicated 
that the feature selection process can provide the best accuracy by using CART and acceptable 
by using Naïve Bayes algorithms. Overall, the CART system provides higher accuracy and 
faster detection response than the others. In future work, the feature sets can be investigated 
to classify the other attack classes more appropriately.  
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