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Abstract: The advancements in the Internet of Things (IoT) and Machine Learning (ML) have enabled 

significant improvements in Predictive Maintenance (PdM) in industries, providing economic benefits 

by reducing equipment downtime and maintenance costs. Traditional ML approaches, however, re-

quire more computational resources and are often limited to cloud-based processing, leading to in-

creased costs and high latencies. Tiny Machine Learning (TinyML) offers a novel solution by enabling 

ML models to run on low-power, resource-constrained devices at the edge, facilitating real-time, on-

device inference. This review analyzes TinyML applications in PdM, highlighting the technology's po-

tential to transform industrial maintenance practices. We explore the differences between TinyML and 

standard ML, discuss the economic and operational advantages of adopting PdM, and present practical 

case studies where TinyML has been successfully implemented. In addition, we address the challenges 

facing TinyML, including hardware limitations and the need for specialized algorithms. Our findings 

indicate that while TinyML is a promising technology for PdM, further research is needed to overcome 

these challenges and fully realize its potential. This review contributes to understanding TinyML's role 

in industrial PdM and outlines a roadmap for future research and development in this emerging field. 
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1. Introduction 

The emerging fields of the Internet of Things (IoT) [1] and Artificial Intelligence (AI) 
[2], [3] are increasingly being used in different domains, including industrial applications [4]. 
Developing cost-effective solutions involving embedded systems is a major approach for en-
abling real-time responses and efficiency in industrial automation. Such embedded systems, 
based on Microcontroller Units (MCUs), have received growing attention due to their size, 
cost, and low energy consumption, making them ideal for designing monitoring solutions in 
the industrial sector [5]. These solutions frequently incorporate AI functionalities to enable 
real-time predictions and intelligent monitoring [6], [7]. 

Given the resource constraints of embedded devices, they cannot process the needed 
resource-intensive AI algorithms. Therefore, the data collected by such devices is often sent 
to the cloud for processing, with the results being sent back to the device for action or noti-
fications. However, cloud-based implementations also need significant computational load to 
process large amounts of raw data from each IoT device. Additionally, the rate at which data 
is transferred from the edge devices to the cloud and vice versa often acts as a limiting factor, 
especially where real-time responses are required [5]. There is thus a need for the development 
of cost-effective and robust machine learning algorithms tailored for IoT devices with limited 
resources, leading to the increasing popularity of Tiny Machine Learning, often referred to as 
TinyML [8]. 

TinyML represents an evolution in machine learning aimed at extending ML capabilities 
to edge devices, particularly ultra-low-power devices operating under a milliwatt [9]. Unlike 
standard ML, which often relies on powerful cloud servers, TinyML enables ML inference 
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directly on microcontroller devices[10]. By processing data on-device and close to sensors, 
TinyML enhances responsiveness and privacy, significantly reducing the energy consumption 
associated with wireless data transmission—a notable improvement over traditional ap-
proaches where transmission costs are higher than computational costs at this scale. This shift 
towards tiny, energy-efficient ML models on edge devices marks a significant evolution in the 
field, pushing beyond mobile inference toward greater autonomy, efficiency, and functionality 
in edge systems [10]. 

Recent studies, as presented in a review by [11], show the importance of predictive 
maintenance (PdM) in the context of Industry 4.0 [12]. PdM enhances manufacturing process 
performance and efficiency by predicting equipment failures before they occur, thereby in-
creasing equipment lifespan, minimizing downtime, and reducing repair costs. This supports 
sustainable operational management [13]. The continued use of IoT and integration with ma-
chine learning has made this a reality [14]–[16]. However, as [17] identifies, several challenges 
exist in implementing predictive maintenance, such as financial and organizational con-
straints, data source limitations, machine repair activity challenges, and difficulties in deploy-
ing industrial predictive maintenance models. Additionally, [18] outlines the challenge of IoT 
infrastructure and data management, emphasizing the importance of smart data over merely 
large volumes of data for predictive maintenance. Further, [18] highlights the need for simpler 
and more affordable implementations of predictive maintenance systems, even for small and 
medium-sized companies. 

TinyML is suggested by [17] as a promising solution to some of these challenges, ena-
bling intelligent predictive maintenance strategies through embedded, low-power machine 
learning algorithms that can process data directly on the device. This approach potentially 
addresses the gap in deploying predictive maintenance models by reducing reliance on large-
scale data infrastructure and overcoming some of the data source and computational limita-
tions. TinyML enables edge devices to process and interpret data on-site, significantly reduc-
ing the need for extensive data transmission and storage [19]. It enhances the efficiency and 
dependability of IoT systems by ensuring that only relevant, actionable insights are commu-
nicated back to the central system, thus optimizing infrastructure usage and improving the 
reliability of predictive maintenance outcomes. 

In industrial settings, quickly identifying anomalies is essential for minimizing repair 
downtimes, enhancing production efficiency, and reducing costs [20], [21]. Implementing Ti-
nyML directly on devices allows for ongoing monitoring and analysis of sounds produced by 
machinery during operation, providing early warnings of potential failures without the need 
for connectivity—a common challenge in industrial environments. By examining parameters 
such as sound or vibration in real-time, industries can expedite diagnosing and addressing 
equipment problems, thereby avoiding unwarranted delays in maintenance or replacement, 
ultimately saving time and maintaining continuous operations[22]. 

However, [22] notes a gap in the literature and research concerning the use of TinyML 
techniques in industrial applications. Moreover, based on a review of existing literature up to 
February 2024, no single study focused on this area. This study thus presents a systematic 
literature review on TinyML and its application in predictive maintenance within industries, 
highlighting the existing challenges and opportunities. It aims to serve as a guide for research-
ers exploring the application of TinyML in predictive maintenance. 

The main contributions of this study include a) A comprehensive and systematic litera-
ture review focusing specifically on applying TinyML in predictive maintenance for industrial 
applications. This fills a gap in the literature by offering an in-depth examination of how 
TinyML can be tailored for predictive maintenance tasks, which has not been extensively 
reviewed in previous studies. b) The proposal of a specific process flow for TinyML applica-
tions in predictive maintenance. This proposed process flow serves as a guide for implement-
ing TinyML-driven predictive maintenance solutions. c) A classification of use cases and ap-
plications, providing valuable insights into the current state of ML and TinyML applications 
in industrial settings and identifying areas where TinyML can be further exploited for predic-
tive maintenance. d) Identify existing challenges in deploying TinyML for predictive mainte-
nance and highlight opportunities, paving the way for future research and development. 

The rest of the paper is organized as follows: the next section presents the literature 
review, followed by the research methodology, the results, and the discussion, and after that, 
the conclusion is drawn. 
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2. Literature Review 

2.1. Predictive Maintenance 

Current methodologies, architectures, and technologies that support PdM applications 
are presented in [11], [12], [23], [24]. The studies presented gaps such as the lack of standard-
ization and the difficulty in implementation. In addition, the reviewed studies present limita-
tions, including the focus on maintenance monitoring models without adequately addressing 
predictive aspects. The studies suggest several future research directions to advance the field 
of PdM within Industry 4.0. These include developing autonomous monitoring systems with 
predictive alerts, embracing multidisciplinary approaches for intelligent maintenance, address-
ing the challenges of data volume and testing challenges, utilizing image and thermographic 
data for maintenance, and integrating additional processes within the industrial ecosystem. 

The advancement of predictive maintenance within the framework of Industry 4.0, pre-
senting a platform designed for industrial predictive maintenance based on asset management 
and intelligent maintenance planning, has been presented in [17]. This platform and the one 
presented in [25] integrate various types of sensors and maintenance approaches, supporting 
real-time on-site PdM across different types of machinery and equipment. Such solutions 
enable maintenance management and decision-making through data-driven models and allow 
for the manipulation and modification of maintenance plans by users and maintenance teams 
with different access levels.  

Moreover, the solutions in [26], enable mobile and web connections for real-time mon-
itoring and notifications through a dashboard that calculates key performance indicators and 
supports API protocols for data customization. Such approaches are significant because they 
move beyond the application of maintenance 4.0, as presented in [27], which has traditionally 
focused on specific machines or equipment, towards a comprehensive, user-friendly platform 
that supports diverse industrial assets, as also applied in [28].  

These solutions apply smart algorithms and maintenance models, enhancing operational 
efficiency, safety, and cost savings by minimizing downtime. However, the studies highlight 
the challenges and future directions for intelligent predictive maintenance projects, empha-
sizing the importance of modeling, simulation, experimental validation, system instrumenta-
tion, data processing, and cybersecurity. The adoption of intelligent predictive maintenance 
is thus increasingly recognized as a priority in manufacturing sectors, underscoring the poten-
tial of Maintenance 4.0 [13] to transform industrial maintenance routines. 

2.2 Machine Learning in Predictive Maintenance 

Studies on the application of Machine Learning (ML) [29] techniques in Predictive 
Maintenance [25] highlight the emerging intersection of these fields, especially in the context 
of Industry 4.0 advancements as presented in [30]–[35]. The studies reveal that while PdM 
strategies are increasingly achievable and promise to improve maintenance processes, chal-
lenges remain in standardizing and comparing different ML approaches across specific equip-
ment types. A key insight is the specificity of ML applications to particular types of equip-
ment, which complicates the comparative analysis of different ML techniques in PdM [36]. 
Despite this, the integration of ML in PdM is acknowledged for its potential to reduce costs, 
enhance safety, and improve the availability and efficiency of industrial processes by enabling 
the avoidance of unnecessary equipment replacements [4]. From the review, it was noted that 
standard ML methods are reliant on extensive parameter tuning, which is attributed to the 
increasing exploration of PdM by industrial experts. It underlines the importance of having 
foundational Ready to Fail and Preventive Maintenance strategies in place for effective data 
collection, which is important for designing and validating PdM strategies.  

The reviewed literature presents the application of various ML techniques, including 
Support Vector Machines (SVM), Random Forest (RF), Artificial Neural Networks (ANN), 
Deep Learning, and k-means clustering, in developing PdM solutions [37]. Despite these ad-
vances, the studies identify several areas requiring further research: Development of advanced 
sensing techniques to enhance data quality and quantity, enabling more effective PdM appli-
cations; Comparative studies of different ML algorithms in PdM strategies to broaden under-
standing and optimization of ML applications in this field; Exploration of novel ML algo-
rithms and ensemble learning methods to achieve more robust and accurate predictions in 
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PdM applications; and Creation and dissemination of new datasets to facilitate benchmarking 
and innovation in PdM research [4], [30], [38].  

This study is an initial step to address the identified gaps in current research. Using Ti-
nyML improves data processing efficiency and model deployment in resource-constrained 
environments. This approach not only promises to enhance the scalability and accessibility of 
PdM solutions across various industries but also contributes to the ongoing dialogue on op-
timizing ML integration for maintenance strategies. The application of TinyML in predictive 
maintenance will set a new benchmark for cost-effective, efficient, and scalable PdM solu-
tions. 

2.3 TinyML in Predictive Maintenance 

The emerging field of Tiny Machine Learning (TinyML) represents a significant shift in 
the landscape of artificial intelligence (AI), promising to address some of the most pressing 
challenges associated with conventional AI technologies [8]. As AI increasingly integrates into 
various aspects of our lives, concerns regarding its extensive computational demands, high 
costs, energy consumption, and consequent environmental impacts have become more pro-
nounced[25]. TinyML emerges as a transformative solution to these challenges, enabling the 
deployment of AI models on low-power, cost-effective hardware with a minimal environ-
mental footprint [10]. The reviewed studies emphasize TinyML's potential to catalyze sustain-
able development across diverse sectors such as healthcare, smart agriculture, environmental 
monitoring, and anomaly detection[39].  

A notable aspect of TinyML is its capacity to significantly reduce latency and facilitate 
real-time data processing at the source, eliminating the need for constant internet connectivity 
[5]. This capability not only enhances the efficiency of AI applications but also strengthens 
user privacy and data security. The reviewed studies present a comprehensive taxonomy of 
TinyML techniques and their innovative applications, offering new insights into how TinyML 
is unlocking sustainable development avenues, as presented in [8]. However, the studies also 
identify ongoing challenges and call for future research directions, emphasizing the need for 
further innovation in TinyML methodologies, applications, and hardware optimization. A 
comprehensive literature review of TinyML has been presented, emphasizing its significance 
and rapid development in integrating hardware, software, and machine learning algorithms 
[39]. It suggests that future research could broaden the scope to include additional application 
areas such as Industry 4.0, vehicular services, smart spaces, agriculture, and eHealth. TinyML 
is positioned as a transformative force capable of opening up new domains for smart appli-
cations across various sectors, offering innovative solutions and directions for further aca-
demic exploration.  

These insights affirm the novelty and significance of investigating TinyML's potential in 
this domain as is explored in this study, it will not only illustrate TinyML's broad applicability 
and benefits across various sectors but also specifically highlight its relevance and promise in 
enhancing predictive maintenance strategies. By presenting a review on integrating TinyML 
into predictive maintenance, the study aims to contribute to developing more efficient, cost-
effective, and environmentally friendly maintenance solutions, aligning with the overarching 
goals of sustainable development and technological innovation in the era of Industry 4.0. The 
study will significantly enrich the existing body of knowledge and serve as a valuable addition 
to existing findings. 

3. Research Method 

A Systematic Literature Review (SLR) was used in the study. This methodology is used 
in software engineering to identify, evaluate, and interpret relevant parts of research on spe-
cific areas or issues of interest [40]. The SLR consisted of the following steps: defining re-
search questions, identifying research, selecting studies, extracting data, and synthesizing and 
reporting. 

3.1. Research Questions (RQs) 

The scope of this review was guided by answering the following questions four ques-
tions; 

RQ 1. How is Machine Learning applied in predictive maintenance? 
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RQ 2. Are there applications that apply TinyML for predictive maintenance in industries, 
and what are their limitations? 

RQ 3. What are the existing challenges in applying TinyML in industries, and what are 
the directions for future research? 

The research questions addressed gaps in the current understanding of TinyML's capa-
bilities and challenges in industrial PdM applications. Specifically, they aim to explore the 
practical implementation of TinyML, the economic benefits, and the existing technological 
and infrastructural challenges. These questions are critical for guiding future research and 
development in this field, ensuring that the most pressing issues are addressed; 

3.2 Search Strategy 

After formulating the research questions, the researchers defined the search string and 
databases. Google Scholar was selected as a starting database due to the ability to perform 
free searches in publications and texts. The aim was to find a high volume of text at the 
beginning to help in refining the search string before applying in SCOPUS indexed databases, 
which included but were not limited to IEEE, Elsevier, Springer, MDPI, Emerald, SAGE, 
ACM, and Taylor and Francis.  The search strings used were as follows; 

• Tiny Machine Learning AND Predictive Maintenance 

• Machine Learning AND Predictive Maintenance 

• Predictive Maintenance AND Industries 

• Tiny Machine Learning AND Industries 

• Machine Learning AND Industries 

3.3 Article Selection 

The search strings were applied to the selected databases as of February 21, 2024, with 
a filter considering the last 10 years, 2014-2024, and removing quotations and patents. The 
articles were then exported to Zotero software[41]. The total number of articles downloaded 
was 252.  The quality assessment criteria, presented in Table 1, were used to filter the articles 
further to ensure only the most relevant ones were reviewed.  

Table 1. Quality Assessment Criteria. 

Section Description 

Criteria 1 Exclude any article published before 2014 

Criteria 2 Exclude books, thesis, and technical reports. 

Criteria 3 Exclude publications that are less than three pages long and not in English. 

Criteria 4 Exclude publications that do not use the search terms in the title, abstract, con-
clusion, or keywords. 

Criteria 5 Exclude publications that are duplicates. 

 
After applying the quality assessment criteria, 164 articles were selected for data extrac-

tion and analysis. 

3.4 Article Selection Results 

3.4.1 Type of paper 

Most of the selected articles were journal papers. Figure 1 presents the percentage of 
reviewed journal articles compared to conference papers. 

3.4.2 Year of publication 

The publications selected show a rising trend over the years. However, a decline in 2023 
is not conclusive as it may be attributed to the limited availability of online papers for confer-
ences held later in the year. Interestingly, no papers were selected that had been published in 
2016. It will be interesting to investigate the reason for this.  Figure 2 shows a plot of the 
year of publications for the selected papers 
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Figure 1. Type of Papers selected for review 

 

Figure 2. Year of Publications for the selected papers 

3.4.3 Area of Focus 

Most publications focused on using traditional ML architectures in PdM applications, 
with those focused on TinyML or Edge implementations just beginning to emerge. Figure 3 
presents a comparison of the two areas of focus. 

 

Figure 3. Areas of focus for the selected papers 

4. Results and Discussion 

4.1. Machine Learning in Predictive Maintenance 

Predictive maintenance is a proactive approach used across industries to anticipate and 
address equipment issues before they lead to failures [33], [42]. This strategy is key for en-
hancing operational efficiency, reducing unplanned downtime, and saving costs [43]. Unlike 
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reactive maintenance, which responds to equipment failure after the fact, or preventive 
maintenance, which schedules maintenance at regular intervals regardless of need, predictive 
maintenance utilizes real-time data and condition monitoring to predict when maintenance 
should be performed [44]. The study [45] highlights implementing machine learning tech-
niques as an effective solution for preventive maintenance planning, emphasizing its potential 
to reduce corrective maintenance expenses by 13% for 2020.  This approach significantly 
improves equipment reliability and operational uptime [46]. 

Predictive maintenance represents a strategic approach within industrial maintenance to 
enhance productivity by preventing equipment failures before they occur[47], [48]. This strat-
egy has evolved significantly with the advent of Industry 4.0 technologies, shifting from reac-
tive and preventive maintenance towards a more intelligent, data-driven methodology that 
leverages real-time data analysis to foresee and prevent equipment failures [49], [50]. The in-
tegration of technologies such as the Internet of Things (IoT), machine learning, and aug-
mented reality (AR) into predictive maintenance systems has enabled more sophisticated 
monitoring and analysis capabilities, facilitating the transition from traditional maintenance 
practices to more proactive and efficient strategies[51]–[54]. 

The rise of Industry 4.0 has revolutionized predictive maintenance through the integra-
tion of advanced technologies such as machine learning (ML) and artificial intelligence (AI) 
[55], [56]. In the realm of predictive maintenance, machine learning plays a crucial role by 
offering the capability to predict the likelihood of equipment failure before it occurs[57]. This 
approach relies on analyzing vast amounts of data from various sources, such as tool sensors, 
process parameters, and historical maintenance records. Applying machine learning algo-
rithms to these data sets makes it possible to identify patterns and trends that precede equip-
ment failures. This predictive capability allows for maintenance to be scheduled at an optimal 
time before the equipment fails but not so early that it leads to unnecessary downtime or 
wasteful use of resources[58]. Such a strategy not only enhances the reliability and availability 
of the equipment but also significantly reduces maintenance costs and operational efficiency 
[52]. 

These technologies analyze data from sensors attached to equipment to detect patterns 
indicative of potential failures. Machine learning algorithms, including convolutional neural 
networks (CNN), long short-term memory (LSTM) networks, and deep learning models, are 
particularly effective in processing and analyzing this data. They can predict equipment fail-
ures and estimate machinery's Remaining Useful Life (RUL), allowing maintenance teams to 
schedule interventions precisely and avoid unnecessary maintenance actions or unexpected 
breakdowns [17]. Such applications can be classified as presented in Figure 4.  

 

Figure 4. Classification of ML applications in PdM. 

Condition monitoring applications include monitoring the health of centrifugal com-
pressors [17], monitoring different industrial equipment in real-time, monitoring the real-time 
condition of bearings [59], and predicting machine conditions [60]. Fault detection and diag-
nosis applications include early fault detection in predictive maintenance [61], fault diagnosis 
in manufacturing environments [62], and prediction of the possibility of failure in semicon-
ductor manufacturing [52]. Wind turbine fault diagnosis and predictive maintenance[64], di-
agnostic systems of heavy machinery, such as agricultural equipment, to predict failures and 
guide maintenance decisions effectively[65], fault analysis and predictive maintenance of in-
duction motors[66], predicting bearing failures [67], predicting the time-to-failure of industrial 
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machines [68], system modeling for anomaly detection and predictive maintenance within 
industrial settings [69], anomaly detection in vessel engines[70]. 

General Applications include Maintenance for Electrical Submersible Pumps (ESPs) in 
the petroleum industry[71], Aircraft predictive maintenance [72], Predictive maintenance for 
distribution transformers [45], Predictive maintenance of a metallic stamping machine [51], 
Optimizing dynamic flow-shop production scheduling[73], Predictive maintenance frame-
work for building installations [74], an industrial metal stamping machine [53], a woodworking 
cutting machine[75], [76]. Predictive maintenance planning framework for MEP components 
[77]. Predictive maintenance in oil and gas equipment[78], a predictive maintenance frame-
work for nuclear infrastructure[79], and predictive maintenance in the shipping industry [80]. 
Predictive maintenance (PdM) in machining processes[81], maintenance within the greek rail-
ways[82], motor classification [83], predictive maintenance of a slitting machine [84], Predic-
tive maintenance framework for ballast pumps in ship repair yards [85], predictive mainte-
nance for industrial packaging robots [86], predicting the operational accuracy of industrial 
machines, specifically within a cement production plant [87], predictive maintenance system 
for industrial equipment monitoring, [88], predictive maintenance for industrial radial fans 
[89]. 

While the predictive maintenance models demonstrate the potential of machine learning 
to transform maintenance strategies, their application in the context of Tiny ML or small-
scale industries is constrained by data availability, computational resource requirements, ex-
pertise, implementation costs, and the need for model customization. Addressing these limi-
tations requires innovative solutions, such as developing more efficient machine learning al-
gorithms, enhancing data collection practices, and fostering collaborations to share 
knowledge and resources. 

4.2 TinyML in Predictive Maintenance 

4.2.1 TinyML and Its Evolution 

TinyML represents a significant growth in AI, prioritizing deploying machine learning 
models on devices with minimal power consumption, such as microcontrollers and embed-
ded systems[90]. Created to mitigate AI's environmental impact and make it more accessible, 
TinyML introduces an innovation where intelligence is pushed to the edge, enabling AI pro-
cessing on devices far smaller and more power-efficient than traditional computing de-
vices[91].  

The inception of IoT in 1999 laid the stepping stone for a network extending beyond 
computers to include more tiny devices, thereby setting the stage for integrating machine 
learning into these devices to make them smarter [92]. As the IoT ecosystem expanded, cloud 
computing's limitations became clear, leading to the emergence of Fog computing and, sub-
sequently, Edge AI. These developments sought to bring processing closer to data sources, 
reducing latency and enhancing faster and real-time decision-making. TinyML is the culmina-
tion of these advancements, inspired by Mobile ML's efficiency and driven by breakthroughs 
in IoT and microcontroller technology[93]. TinyML has found applications across different 
sectors, including healthcare, agriculture, and industrial IoT, presenting its versatility and 
broad applicability[8]. Different models and frameworks, such as the TinyMLOps framework 
systems[94] introduce a specialized approach for implementing Ma-chine Learning (ML) 
models in resource-constrained Internet of Things (IoT) devices, also known as far-edge de-
vices.  

4.2.2 TinyML vs. Standard ML 

TinyML and standard ML differ primarily in their computational environments. Stand-
ard ML typically operates in cloud or high-performance computing environments, leveraging 
substantial computational power and data storage capabilities. In contrast, TinyML is de-
signed for edge devices with limited power and computational resources, such as microcon-
trollers. 

The strengths of TinyML include the following: TinyML models are optimized for 
power efficiency, making them ideal for battery-operated devices; By processing data on-de-
vice, TinyML reduces the latency associated with data transmission to and from cloud servers; 
Data is processed locally, minimizing the risk of data breaches during transmission. On the 
other hand, the weaknesses of TinyML include the following: TinyML devices cannot handle 
as complex models as those used in standard ML, which can limit the sophistication of the 
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algorithms. To fit within the memory constraints of edge devices, TinyML models are often 
simplified, which can affect their accuracy and performance. 

The strengths of Standard ML, however, are that Standard ML can handle complex 
models and large datasets, leading to potentially higher accuracy and more advanced applica-
tions; Cloud-based infrastructures can scale resources dynamically, accommodating varying 
workloads. In addition, the weaknesses of Standard ML include High Latency and Power 
Consumption: The need to transmit data to centralized servers can introduce latency and 
require significant power. Transmitting data over networks can pose security risks. 

4.2.3 Benefits of TinyML 

Real-Time Applications: By minimizing latency, TinyML facilitates deploying applica-
tions like image and speech recognition directly at the data source, enabling faster response 
times critical in real-time decision-making scenarios. 

Privacy and Security Enhancements: With data processing confined to the device, Ti-
nyML significantly boosts user privacy and complies with different data protection regula-
tions, addressing a growing concern in AI ethics. 

Low Energy Consumption: TinyML devices consume substantially less power than tra-
ditional computing hardware, allowing for extended battery power operation and contributing 
to a greener, more sustainable technology landscape. 

Cost-Effectiveness: By processing data locally, TinyML reduces the need for data trans-
mission to cloud servers, saving on bandwidth and storage costs and lowering energy con-
sumption costs. 

4.2.4 Proposed TinyML Process Flow 

The TinyML process begins with the collection of data from various sources, including 
data from humans, computerized systems, different IoT-driven/embedded devices, and syn-
thetic data generators. After data collection, different algorithms are applied to train the data 
through supervised or unsupervised learning. The training may begin from scratch or build 
on existing trained models through transfer, reinforcement, or federated learning. The train-
ing is normally done on cloud-based systems with the needed computational resources. After 
training, the model is optimized for deployment on tiny edge devices, where inference takes 
place as an application. Figure 5 presents the proposed TinyML process flow. 

 

Figure 5. Proposed TinyML process flow 

4.2.5 Applicability in Predictive Maintenance 

In the industrial sector, predictive maintenance is a critical area where TinyML can pro-
foundly impact. By embedding ML algorithms at the edge, manufacturers can continuously 
monitor and analyze machine output—such as sounds, temperature, movements, or vibra-
tions—to detect anomalies indicative of potential failures. This real-time analysis can signifi-
cantly reduce downtime by allowing for prompt corrective actions, enhancing overall produc-
tion efficiency and reducing maintenance costs. 
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4.3 TinyML Use Cases in Industrial PdM 

This section presents recent studies that leverage TinyML for Predictive Maintenance 
(PdM) across various sectors. The studies are classified according to their specific tasks, such 
as anomaly detection, health and condition monitoring, operational monitoring and analysis, 
and predictive maintenance. This task-based categorization aims to provide a clear and struc-
tured overview of how TinyML is being utilized to revolutionize predictive maintenance prac-
tices, highlighting the unique approaches and solutions developed to tackle different chal-
lenges within industrial settings.  

4.3.1 Anomaly Detection 

These studies focus on identifying unusual patterns that do not conform to expected 
behavior. To begin with, a study developed a TinyML model deployed on an STM32H743Z12 
microcontroller unit (MCU) for anomaly detection in rotating machinery. The system uses an 
accelerometer to acquire vibration signals, processes these to extract features, and employs 
an autoencoder ML model for local training and inference, achieving real-time anomaly de-
tection with high efficiency[95]. Another study described a system for detecting anomalies in 
submersible pumps at wastewater plants using an ESP32DEVKIT MCU with sensors for 
temperature and vibration. The system utilizes an Isolation Forest model for edge-based 
anomaly detection, demonstrating the feasibility of retrofitting existing equipment with Ti-
nyML capabilities [96].  

An innovative sensor system that utilizes three microcontroller unit (MCU)--based Ti-
nyML cameras designed for automatic artifact and anomaly detection in plastic components 
is proposed. This system integrates a top camera for identifying shape defects and two side 
cameras for detecting color anomalies, with the entire data processing executed locally on 
TinyML, significantly reducing data transmission needs. The study evaluates two state-of-the-
art convolutional neural network (CNN) architectures, MobileNetV2 and SqueezeNet, for 
their suitability in resource-constrained microcontrollers, focusing on their ability to maintain 
high classification accuracy (99%) and real-time performance with minimal energy consump-
tion[90]. 

In addition, an Auto-Encoder model for anomaly detection in time-series vibration sen-
sor data, tailored for deployment on resource-constrained embedded hardware, specifically 
an ARM Cortex-M4 microcontroller, has also been proposed. The model stands out for its 
minimal footprint (7.5 KB) and demonstrates promising results with accuracy and precision 
around 80%, despite the inherent trade-offs between model size and accuracy due to post-
training quantization[63]. A TinyML model running on an ESP-WROOM-32 MCU device 
was created to detect anomalies in thermal images of machinery. By leveraging a convolutional 
neural network (CNN) and sending data via MQTT only upon anomaly detection, this ap-
proach exemplifies TinyML's potential to reduce data transmission needs and enhance 
maintenance efficiency[97]. 

Moreover, a framework was applied to an anomaly detection scenario involving indus-
trial rotary machines. A validation scenario within a wastewater management plant demon-
strates the framework's feasibility. It involves emulating sensor data production using the 
NASA Bearing Dataset and implementing the anomaly detection system on an ESP32 micro-
controller for the edge device and a Raspberry Pi 4B as the gateway[94]. Last but not least, a 
study presents an innovative anomaly detection system designed for extreme industrial envi-
ronments, leveraging the synergy of IoT, edge computing, and TinyML. Using the isolation 
forest algorithm, it employs an ESP32 microcontroller-based IoT kit for real-time data pro-
cessing and anomaly detection. It demonstrates efficient performance with quick inference 
times and minimal memory requirements. Incorporating blockchain technology for data in-
tegrity [98]. 

4.3.2 Operational Monitoring and Analysis 

Include applications that continuously monitor for operational efficiency, safety, or spe-
cific conditions indicative of the need for intervention. First, a study presents a predictive 
maintenance approach for industrial applications, particularly in the textile industry, focusing 
on circular knitting machines. The approach integrates the Internet of Things (IoT) and ma-
chine learning (ML) technologies, leveraging a system of IoT-enabled devices to monitor ma-
chine operations in real-time. Data on machine speeds and stops are collected, preprocessed, 
and analyzed using the AdaBoost machine learning algorithm [99]. Another study presents a 
comprehensive analysis of the use of thermal, mechanical, and partial discharge sensors to 
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monitor critical grid assets continuously. By employing machine learning algorithms, these 
sensor data can be analyzed to predict equipment failures, thereby enabling timely mainte-
nance interventions[100]. An application of TinyML for real-time impact localization on thin 
plastic plates using low-power, resource-constrained IoT devices has been presented. Lever-
aging piezoelectric sensor data and implementing machine learning models, specifically Ran-
dom Forest and Shallow Neural Networks, on an Arduino NANO 33 BLE microcontroller 
[92]. 

Further, an article introduces an ultralow-power Smart IoT device designed to monitor 
the activity of handheld power tools in construction environments, leveraging Tiny Machine 
Learning (TinyML) for edge processing. It uniquely categorizes tool usage into various oper-
ational modes (transport, no-load, metal drilling, and wood drilling), facilitating optimized 
maintenance, extended tool lifecycles, and improved safety. Utilizing Bluetooth Low Energy 
(BLE) and Near Field Communication (NFC) for efficient data communication and activa-
tion, the device incorporates temperature, humidity, and acceleration sensors [101]. 

4.3.3 Health and Condition Monitoring 

Involves assessing the health or condition of equipment to identify maintenance needs 
or operational adjustments. To begin with, a study introduces a pioneering TinyML approach 
for non-repudiable anomaly detection within extreme industrial settings, focusing on a retro-
fitting kit designed for condition monitoring (CM) of industrial assets such as pumps in 
wastewater management plants. This IoT-based solution is equipped with sensors and a mi-
crocontroller unit (MCU) to process and analyze data locally, employing an unsupervised 
anomaly detection algorithm for real-time monitoring. The integration of TinyML facilitates 
the autonomous learning of normal operational patterns directly on constrained devices, op-
timizing the detection process without external dependencies. Additionally, the system har-
nesses blockchain technology to create a secure, immutable log of detected anomalies, en-
hancing the transparency and reliability of the maintenance process [96]. 

A study has been presented to address the challenge of deploying Deep Neural Network 
(DNN) models on Microcontroller Units (MCUs) for predictive maintenance, particularly 
focusing on bearing health prediction in rotating machinery. The paper explores methods to 
overcome these limitations, such as pruning and quantization, to reduce model size without 
significantly compromising accuracy[101]. In addition, a study explores the deployment of 
machine learning algorithms on an embedded microcontroller for real-time anomaly detec-
tion in mechanical systems, specifically a top-load washing machine. The study focuses on 
detecting unbalanced loads during the washing cycle by collecting and analyzing accelerome-
ter data from normal (balanced) and abnormal (unbalanced) laundry loads. Two types of neu-
ral network models, an autoencoder and a variational autoencoder (VAE), were trained using 
the normal dataset and then deployed on an Arduino Nano microcontroller attached to the 
washing machine[102]. 

4.3.4 Predictive Maintenance 

Aimed at predicting when maintenance should be performed to prevent failure, enhance 
operational efficiency, and extend equipment lifespan. First, a study introduces a novel Low-
Power On-Device Predictive Maintenance (LOPdM) system that incorporates Self-Powered 
Sensing (SPS) and Tiny Machine Learning (TinyML) to offer high-precision, energy-efficient 
equipment failure predictions directly on the device. Leveraging a lightweight piezoelectric 
cantilever for sensing and analyzing data through advanced AI models, specifically Random 
Forest (RF) and Deep Neural Network (DNN), the system achieves up to 99% accuracy in 
detecting anomalies with minimal data requirements[103]–[105]. In addition, a paper discusses 
an initiative by the INFN-CNAF computing center to implement a predictive maintenance 
system using machine learning to analyze complex and unstructured log data from services 
like StoRM, a Grid Storage Resource Manager[106]. A Deep Echo State Network (DeepESN) 
model was proposed for monitoring water distribution systems capable of adapting to envi-
ronmental changes. This online learning anomaly detection model demonstrates TinyML's 
flexibility and applicability in critical infrastructure maintenance [107]. 

Further, a Block based Binary Shallow Echo State Network (BBS-ESN) model was pro-
posed. This model emphasizes TinyML's capacity for handling complex tasks like im-age-
based anomaly detection through deep quantization techniques, highlighting its applicability 
in renewable energy sectors. In addition, a study [108] presents the use of machine learning 
for predictive maintenance in oil and gas industries. 
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A predictive maintenance system was developed for manufacturing production lines us-
ing machine learning models and real-time IoT sensor data. The aim was to predict potential 
equipment failures to prevent production stops. The system's effectiveness was validated with 
real-world data from a diaper production line, highlighting the significant performance of 
ensemble methods like Random Forest and XGBoost [109]. Also, a study explored the ap-
plication of Tiny Machine Learning (TinyML) techniques for predicting the Remaining Useful 
Life (RUL) of turbofan engines, focusing on deployment in resource-constrained environ-
ments such as IoT devices. Utilizing the C-MAPSS dataset from NASA and deploying on an 
STM32F767ZI microcontroller with the X-CUBE-AI tool, the research evaluated various 
machine learning models, including Long Short-Term Memory networks (LSTM), Convolu-
tional Neural Networks (CNN), XGBoost, and Random Forest [22]. 

Moreover, a study introduces a data-centric approach to enhance wind turbines' predic-
tive maintenance (PdM). Utilizing a dataset provided by Energias De Portugal (EDP) and 
focusing on optimizing data preprocessing and feature selection rather than model complex-
ity, the research demonstrates significant improvements in the prediction of Remaining Use-
ful Life (RUL) for wind turbine components [110]. Another study introduces a novel real-
time prediction method for estimating equipment's Remaining Useful Life (RUL) through a 
compact, efficient TinyML framework. Leveraging a two-dimensional Convolutional Neural 
Network (CNN) enhanced by L1 norm weight pruning and Adam optimization algorithm 
retraining, this method reduces the model's computational demands and memory footprint 
without significantly compromising accuracy. Tested on the C-MAPSS dataset from NASA, 
which contains diverse engine operation data, the proposed approach demonstrates its effec-
tiveness in predictive maintenance applications [111]. 

In a comparative study, two IoT-based predictive analytics models, TinyLSTM and Ti-
nyModel from Edge Impulse, were evaluated for their effectiveness in on-device predictive 
maintenance through real-time prediction of industrial equipment's remaining useful life 
(RUL). The dataset comprised real-time data from critical components of an autoclave steri-
lizer, including Temperature, Vibration, and Current from two sources [112]. An innovative 
Edge AI system utilizing a thermal camera for industrial anomaly detection, focusing on pre-
dictive maintenance to minimize long-term costs and downtime, has also been proposed. This 
system employs deep neural networks (DNNs) to directly analyze temperature patterns indic-
ative of machine conditions on microcontrollers, significantly reducing data transmission re-
quirements [97]. Another study introduces an unsupervised on-device learning algorithm uti-
lizing Tiny Machine Learning (TinyML) for anomaly detection, inspired by the extreme value 
theory. The methodology employs the two-parameter Weibull distribution function for iden-
tifying anomalies within discrete time series data, achieving impressive results in terms of 
accuracy (99.80%), recall (93.10%), and F1 score (96.43%) [113]. 

4.4. Analysis and Discussion 

From the reviewed use cases, the development of TinyML models for PdM began in 
2019, with a significant rise noted in 2022 as more applications emerged. The results show 
fewer applications in 2023 in this area of study, which can be attributed to the low availability 
of papers accepted online towards the end of 2023. The number of applications is still way 
below the numbers for cloud-based applications. In addition, many use cases remain unex-
ploited, especially applications for small-scale industries. Figure 6 plots the use cases by the 
years of publication. 

 

Figure 6. Number of Published TinyML-driven PdM use cases  
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4.4.1 Use Case Classification By Industry Sector 

The applications can be classified based on the specific industry sector they are applied 
to. This can provide insights into how TinyML technologies are applied across different fields. 
Based on this classification, the reviewed use cases can be classified as; 

• Manufacturing: Applications involving rotary machines, submersible pumps, and pro-
duction lines. 

• Energy: Use cases focused on wind turbines, water distribution systems, and grid asset 
monitoring. 

• Construction: Monitoring of handheld power tools. 

• Computing and Data Centers: Maintenance of computing infrastructure. 

• Textile: Monitoring operations of circular knitting machines. 

4.4.2 Use Case Classification By Sensor Type 

Focusing on the type of sensors employed in each application reveals the diverse data 
sources TinyML models can work with; 

• Vibration and Accelerometer Sensors: Rotating machinery, submersible pumps, wind 
turbine oil leak detection. 

• Thermal and Temperature Sensors: Thermal anomaly detection in machinery, submers-
ible pumps. 

• Piezoelectric Sensors: Impact localization on thin plastic plates. 

• Camera and Image Sensors: Plastic component inspection, wind turbine oil leak detec-
tion. 

• Sound sensors 

4.4.3 Use Case Classification By Task Type 

Looking at the tasks TinyML models are performing offers insight into the common 
challenges addressed in industrial settings. 

• Anomaly and Fault Detection: Most applications aim to identify unusual patterns that 
indicate potential failures. 

• Predictive Maintenance: Applications focused on predicting when maintenance should 
be performed to prevent failure. 

• Monitoring and Operation Analysis: Tasks that involve continuous monitoring for op-
erational efficiency and safety. 

• Health and Condition Monitoring: This involves assessing the health or condition of 
equipment to identify maintenance needs or operational adjustments. 
 

Figure 7 presents a mind map of the application of TinyML in PdM in industries and 
will guide future studies. 

Recent studies collectively demonstrate the transformative impact of TinyML in various 
Industry 4.0 applications, from manufacturing to energy systems and beyond. By integrating 
advanced machine learning algorithms on low-power Microcontroller Units the studies show 
the significant potential of TinyML in enhancing efficiency, optimizing resource allocation, 
and revolutionizing condition monitoring systems through real-time anomaly detection and 
predictive maintenance. An autoencoder model showcased remarkable performance in indus-
trial anomaly detection with high accuracy and minimal impact on battery life, illustrating the 
feasibility of embedding complex ML algorithms in tiny IoT devices for early detection of 
mechanical failures and structural health monitoring. These studies support TinyML's im-
portant role in enabling scalable, efficient, and intelligent monitoring solutions, setting a sig-
nificant precedent for future research in smart objects and the next generation of IoT solu-
tions with minimal resource requirements, reduced latencies, and high accuracies. 

4.5 Challenges in TinyML for Industrial Predictive Maintenance 

The application of TinyML in industrial contexts faces numerous challenges: 
1. Lack of a Benchmark for TinyML solutions: Developing a benchmark is a significant 

challenge due to the differences in TinyML workloads and hardware. The diversity in 
power consumption, computational capabilities, and memory constraints among devices 
complicates the creation of a universal benchmark.  
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Figure 7. A mind map of TinyML in PdM use cases 

 
2. Hardware and Software Heterogeneity:  Addressing hardware and software heterogene-

ity is complex since TinyML systems can range from general-purpose microcontrollers 
to specialized low-power inference engines, and the software can vary from hand-coded 
models to those deployed via machine learning interpreters. This diversity hinders per-
formance comparison. 

3. Lack of standard models: Another challenge is selecting representative use cases and 
models due to the nascent stage of TinyML, which lacks consensus on standard models 
or use cases for benchmarks. Furthermore, achieving a balance between optimality, port-
ability, and comparability of benchmarks is difficult but crucial for their meaningful 
adoption.  

4. Limited memory:  The iterative improvement of benchmarks is necessitated by the 
rapid evolution of TinyML, which requires adaptable benchmarks and is open to revi-
sions. The limited memory of TinyML devices presents a significant challenge, necessi-
tating trade-offs between model performance and memory usage.  

5. Accuracy Drops: Deploying ML models on edge devices often results in decreased ac-
curacy due to limited computational resources and data storage capacity. 

6. Privacy issues: Privacy concerns arise from collecting potentially sensitive information 
by sensors.  

7. Trustworthiness and reliability:  The newness of TinyML and its application in critical 
domains, like healthcare, brings into question the trustworthiness and reliability of such 
devices. 
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4.6 Future Directions for TinyML in Industrial Predictive Maintenance 

To overcome these challenges, several future directions are proposed. Establishing a 
common benchmarking framework that considers the unique characteristics of TinyML de-
vices could enable fair comparisons and foster innovation. Embracing hardware and software 
diversity through open and closed divisions in benchmarking could include a broad range of 
TinyML solutions while ensuring comparability. Focusing on diversity in use cases and mod-
els for benchmarks could ensure they reflect the breadth of TinyML applications. Developing 
a benchmark suite with multiple deployment options could ensure the flexibility and adapta-
bility of benchmarks to various TinyML systems. 

Adopting an iterative approach to benchmark development could allow for refinement 
and expansion as the field evolves. Moving towards on-device learning could address the 
challenge of concept drift by allowing TinyML devices to adapt to environmental changes 
through real-time data updates. Utilizing memory optimization techniques such as compres-
sion and quantization could optimize memory usage without sacrificing model accuracy. Ad-
dressing privacy with embedded architecture could enhance the privacy and security of sen-
sitive data. Lastly, ensuring the reliability and trustworthiness of TinyML devices through 
robust design and testing methodologies is crucial, especially in critical sectors. 

These future directions offer a roadmap for addressing current limitations and unlocking 
the full potential of TinyML in industrial predictive maintenance and beyond, paving the way 
for innovative applications and advancements in the field. 

5. Summary of Findings 

We summarize the key findings of our review, noting that while TinyML is still in its 
early stages, it shows great promise for PdM applications. The technology's ability to operate 
on low-power devices makes it ideal for real-time monitoring and anomaly detection. How-
ever, practical implementation in the industry remains limited, highlighting a need for more 
case studies and practical examples. The review also identifies significant gaps in the literature, 
including a lack of standardized benchmarks and limited discussion on the scalability of Ti-
nyML solutions. 

6. Study Limitations 

The primary limitation of this study is the focus on specific industries, which may not 
be generalizable to all sectors. Additionally, the scope of the literature review was limited to 
English-language publications, potentially excluding relevant studies in other languages. Fu-
ture research should consider a broader range of industries and include a more diverse set of 
studies to provide a comprehensive view of TinyML's applications and limitations. 

7. Conclusions 

This study underscores the transformative potential of Tiny Machine Learning (TinyML) 
in the realm of industrial predictive maintenance, illustrating its pivotal role in advancing 
maintenance strategies to be more aligned with the demands of Industry 4.0. Through a com-
prehensive literature review, the study reveals a growing interest in leveraging TinyML to 
enhance operational efficiency, reduce downtime, and ensure sustainable practices within in-
dustrial settings. It highlights the innovative application of TinyML in various sectors, demon-
strating its versatility and effectiveness in real-time anomaly detection, health and condition 
monitoring, and operational analysis. However, the study also identifies significant challenges, 
including the need for benchmark development, hardware and software heterogeneity, 
memory constraints, and concerns regarding device reliability and data privacy. Addressing 
these challenges requires a concerted effort from researchers, practitioners, and industry 
stakeholders to develop a common benchmarking framework, adopt memory optimization 
techniques, and ensure the privacy and reliability of TinyML devices. The future of TinyML 
in industrial predictive maintenance is promising, with potential advancements in on-device 
learning, privacy-enhancing technologies, and the development of more reliable and diverse 
TinyML solutions. As the field continues to evolve, ongoing research and collaboration are 
crucial to unlocking the full potential of TinyML, driving forward predictive maintenance 
capabilities, and fostering a new era of industrial efficiency and sustainability. 
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