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Abstract: To effectively comprehend human actions, we have developed a Deep Neural Network 

(DNN) that utilizes inner spatiotemporal non-locality to capture meaningful semantic context for ef-

ficient action identification. This work introduces the Top-Heavy CapsNet as a novel approach for 

video analysis, incorporating a 3D Convolutional Neural Network (3DCNN) to apply the thematic 

actions of local classifiers for effective classification based on motion from the spatiotemporal context 

in videos. This DNN comprises multiple layers, including 3D Convolutional Neural Network 

(3DCNN), Spatial Depth-Based Non-Local (SBN) layer, and Deep Capsule (DCapsNet). Firstly, the 

3DCNN extracts structured and semantic information from RGB and optical flow streams. Secondly, 

the SBN layer processes feature blocks with spatial depth to emphasize visually advantageous cues, 

potentially aiding in action differentiation. Finally, DCapsNet is more effective in exploiting vectorized 

prominent features to represent objects and various action features for the ultimate label determination. 

Experimental results demonstrate that the proposed DNN achieves an average accuracy of 97.6%, 

surpassing conventional DNNs on the traffic police dataset. Furthermore, the proposed DNN attains 

average accuracies of 98.3% and 80.7% on the UCF101 and HMDB51 datasets, respectively. This 

underscores the applicability of the proposed DNN for effectively recognizing diverse actions per-

formed by subjects in videos. 

Keywords: Action recognition; Attention mechanism; Capsule network; Deep neural network; Spati-

otemporal.  

 

1. Introduction 

Deep Neural Networks (DNN) have demonstrated remarkable success in addressing 
visual recognition problems that are extensively handled to extract visual features and have 
been widely and extremely good outcomes in video understanding. Nevertheless, the power-
ful class of Convolution Neural Network (CNN) model research on video recognition has 
been adopted in local operations related to spatial representation while ignoring the in-for-
mation intensive of complex temporal variations, which rely on the pattern of abundant spa-
tial and temporal feature [1]–[4]. As 2D CNNs only capture individual appearance features 
for each frame without considering motion information in video sequences, mul-ti-stream 
CNNs[1]–[3], [5] have been introduced. These networks incorporate stacked optical flow 
(OF), RGB, depth maps, etc., as additional inputs to enhance short-term modeling. However, 
CNN still has several limitations. It is tough to gather diverse training data, the limited equiv-
alence, and the inability to maintain spatial hierarchies’ features, effectively concentrate on, 
and efficiently contribute useful clues to the learning processes. Typically, previous CNN-
based methods of video action recognition involved two key steps: creating frame-level action 
proposals and connecting ideas across frames. Moreover, most of these algorithms use a two-
stream CNN architecture to separate spatial and temporal information. In contrast to 2D 
CNNs, 3D CNNs[6], [7] utilize 3D spatiotemporal kernels to collect both spatial and tem-
poral information simultaneously, making them more appropriate for video analysis. They 
are widely employed in action recognition as well as various improved methods have emerged 
from 3D CNNs[6], [8]. 
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Recently, attention mechanisms have been incorporated into models to account for 
global dependencies [6], [9]. Attention mechanisms are crucial for capturing long-range de-
pendencies across the entire image and have been used to enhance the performance of CNNs 
in tasks such as image classification and scene segmentation [10], [11]. In these works, atten-
tion mechanisms are applied both spatially and channel-wise. Spatial attention focuses on 
spatial connections between geographical objects, while channel attention enhances certain 
channels' importance and diminishes others' importance. The Squeeze-and-Excitation mod-
ule [12] serves as a channel-specific attention block, improving CNN performance with min-
imal computational cost. On the other hand, the non-local block [13]–[15] leverages spatial 
and temporal information to capture dependencies between features across frames, akin to 
an attention-based approach. However, previous research has indicated that attention mech-
anisms are primarily used to handle two-dimensional information related to spatial attention 
mechanisms. The attention module computes the spatial correlation matrix between any two 
locations in the input feature maps. Each position is computed and updated using the 
weighted sum of the previous positions. To enhance the 3D spatial-temporal modeling in 
videos, we have de-vised a 3D attention model that combines spatial and depth attention 
modules to capture feature-level correlations in three dimensions. The proposed SBN neural 
network enables convolutional layers to capture long-range relationships in 3D space, en-
hancing the recognition performance of actions. 

Capsule Network (CapsNet), a group of capsules instead of a neuron to encode the part-
whole relationship, was first proposed as a new architecture by GE Hinton et al. [16]. As the 
original CapsNet relies solely on shallow CNNs to retain spatial information, the introduction 
of deep CapsNet [17]–[19]aimed to address the absence of semantic information. Although 
research on capsules is intuitive and has many fundamental advantages, a notable issue in 
performance arises as learning becomes more challenging with deeper CapsNets. This diffi-
culty may stem from issues such as gradient explosion or an elongated chain of dynamic 
routing. Deep CapsNet may require higher dimensions of capsules and increase the number 
of trainable parameters when classifying complex datasets [17]. Therefore, in this study, we 
proposed top-heavy CapsNets in which Deep CapsNet is the tail of architecture.  

The motivation from the involved series of technical are considered to address these 
gaps. Firstly, the 3D CNN [3] was proposed to capture spatial and temporal information from 
appearance and motion features, which are more appropriate for video recognition. Secondly, 
spatial and temporal non-local attention use the correlation transposed space feature to mimic 
the human perception that selectively concentrates on significant regions within the visual 
space to gather information for better understanding. 

2. Related Works 

Several research efforts have been successful in creating spatiotemporal features for ac-
tion classification, including the use of two-stream networks combining RGB with Optical 
Flow [3], [5], [20]. Moreover, two streams based on 3D CNNs trained on large-scale, high-
quality datasets such as ImgNet, Sports 1M, and Kinetics allow the training of deeper 3D 
CNN models and achieve high performance [3], [20], [21]. I3D holds one of the best archi-
tectures for action recognition on large-scale Kinetics datasets. By adopting various I3D tech-
niques based on strategies like pose motion, motion augmentation, and IDT for visual illusion 
[8], [20], [21], the results have been significantly improved. This motivation inspired us to 
leverage a three-stream CNN architecture for multi-stream learning. 

Inspired by machine translation and object detection, Xu et al. [22]introduced an auto-
matic attention mechanism to learn images' content. This involved using an attention mech-
anism in the DNN to emphasize the meaningful part of an image. In [1], an attention mech-
anism for person action detection was proposed, focusing on modeling the surrounding con-
text of actors. Attention functions for relating different positions in a sentence were employed 
in [6], [11], emphasizing meaningful regions. Additionally, self-attention modules were intro-
duced in [1], [2], utilizing object relations to detect them and effectively enhance results in 
image generation. As a result of these positional relations-based attention models, we devel-
oped a spatio-depth attention model that scales the feature map at various locations according 
to the channel feature for action recognition. 

To enhance performance, common structures are employed to integrate convolutional 
networks and CapsNet [3], [17]–[19]. The primary capsule and convolutional layers are 
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combined to improve efficiency using self-attention features. For image classification, [19] 
stacks multiple residual blocks and utilizes capsule layers for shared transformation matrices. 
Additionally, a deeper design can be employed to enhance the performance of the capsule 
network when dealing with complex data. Our work leverages hierarchical relationships 
within the CapsNet level to make predictions more effectively in the final part of the efficient 
architecture.   

Our contribution to this paper is as follows:  
• We proposed developing a new architecture for video activity recognition that is able to 

be composed, both of which exploit rich spatial and temporal feature abstraction 
through an attention mechanism. This proposed top-heavy CapsNets, in which Deep 
CapsNet is the tail of architecture present, enhances performance and enables more ac-
cessible learning.   

• We conducted the effectiveness approach through extensive experiments to obtain a 
good architecture in the case with and without capsnet, and achieve potential outcomes 
on the UCF 101 dataset. 

3. Proposed Model DNN for Action Recognition 

In this study, we present the proposed DNN for action recognition. Our DNN frame-
work consists of the I3D backbone, SBN creation layers, and CapsNet, as illustrated in Figure 
1 (b). During preprocessing, the RGB stream is evenly divided into one or multiple temporal 
frame segments T, with a 50% overlap ratio. The optical flow channel frames are generated 
from the RGB frames using the well-known regularization and robust L1 norm (TVL1) [3]. 
Each pair of X-axis and Y-axis optical flow channels has dimensions (224×224×2). The linear 
transformation further normalizes each stacked component in these two optical flow channels 
to a value between 0 and 255. 

 

Figure 1. Block diagram of the proposed DNN. Our architecture is built upon a 3D CNN network 
up to the 'Mixed-4f' block to generate spatial and temporal feature maps; (a) Appearance stream 

structure, where we apply the Spatial Bottleneck (SBN) layer, Reduction Layer (RL), and classification 
layer for the final prediction; (b) Motion stream structure, where we employ feature extraction 

through HeadSBN with both appearance and motion streams, and then CapsNet trains deep correla-
tions as a tail layer to enhance meaningful action classification. 

3.1. Proposed Model DNN-1 

The proposed DNN comprises the SBN layer following the 3D CNN (referred to as 
headSBN), the Reduction Layer (RL), and the classifier, as depicted in Figure 1 (a). The 
headSBN layer employs the 3D CNN with an Inception 3D (I3D) structure from the input 
layer to 'Mixed-4f' to create feature blocks through transfer learning. Features are commonly 

(a) 

(b) 
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extracted from the 'Mixed-4f' module and passed to the SBN layer to generate corresponding 
spatial and motion feature maps. An RL frame is proposed to combine the receptive fields of 
pooling and convolutional layers to reduce dimensionality. 1×1×1 3D convolution filters are 
utilized to reduce the number of input channels before larger 3×3×3 convolutions, making it 
computationally less expensive than alternatives while preserving correlation information. 
The final layer determination is achieved through the fully connected (FC) layer inference 
classifier. Video clips are segmented into multiple segments consisting of 10 RGB frames as 
input. 

3.1.1. Non-local Attention (NA) 

To assist in identifying crucial elements of an activity, a local neural attention block is 
depicted in [15] to highlight discernible components of activity and leverage existing spatial 
attention units to establish spatial relationships in the feature map. The NA module generates 
object maps U and Q by passing input from the 3D spatial object map I with dimensions 
T_1×k×k×D through two distinct 3D convolution layers with kernels of size 1×1×1. Sub-
sequently, utilizing matrix multiplication, U and Q determine attention weights, where D is 
the number of feature channels, and T_1 represents the spa-tial-temporal volume. k×k de-
notes the number of spatial feature maps. The data is passed through another 3D convolution 
layer with a kernel size of 1×1×1 to construct the feature map. By multiplying K and attention 
weights, we obtain a new feature map. Additionally, a scaling parameter and the feature I are 
introduced to ensure the consistency of the spatial attention output. 

The Attention Layer combines individual object feature maps, synthesizing the data to 
generate attention weights for integrating feature maps and producing the final output. The 
physical significance is that traces of certain activities are contingent on a specific theme rather 
than the entire context. Thus, individual maps with emphasized logical region relationships 
may benefit activity discrimination. Different thematic regions of features are carefully com-
bined using attention mechanisms, ensuring that broad contextual associations are adequately 
captured during the classification process. 

3.1.2. The proposed Spatial-Depth Based Non-Local (SBN) 

In Figure 2, 3D spatial and depth non-local modules are included in our 3D SBN mod-

ule. According to our definition of feature maps, I, as having the dimension 𝑇1 × 𝑘 × 𝑘 × 𝐷, 
where dimensions 𝑇1, D denoted depth and channel number, respectively, 𝑘 × 𝑘 denotes 
the height and width of a spatial feature map, as seen in Fig. 2. This is done by first applying 
a 1×1×1 kernel on the input feature map, I, and creating two feature spaces A and B with 
dimensions of 𝑇1 × 𝐷 × 𝑘 × 𝑘. The original input data is encoded and pooled using a trans-
formation technique. 

Spatial Attention: In the spatial domain, each pixel in the feature map correlates with 

all other pixels. The spatial feature map with dimensions 𝑇1 × 𝑘 × 𝑘 × 𝐷 is transformed into 

feature tensors 𝑇1 × 𝐷 × 𝑘 × 𝑘 by applying a reshaping operation. The spatial domain relies 
on attention weights, 𝛼, calculated by the inner product of two encoded feature transfor-

mation vectors, 𝐴(𝐼) and 𝐵(𝐼) as Equation (1), where the Softmax normalization function 
is used on each channel to establish relationships between pairs of positions as shown in 
Equation (2). 

𝑟𝑖𝑗 =  𝐴(𝐼𝑖)𝑇𝐵(𝐼𝑗) (1) 

𝛼𝑖,𝑗 = Softmax(𝑟𝑖𝑗) (2) 

Where (𝑘 × 𝑘) the total amount of pixels in a spatial feature map. The results is spatial 

correlation matrix with dimension α ∈ ℝ(𝑘×𝑘). 
Depth Attention: This module is utilized to compute temporary connections between 

pixels. We construct an explicit depth attention module to capture temporal features related 
to other feature maps. The structure of the depth attention module is illustrated in Figure 2. 
In contrast to spatial attention, depth attention computes a similarity matrix using a temporal 

approach. Specifically, we transform the spatial feature map with dimensions 𝑇1 × 𝑘 × 𝑘 ×
𝐷 into normalized ((𝑇1 × 𝐷) × 𝑘 × 𝑘 after softmax, where the output is a temporal corre-

lation matrix of size 𝛽 ∈ ℝ(𝑇1×𝐷). The aggregated feature maps operate stack-wise to com-
pute the feedback of both spatial and depth attention, taking [𝛼, 𝛽]  as input. The 3D 
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convolution follows channel-wise correlation to allow the network to reduce the depth of the 

concatenated spatial-depth correlation data. In this study, the number of 3D filters, 𝐷′, equals 

𝐷. Finally, the output of 𝐼′ is element-wise multiplied with the input feature map, 𝐼, to gen-

erate the output of 𝐼 .̅ 

 

Figure 2. The proposed SBN 

3.2. Proposed Model DNN-2 

In Fig 1(b), To improve recognition performance, we provide the overall architecture 
together with the particular attention mechanisms based on the fusion of multiple effective 
action clues across the spatial and temporal domains. The input data are the resampled RGB 
and optical-flow channel streams where the motion maps contribute to the attention. First, 
two streams feed into the HeadSBN layer to produce the spatial-depth attention vector. Sec-
ond, the Deep CapsNet classifier employs multiple CapsNets layers to produce many capsules 
from these feature vectors and then fulfills the classification. 

3.2.1. Spatial-Motion feature exaction by 3DCNN 
For training, the transfer learning technique is employed to ensure the most effective 

training of the model. This is achieved by leveraging knowledge transferred from related tasks. 
Such a strategy has the potential to provide our architecture with highly effective initial con-
figurations for the learning process on the network's multi-modal cost function. This is be-
cause the datasets used in the proposed DNN may not be rich or diverse. This transfer learn-
ing strategy can reduce the amount of time required to train the proposed network by using 
fewer training samples to achieve the desired level of performance. Therefore, we utilize the 
pre-trained Inception I3D model, fine-tuned on ImageNet and Kinetics, as the foundation 
for our CNN. Subsequently, these CNNs are retrained using our dataset to build spatial and 
motion feature maps. In Figure 1, the I3D module up to 'mixed-4f' generates feature maps 

extracted from synthesized layers at the size of 𝑇1 × 𝑘 × 𝑘 × 𝐷, where 𝑇1, D, and 𝑘 × 𝑘, 
respectively, represent temporal resolution, object channel size, and spatial resolution of an 
object map. This fundamental feature is the dense spatial-temporal representation of the 
video stream being input.  

 
3.2.2. Top-Heavy CapsNet (THC) 

Owing to research the effect of CapsNet in our DNNs architecture. As shown in Fig. 
1(b), we designed the structure of Top-Heavy CapsNet (THC). A major advantage gained by 
DCapsNet is using a concatenation of different scales on different temporal dimensional vec-

tors for the primary capsule. The semantic information in both 𝑀𝑠 , 𝑀𝑓 are obtained by the 
feature extraction from the ‘mixed_4f’ convolution layer of the I3D, which generated in 𝐷 

feature map of dimension 𝑇1 × 𝑘 × 𝑘. The feature maps are employed to extract the differ-
ence scale feature vector dimension of capsules composed of 32 capsule types by convolution 
operation, with ReLU and sigmoid activations.  

For the UCF101 dataset example, the 𝑇1 = 30,  𝑀𝑝
𝑠  with k=14 which result in 

D=1664 feature map of dimension 30× 14 × 14 × 1664. Since the multi-dimensional pri-
mary capsule is obtained, 1,152 (6 × 6 × 32) primary capsules with 8D vector. The features 

are used to create a convolution layer. Kernel: 7 × 7 × 7, stride =(2 × 1 × 1) is to be output 
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shape 12 × 8 × 8 × 32. This is followed by a 3D convolution capsule layer with 32 capsules 

types with the kernel: 5 × 3 × 3, stride =(1 × 1 × 1) to be the output of the dimension of 
8× 6 × 6 × 32. The last 3D convolution capsule operation with kernel 1× 1 × 1 and stride 

=(2 × 1 × 1) to get the different scale of the primary capsule of 4 × 6 × 6 × 32. In the 
third stage, dedicated to the final classification layer (class capsules), a convolutional capsule 
layer is fully connected to L capsules in which L represents the number of action classes. The 
capsule output is determined by Caps-Pool, with coupling coefficients adapted through an 
iterative EM routing process. This process dynamically updates the probabilities of the class 
output neurons, akin to the following [16]. 

4. Results and Discussion 

4.1. Dataset and Configuration for Experiments 

To compare the proposed and traditional DNNs, the three datasets UCF101, HMDB51, 
and Traffic Police (TP) are used. The UCF101 dataset comprises 13,320 video clips, each 
corresponding to one of 101 distinct actions. These actions encompass five categories: hu-
man-object interaction, body movements, human interaction, playing musical instruments, 
and sports. The HMDB51 dataset contains video clips that correspond to 51 different activity 
categories. These video clips have a wide variety of backgrounds and contexts, as well as 
different camera movements. The data partitioning configurations supported by the original 
UCF101 dataset and the HMDB51 dataset were used for training/validating and testing. The 
Traffic Police (TP) dataset [1] is utilized, consisting of 21 video clips. These clips have a frame 
resolution of 1080×1080 pixels and a frame rate of 15Hz. 

Similar to [3], at a frame rate of 30 frames per second (fps) for UCF101, 25 fps for 
HMDB51, and 30 fps for TP, all video clips were divided into overlapping segments, each 
lasting 3 seconds, indicating T=90 and 75, respectively. There is a 50% overlap between con-
secutive video segments. In these datasets, each video clip represents only one classified ac-
tion. Once the video segments are prepared, they are preprocessed to become input segments 

with the corresponding number of frames, 𝑇1=30 (HMDB51 and TP) and 𝑇1=25 (UCF101). 
Additionally, the frames of these input segments are resized to 224 x 224 to match the input 

format specifications of the proposed DNN. With τ=3, we generate 𝑇1-sized 224×224×3 
RGB and 224×224×2 optical flow channels from the T RGB images of the video segment, 
similar to the procedure in [3]. 

The goal is to recognize actions in videos. The TP dataset has 21 video clips associated 
with nine actions, each with a frame resolution of 1080×1080 pixels and a frame rate of 15Hz. 
The video clips are split into training, validation, and testing sets. The model is trained for 75 
epochs, and training stops if accuracy does not consistently increase over ten consecutive 
epochs. Training stopped by early stopping after ten epochs is approached. The training, val-
idation loss, and accuracy are recorded for each epoch, and the model with the best perfor-
mance is selected for testing. Optimization is performed using the Adam optimizer with a 
momentum of 0.9, and the learning rate is 1e-5, decay=1e-6, and the random gradient descent 
is batch-wise reduced. 𝑇1 represents the number of frames accessed from a video clip, and 
our computational platform consists of an 8-core Intel Core i7 CPU and two Nvidia Titan X 
1080/12 GB RAM GPUs @ 32GB. The CPU system runs on Ubuntu 18.04 64-bit, and the 
Anaconda Python distribution provides GPU support. Our model is fully trainable end-to-
end, allowing it to be used with larger and more complex datasets. We developed our models 
in TensorFlow and provided both the code and our pre-trained models publicly. We also 
utilize model checkpointing to save the best-performing model, the model with the lowest 
validation loss, and then use that model for final predictions. The frames in the video seg-
ments are resized to 224x224px. We consider analyzing the temporal length changes of video 

segments (𝑇1=10) at one-time step to be sufficient for accurate activity predictions. For this, 
we use a pre-trained model to make initial predictions. We then concatenate these feature 
maps into a single sample, which is the input to our neural regression network. Finally, we 
obtain the system's final classification based on the inference layer.  

Evaluation metrics play an important role in estimating how well the optimal classifier 
occurred during the building model in terms of action recognition. In the study, the metrics 
of average accuracy and confusion matrix approach for an experiment on one vs all 
classification techniques for multi-classification as similar[2], [3]. The sum of operations in all 
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convolution layers is then computed based on the number of output feature maps, kernel 
sizes, input channels, and output channels. 

 
4.2. Effect of Spatial-Depth Attention in the Proposed Model DNN-1 

To illustrate the impact of the SBN layer, we designate the proposed DNNs without and 
with the SBN layer as Type-1, Type-2, and Type-3 DNNs. Type-1 combines 3DCNN+RL, 
Type-2 combines 3DCNN+SA+RL, and Type-3 combines 3DCNN + SBN. Table 1 sum-
marizes the accuracy of eight actions detected by these two types of DNNs. Test accuracy for 
the "Stop" and "Moving Straight" categories is approximately 99.9 % when using Type-3 
DNN, while the accuracy for the "Right Turn" class is around 90% when using Type-1 DNN 
due to numerous misclassifications. These findings indicate that the attention mechanism in-
cluded in the SBN layer enables exceptional performance across all actions. We present the 
outcomes of multi-class classification on the traffic police dataset. Notably, certain categories 
such as "stops" and "moving" actions exhibit accuracy levels close to 100%, whereas the 
accuracy for identifying classes like "right-turn" hovers around 93.6%, owing to some mis-
classifications. The best classifier in the proposed DNN is showcased, highlighting instances 
where the model faltered in recognizing most of the False Negatives in the "Right Turn" class. 
Conversely, activities such as Moving Straight, Stop, Slow Down, and Pull Over were cor-
rectly predicted, with the majority achieving accuracy levels surpassing 93% in our proposed 
architecture. 

Table 1. Accuracies of 8 action recognition by Type-1, Type-2, and Type-3 DNN model 

Categories 
Average accuracies (%) 

Type-1((re-trained from [2])) Type-2 (re-trained from [2]) Type-3 

Stop 97.5 99.1 99.9 

Moving Straight 95.9 99.6 99.9 

Left Turn 92.1 92.5 95.4 

Left Turn Waiting 95.5 95.6 96.1 

Right Turn 90.4 93.5 93.7 

Lane Changing 94.2 97.9 97.0 

Slow Down 97.1 99.8 99.3 

Pull Over 95.0 99.1 99.5 

 
Confusion matrices serve as an effective means of data visualization, adeptly presenting 

comprehensive results that encapsulate correct classification accuracy and misclassification 
details for each predicted category. Our experimental findings offer an in-depth analysis of 
our framework's performance in the context of action recognition tasks, aligning with the 
ground truth. 

Table 2 presents performance metrics on the TP dataset, with the accuracy of Type-2 
DNN increasing by 2.4% compared to Type-1 DNN. Notably, Type-3 exhibits a significant 
improvement compared to Type-1 and Type-2, with increases of 2.9% and 0.5%, respectively. 
This improvement is attributed to Type-2 utilizing spatial attention and Type-3 employing a 
dual attention mechanism. 

Table 2. Performance metrics of three Types on the TP Dataset 

DNNs 

 

Training performance 
Average F1-

Measure Test 
acc Training 

acc 
Validate 

acc 
Training 

Loss 
Validate 

loss 
Micro Macro 

Type-1 (re-trained from 
[2]) 

99.8% 94.5% 0.09 0.10 0.93 0.94 94.7% 

Type-2 ((re-trained from 
[2])) 

99.9% 98.9% 0.01 0.05 0.97 0.96 97.1% 

Type-3 99.9% 99.3% 0.009 0.02 0.97 0.98 97.6% 
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4.3. Analyses and Comparisons of Experimental Results in the proposed DNN-2 

At first, partial structures from the proposed DNN were evaluated to understand their 
performance contributions. After that, the optimized DNN setup was confirmed. The exper-
imental outcomes of the proposed and conventional DNNs are compared and analyzed. 

4.3.1. Exploration of attention mechanisms versus performance on comparison of 
Individual CapsNet structure 

During the run of the experiments, the various types of DNNs used the RGB stream 
with or without the motion stream, yielding the results in Table 3. Compared to the 3DCNN 
with SBN and the 3DCNN with only RGB input, the attention mechanism indeed increases 
the accuracies by 1.6% and 1.1% at the UCF101 and HMDB51 datasets, respectively. The 
outcomes from the I3D+SBN+ DRCapsNet and the type without CapsNet (I3D+SBN + 
FC) reveal that the deep DRCapsNet contributes to the accuracies lifted. Using the AMS to 
gate OF and RGB, the I3D+AMS+ DCapsNet outperforms the I3D + DCapsNet by 7.5% 
and 8.9% on the UCF101 and HMDB51, respectively. Moreover, the performance of 
I3D+AMS+DCapsNet in the downstream task surpasses that of other DNNs, exhibiting an 
average accuracy increase ranging from 2.3% to 16.9%. This notable improvement can be 
attributed to the efficacy of attention mechanisms, specifically the Top-heavy CapsNet, in 
providing meaningful static and dynamic information related to the subject's body joints dur-
ing an activity. The integration of multiple streams contributes to enhanced performance by 
leveraging complementary feature information derived from the subject's appearance and 
motion. This information can be obtained when these multiple streams are available. 

Table 3. The performance-based-I3D transfer learning with different CapsNet in sigle and due 
stream input of UFC101 and HMDB51 dataset. 

Model 
Classification Accuracies (%) 

Input UCF101 HMDB51 

I3D + MLP RGB 95.32 74.44 

I3D + NA + MLP RGB 96.61 75.86 

I3D + SA + DCapsNet RGB 96.85 75.94 

I3D + MLP (class score fusion) RGB+ OF 97.88 79.77 

I3D + NA + MLP (class score fusion) RGB+ OF 98.02 79.99 

2I3D + SBN + DCapsNet RGB+ OF 98.17 80.43 

 

4.3.2. DNN_2 addressed by single or two input streams 

The proposed DNN were designed as an integrated version of two DNNs that look 
after the RGB streams as well as the optical-flow channel streams. In light of this, three other 
topologies that were produced from the proposed DNN by utilizing the CapsNet classifiers 
are being looked into. These three use the apparent streams, the optical-flow channel streams, 
and the proposed DNN using two streams. The experimental results associated with classifi-
cation accuracies are summarized in Table 4. The accuracy of the suggested DNN, which 
manages two streams instead of just one, is much better than that of DNNs that only analyze 
one input stream, with an increase ranging from 0.6% to 4.6%. In most instances, the higher 
structure of our DNN produces superior results to those of the lower structure. However, as 
a result, the specific information associated with the subject motion plays a crucial role in 
determining whether or not an action was taken. As a consequence, the motion model dis-
plays a better degree of accuracy than the Appearance model. 

Table 4. Classification accuracies of the appearance, motion, and complete structure of our model 
DNN. 

Model 
Classification Accuracies (%) 

Input UCF101 HMDB51 TP 

Appearance  RGB 95.32 74.44 97.7 

Motion OF 97.01 76.84 98.0 

Appearance & Motion RGB+ OF 98.04 80.32 98.1 
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4.4. Discussion and Visualization 

Figure 3 depicts the action recognition process for three activities, showcasing the atten-
tion feature maps and corresponding emphasized action areas. Warm colors indicate a high 
score, directing attention to crucial aspects of action recognition. The proposed DNN effec-
tively highlights significant motion patterns of various subjects and integrates them into a 
discriminative representation for accurate action recognition. The operational flow depicted 
in Fig. 1 is dissected so that the outputs from the intermediate levels can be visualized, and 
then the contributions of those layers can be found. This is done so that the proposed DNN 
can be comprehended. The effectiveness of spatial attention is illustrated by the figures in 
Figure 3, which highlight the intensity of the region. In each illustration, some regions of the 
picture are denoted by using warm colors to represent the attention locations and the inten-
sities. When the intensity is higher, the color seems to be more vibrant.  

 
 

 
   (a) (b) (c) 

   
(d) (e) (f) 

Figure 3. Example of visualization of the output attendant feature from the intermediate layers on 
UFC101: (a) the feature map from I3D; (b) feature map with the aid of NA; (c) the feature Map with 
the aid of SNB; (d)mask of the region with high intensity from I3D, (e) mask of the region with high 
intensity from NA; (f) mask of the region with high intensity from SNB. Warm is a strongly involved 

region of action behavior. 

Figures 3(a) and (d) visually represent the feature map obtained by 3DCNN. The high-
lighted area is the tiny region obtained by focusing on the topic. The output of the proposed 
NA layer is shown in Figures 3(b) and (e), which simply require the spatial feature map as an 
input. Figures 3(c) and (f) reveal that with the use of the motion feature maps, attention in 
the SBN layer is brought to more significantly concentrated regions associated with subject 
bodies, ultimately leading to correct action prediction. Notably, in the context of attention 
heat maps that are indicated by a variety of colors, the method that we have presented, which 
takes subject motion into account, does actually improve recognition based on meaningful 
and distinguishing characteristics associated with subject activities. Based on the attention-
based spatial-temporal relationships from the appearances and motions of subjects, the atten-
tion mechanisms adopted in the proposed DNN exhibit outstanding performance, as can be 
seen from the visualization, the steps broken down, and the comparisons made. 

5. Comparison 

5.1. Comparison state of the art on police traffic 

Table 5 presents a comparative analysis of the performance between the proposed and 
previous DNN models using the identical traffic police video dataset. The experimental find-
ings reveal that the proposed DNN, excluding the recurrent network, achieves a superior 
accuracy improvement of 4.3% compared to conventional DNNs. Moreover, the proposed 
DNN demonstrates a marginal accuracy enhancement of 0.1%. Notably, this study exclu-
sively utilizes RGB streams without incorporating skeletal postures, optical flow, or 
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comparable techniques. Consequently, the proposed DNN emerges as a potent tool for fa-
cilitating action recognition across diverse content-aware applications. 

Table 5. Average accuracies of the proposed model and conventional DNNs 

DNNs Years Features Accuracies (%) 

[23] 2020 Pose + handcrafted features 93.3 

[24] 2020 Pose graph 97.5 

[3] 2021 Pretrained ImNet+Kinetics R_FSRH_D 98.1 

Proposed DNN 

RGB, Pretrained ImNet+Kinetics HeadSBN+RL 97.6 

RGB+OF, Pretrained ImNet+Kinetics 

HeadSBN+DCapsNets 
98.1 

5.2. DNN_2 Comparisons with the SOTA in RGB input 

Table 6 outlines the mean accuracies achieved by both the proposed and traditional 
DNNs when utilizing RGB input datasets from UCF101 and HMDB51. First, in comparison 
with I3D and S3D, our model plus SBN and training combined with deep CapsNet are su-
perior to the margin by 1.3% and 0.1%, respectively. 

Table 6. The average accuracies of comparison on the UCF-101 and HMDB-51 dataset with RGB 
input 

DNNs Years Pre-train UCF101 HMDB51 

Res3D [25] 2017 Sports-1M 85.5 54.9 

TSN [26] 2016 Kinetics 85.7 - 

I3D [5] 2017 ImNet+Kinetics 95.6 74.8 

S3D [27] 2018 ImNet+Kinetics 96.8 75.9 

[3] 2021 ImNet+Kinetics 96.9 76.1 

I3D+SBN+DCapsNet  ImNet+Kinetics 97.1 76.1 

 
The multiple stream conventional model integrated with I3D manner, Improved Dense 

Trajectory (IDT), plus pose motion, RGB, and Optical flow together yielded relatively good 
performance [3], [8], [12], [13]. However, effectively learning spatial appearances and temporal 
motion behaviors within the complex contexts of videos remains a challenging task. Accord-
ing to Table 7, the performance of the proposed DNN is comparable to that of the best one 
at UCF101.  The reasons for this are that the relevant regions, both temporal  and  

Table 7. Performance comparison of the proposed and conventional model DNNs using HMDB51 
and UCF101 datasets 

DNNs Years Characteristics UCF101 HMDB51 

[21] 2018 I3D + Pose motion, pre-training 98.2 80.9 

[5] 2019 Motion-augmented, pre-training 98.1 80.9 

[20] 2019 LGD-3D RGB+OF 98.2 80.5 

[8] 2019 Hallucinating IDT and I3D OF - 82.5 

[11] 2020 BubbleNET 97.6 82.6 

[13] 2020 SlowOnly-8x8-R101 + Flow 98.6 83.8 

[9] 2021 VidTr 96.7 74.4 

[3] 2021 
RGB+OF+Tske, I3D ImageNet+Kinetics pre-

trained, CapsNet 
98.5 82.1 

[6] 2022 BQN (TSM R50) 97.6 77.6 

[14] 2022 Temporal Squeeze Network 95.2 71.5 

[12] 2022 PERF-Net (Kinetics-600 pretrain) 98.2 82.0 

Our 
DNN 

 
ImNet+Kinetics pre-trained of top-heavy Deep-

CapsNet 
98.6 80.4 
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spatial, are emphasized adequately with the assistance of temporal features, motion features, 
and spatial features rather than IDT and I3D. Specifically, the multiple CapsNets within the 
proposed classifier translate these feature vectors into extensive capsules to achieve refined 
classifications and enhance overall performance. 

6. Conclusions 

In this paper, we address the challenge of constructing a highly efficient CapsNet by 
combining it with an attention mechanism and integrating it into a 3DCNN for video recog-
nition tasks. We introduce a novel Top-Heavy CapsNet architecture incorporating special 
attention mechanisms, leveraging fused and effective action cues across temporal and spatial 
domains to enhance identification performance. The input data are the resampled RGB and 
optical-flow channel streams where the OF maps contribute to the attention. First, these two 
streams feed into the corresponding HeadSBN-based 3DCNN backbone to yield the spatial 
and motion feature maps. Second, the deep CapsNet employs multiple 3D convolutions Cap-
sule layers to produce capsules class, then fulfills the classification. We have conducted an 
empirical investigation into the impact of various spatiotemporal convolutions on video ac-
tion recognition. Our model outperforms the same performance on UCF101 in the RGB 
domain. 
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