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Abstract: Digital Pathology Image Analysis (DPIA) is one of the areas where deep learning (DL) tech-

niques offer modern, cutting-edge functionality. Convolutional Neural Network (CNN) technology 

outperforms the competition in classification, segmentation, and detection tasks while being just one 

of numerous DL techniques. Classification, segmentation, and detection methods can often be used 

to address DPIA concerns. Some difficulties can also be resolved using pre- and post-processing tech-

niques. However, other CNN models have been investigated for use in addressing DPIA-related issues. 

Furthermore, the research seeks to explore how susceptible the model is to adversarial attacks and 

suggest strategies to counteract them. To predict ischemic strokes caused by blood clots, the authors 

of this study developed CNN with a pixel brightness transformation (PBT) technique for image en-

hancement and developed several approaches of image augmentation techniques to increase and pro-

vide the learning model with more diverse features. Also, adversarial training was integrated into CNN 

models to train the model with perturbed data in order to assess the impact of adversarial noise at 

different stages of training. Several metrics, including precision, F1-score, accuracy, and recall, are uti-

lized to assess the experiments' effectiveness. The research findings indicate that employing transfer 

learning with a deep learning model achieved an accuracy of up to 97% using the ReLU activation 

function. Also, data augmentation helps improve the accuracy of the model. 

Keywords: CNN; Data augmentation; Adversarial training; Deep learning; Pixel brightness transfor-

mation. 

 

1. Introduction 

Stroke is the second leading cause of global mortality and has consistently contributed 
significantly to the decline in human well-being and vitality[1]. In the United States, ischemic 
strokes occur at a rate of approximately 795,000 annually[2]. It stands as the second most 
prevalent cause of disability after dementia, impacting 15 million individuals each year, leading 
to the deaths of about 6 million and causing permanent disability in another 5 million[3]. This 
condition is marked by heightened levels of morbidity, disability, mortality, and recurrence, 
imposing a substantial burden on society and families. Notably, there has been a significant 
increase in stroke prevalence among low-income individuals and younger age groups[4]. Mag-
netic Resonance Imaging (MRI) has become crucial in diagnosing and treating stroke, partic-
ularly in distinguishing ischemic stroke from hemorrhagic stroke[5]. 

A stroke, characterized by sudden blood vessel rupture or blockage in the brain, results 
in acute cerebral vascular disease[6]. It can manifest as ischemic or hemorrhagic stroke, both 
causing brain tissue damage. Ischemic stroke occurs due to inadequate blood flow to a spe-
cific brain area, leading to impaired neural processes and enduring impairments[7]. MRI scans 
offer rich data for assessing ischemic stroke severity, yet analyzing results is challenging due 
to the complexity of identifying subtle image alterations indicative of stroke severity[8]. Man-
ual image analysis requires significant effort and can lead to cognitive fatigue errors and di-
minishing diagnostic quality[7]. Moreover, inter- and intra-observer variability in human judg-
ment-based categorization methods adds to the challenges. Educating individuals to achieve 
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expertise is time-consuming and costly, making routine stroke risk estimation economically 
unfeasible. 

However, researchers have increasingly focused on diagnosing ischemic stroke using ar-
tificial intelligence (AI) methods in MRI scans. Machine learning (ML) and deep learning (DL) 
algorithms, including K-Nearest Neighbors (KNN), support vector machines (SVM), deci-
sion trees (DT), random forests (RF), and neural networks, have shown promise in ischemic 
stroke detection [9]. DL, particularly convolutional neural networks (CNNs), closely aligns 
with AI's core objectives, replicating the hierarchical organization observed in the human 
brain [10]. It autonomously extracts features, exhibits high learning proficiency, and has ad-
vanced significantly due to high-performance GPU servers and extensive datasets[8]. 

These advancements have led to exploring DL technology for ischemic stroke prediction 
using CNNs. This study proposes the Adaptive CNN with pixel brightness transformation 
technique for image enhancement and adversarial training to predict Blood Clot Ischemic 
Stroke. It aims to classify, detect, and segment strokes using MRI datasets from Kaggle re-
positories. It also seeks to explore how susceptible the model is to adversarial attacks and 
suggest strategies to mitigate against them. The paper's subsequent sections are, section 2 
reviews related literature; section 3 outlines methodology and describes performance metrics; 
section 4 presents results and discussions, and section 5 concludes the paper. 

2. Related Works 

Takahashi et al. [11] developed Return on Investment (ROIs) around the Sylvian fissure 
region and identified MCA dots using morphologic top-hat transformation, employing SVM 
with four features. SVM classification on 297 CT images from seven patients with MCA dot 
signs achieved a maximum sensitivity of 97.5% at a false positive rate of 1.28 per image and 
0.5 per hemisphere. Forkert et al.[12] utilized 12 SVM models to predict 30-day mRS scores 
of ischemic stroke patients, integrating lesion overlap, stroke laterality, and optional features 
like infarct volume and NIHSS. Integrating optional features and stroke location information 
improved mRS prediction, reaching 56% for multi-value prediction accuracy and 85% for 
dichotomized mRS prediction. 

 Ho et al. [13] compared ML methods to classify transcription start site (TSS) using mag-
netic resonance (MR) imaging features, proposing a DL model to extract hidden representa-
tions from MR perfusion-weighted images, enhancing classification. Cross-validation showed 
the best classifier achieving an AUC of 0.68, outperforming current clinical methods. Yu et 
al. [14] developed a method to detect hemorrhagic transformation in stroke using Percussion-
weighted imaging (PWI) and diffusion-weighted imaging (DWI), trained CNN with 3-fold 
cross-validation, achieving an accuracy of 83.7 ± 2.6% with Kernel spectral regression. 
Subudhi et al.[15]proposed a watershed-based lesion segmentation algorithm (WLSA) for le-
sion segmentation in DWI MR images, achieving high accuracy in delineating lesions with a 
96% dice similarity index (DSI) using an RF classifier. 

 Scalzo et al.[16] studied hemorrhagic transformation prediction using PWI in MRI, 
achieving >85% accuracy with nonlinear predictive models. Nielsen et al.[17] employed 
CNNdeep to calculate lesion volume in Intravenous tissue-type Plasminogen Activator (IV 
tPA) - treated patients, achieving 88% accuracy in predicting final infarct volume. Monteiro 
et al.[18] used ML to predict functional outcomes in ischemic stroke patients, observing im-
proved AUC (>0.90) with additional features over time. Subudhi et al.[19] integrated Delau-
nay triangulation (DT) and fractional order Darwinian particle swarm optimization (DT-
FODPSO) for ischemic lesion segmentation, achieving high sensitivity (0.93) and accuracy 
(0.95) using the RF classifier. Karthik et al.[20] employed a Fully Convolutional Network 
(FCN) for ischemic lesion segmentation, achieving a mean accuracy of 0.70 on the Ischemic 
Stroke Lesion Segmentation (ISLES) 2015 dataset. Govindarajan et al.[21] utilized text-min-
ing and ML algorithms for stroke classification, achieving a classification accuracy of 95% 
with ANN. Yu et al.[22] used a U-net neural network for infarct lesion prediction, achieving 
an AUC of 0.92 and a Dice Score Coefficient (DSC) of 0.53, aiding clinical decision-making. 
Vupputuri et al.[23] proposed superpixel-based hierarchical clustering (SSHC) for lesion de-
tection, outperforming state-of-the-art methods with a Dice score of 0.704. 

 Liu et al.[24]developed Res-CNN for ischemic lesion segmentation, achieving good per-
formance compared to other networks. Badriyah et al.[25] optimized CT image quality and 
employed RF for stroke classification, achieving an accuracy of 95.97%. Tazin et al.[26] used 
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LR, DT, RF, and Voting Classifier to predict stroke occurrence, achieving 96% accuracy with 
RF. Shoily et al. [27] employed Naive Bayes, J48, k-NN, and RF for stroke classification, with 
Naive Bayes achieving 85.6% accuracy. Fang et al. [28] utilized DL and ML for ischemic 
stroke subtype classification, finding Resnet and RF effective in subtyping with neurological 
deficits. Tarkanyi et al.[29] employed ML methods for predicting LVO in AIS patients, 
achieving AUC values up to 0.775 with LR. Kuang et al.[30] automated ASPECTS scoring 
using RF, achieving an ICC of 0.76 and high sensitivity and specificity. 

3. Proposed Method 

The methodological approach proposed by this study considers four phases. The first 
step encompasses reading the stroke images dataset. The second phase encompasses fixing 
the dataset; this consists of correctly sorting the slices, removing the existing dumps of fea-
tures, and enhancing the images with the Pixel brightness transformation (PBT) approach. 
The idea is to create a dictionary where each key represents a patient ID, while the value is 
the list of correctly sorted images. Creating such a dictionary was quite demanding since it 
required a visual analysis of the entire dataset and determining the correct sequence for each 
patient. The next stage involves augmenting the images and conducting adversarial training 
on the filtered images to a convolutional neural network. Lastly, a performance evaluation 
analysis from the output of the convolutional neural network is conducted. The stepwise 
approach for implementing the proposed stroke classification model is shown in Figure 1. 

 

Figure 1. Proposed methodology framework. 

3.1. Dataset Descriptions 

The dataset used for analyzing brain strokes is sourced from Kaggle and consists of 
Computed Tomography (CT) images. The dataset can be found at www.kaggle.com/afridi-
rahman/brain-stroke-ct-image-dataset. The dataset comprises 2,501 high-resolution whole-
slide digital pathology images with a total of 1551 images labeled as normal and 950 images 
labeled as strokes. Each image in the dataset has dimensions of 224 pixels by 224 pixels. The 
sample images can be visualized in Figure 2. The "Brain Stroke CT Image Dataset" available 
on Kaggle stands out due to its focus on CT images dedicated to brain strokes. CT images 
are commonly employed in medical imaging to visualize internal body structures, including 
the brain. This dataset exclusively concentrates on CT images associated with brain stroke 
cases, a medically critical condition. Additionally, the datasets encompass images medical 
practitioners and researchers utilize to diagnose and plan treatments for brain strokes. As a 
valuable resource, this dataset caters to researchers, clinicians, and data scientists interested in 
advancing medical imaging technology and enhancing brain stroke diagnosis and treatment. 

3.2 Data Preprocessing  

Data cleansing is a crucial step before building a model in machine learning. Image pre-
processing aims to improve the image data by suppressing undesired distortions or enhancing 
some of the image features relevant to the analysis task. The concept of image preprocessing 
doesn’t increase image formation content but decreases it if the entropy is an information 
measure. In essence, the idea behind image preprocessing is to process image data at its lowest 
level of abstraction. The approach to image preprocessing adopted by this study is the PBT, 
data fixing and data scaling. 
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Figure 2. Dataset Samples 

3.2.1 Pixel Brightness Transformation (PBT) 

PBT is also referred to as brightness corrections or intensity transformation. Brightness 
transformations modify pixel brightness, and the transformation depends on the properties 
of an image pixel. This implies that the output pixel’s value depends only on the correspond-
ing input value. The choice of using PBT for this study is because it offers several advantages 
over other image enhancement techniques, which include Simplicity, Real-time processing, 
Non-destructive of original image data, Global and Local Enhancement, Enhancement con-
trol through the choice of transformation functions and parameters, Adaptability, Compati-
bility and Low computational cost.  

The approach to BPT techniques adopted by this study is the grayscale transformation, 
where an image is transformed into a grey scale to extract objects in images. The operations 
proposed for the grayscale transformation are gamma correction or power law transfor-
mation, which uses two common operations, namely multiplication and addition with a con-
stant, as mathematically represented in Equation (1). 

𝑔(𝑥) = 𝛼𝑓(𝑥) + 𝛽 (1) 

The parameters 𝛼 > 0 and 𝛽 are called the gain and bias parameters, and sometimes 
these parameters are said to control contrast and brightness, respectively. Hence, the image 
brightness and contrast vary for alpha and beta values. The pseudocode for PBT is depicted 
in Algorithm 1 

 
Algorithm 1. Pixel Brightness Transformation 
INPUT: Raw_CTImages, Parameters 
OUTPUT: Tranformed_Images 

1: # Define a function for pixel brightness transformation 
2: def brightness_transform(pixel_value): 
3:     # Define transformation logic here 
4:     # Increase brightness by a factor of 1.2 
5:     transformed_value = pixel_value * 1.2 
6:     # Pixel values must be within valid range (e.g., 0-255 for grayscale) 
7:     transformed_value = min(255, max(0, transformed_value)) 
8:     return transformed_value 
9: # Apply transformation to each pixel in the image 
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Algorithm 1. Pixel Brightness Transformation 
10: def apply_brightness_transformation(input_image): 
11:     # Create an empty matrix for the transformed image 
12:     transformed_image = empty_matrix_like(input_image) 
13:     # Iterate through each pixel in the input image 
14:     for row in range(height(input_image)): 
15:         for col in range(width(input_image)): 
16:             # Get the brightness value of the current pixel 
17:             pixel_value = input_image[row][col] 
18:             # Transform the brightness value 
19:             transformed_value = brightness_transform(pixel_value) 
 

3.2.2 Dataset Fixing  

It is necessary to try to fix the dataset. Otherwise, it will be quite challenging to expect 
good results. The fixing consists of correctly sorting the slices and removing the existing holes 
by identifying the current order of the slices in the dataset and determining the proper sorting 
criteria, such as numerical order or chronological order, examine the dataset for any gaps or 
missing elements. If any holes exist, we consider filling them in with the appropriate data or 
removing them as needed. The idea is to create a dictionary where each key represents a 
patient ID, while the value is the list of correctly sorted images. Creating such a dictionary 
was quite demanding since it required a visual analysis of the entire dataset to determine the 
correct sequence for each patient. 

3.2.3 Data Scaling  

Image scaling involves adjusting the pixel values of the dataset images to a standardized 
range. In this study, the images are scaled by dividing their pixel values by 255. This process 
normalizes the pixel intensities to a range between 0 and 1. Standardizing the pixel values 
ensures that the input data fed into the CNN model is consistent and falls within a uniform 
range, facilitating the training process. Scaling the images helps prevent issues related to var-
ying pixel intensities across different images in the dataset, ensuring that the model learns 
from meaningful features rather than being influenced by differences in pixel values. 

3.3 Image Augmentation  

Data augmentation is a method to substantially increase the number of data instances 
within a dataset to facilitate model training. In the context of image datasets, this technique 
involves employing basic image processing operations like flipping, rotating, cropping, or 
padding[31]. These operations transform existing images in the dataset, thereby expanding its 
size for training neural networks. This study utilized data augmentation to address the chal-
lenge of having a small dataset size, which negatively impacted the performance of the pro-
posed CNN. Augmenting the dataset increased its size, providing the learning model with 
more diverse features. Specifically, five image processing operations were implemented: flip-
ping (at the horizontal axis), shifting (the width and height range for shifting was set to 0.2), 
zooming at 0.2, shear range at 0.2, and rotation image at 20 degrees augmentation.  

3.4 Convolutional Neural Network  

The proposed CNN is a bio-inspired neural network that integrates convolutional layers, 
pooling, and a fully connected network akin to a Multi-layer Perceptron[32]. Serving as a 
complement to the traditional feed-forward network (FFN) in image processing, it embodies 
three layers: input, hidden, and output, with units representing the neurons in each layer.  

The proposed CNN architecture comprises a convolutional 1D layer, a pooling 1D layer, 
and a fully connected layer. The convolutional layer extracts features from the 1D sequence 
data through sliding filters, generating feature maps. Hyperparameter tuning selects the num-
ber and length of filters, employing non-linear activation functions such as Rectified Linear 
Unit (RELU) for input and hidden layers and sigmoid for the output layer. RELU addresses 
vanishing gradient and error issues, accelerating learning. Mathematically, RELU is denoted 
as Equation (2). 

𝑓(𝑥) = max(0, 𝑥) (2) 
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Where 𝑥 denotes the input. A maximum 1D pooling method was suggested to diminish 
feature dimensions. The proposed CNN includes a fully connected layer for stroke classifica-
tion, ensuring comprehensive connectivity between neurons. This arrangement guarantees 
that cell state information is stored and transmitted across layers. The pseudocode for CNN 
is depicted in Algorithm 2. 

 

Algorithm 2. Convolutional Neural Network 
INPUT: Images, parameters 
OUTPUT: Evaluation metrics 

1: Count = -1, train_image [ ], train_labels =[ ] 
2: for the dataset: 
3:      Count=count +1 
4:      Img=resize (file, 60,60) 
5:      train images append (img) 
6:      Grayscale(img) 
7:      train_labels append(count) 
8: mu=mean (train _image) 
9: sigma =seddev[train_image] 
10: for image in train_image  
11:      img=(img-mu) sigma 
12: Validation_image =train_image [1,500] 
13: Data-gen=imageDataGenerator(rotation_range=20 
14:      Horizontal_flip=true, 
15:    vertical_flip=true 
16:       width_shift + 0, 1 
17:       Height_shift=0,1) 
18: Apply data-gen to CNN 
19: Validate CNN-Model 
20: Perform evaluation 

 
This study proposed a vertical filter for convolving images in a convolutional model, 

leveraging spatial locality and pointwise multiplication of functions to generate activation 
maps. A pooling layer was applied to reduce feature map size, retain vital features, and control 
overfitting. Max pooling was chosen for its efficacy in identifying sharp features. Batch nor-
malization normalized input, expediting learning, while dropout with a 20% rate mitigated 
overfitting. Flattening layers consolidated pixel data into a one-dimensional vector for input 
into dense layers, connecting each neuron to every other neuron. These dense layers classified 
images into specific labels based on associated probabilities, culminating in the classification 
decision by the fully connected network. 

3.4.1 Adversarial Training 

This study employs multiple pre-trained models for transfer learning. Various factors, 
such as optimization function, activation function, learning rate, group size, dropout percent-
age, and other hyperparameters, play a significant role in shaping the network's learning pro-
cess. The most effective settings for each model are determined by conducting extensive ex-
perimentation and evaluating performance metrics. To prevent overfitting, a dropout rate of 
20% was implemented, and training was carried out for 150 epochs. 

During training, adversarial perturbations are introduced to the input data using Neural 
Structured Learning (NSL). Following this, the models are trained on the perturbed data to 
assess the impact of adversarial noise at different stages of training, as depicted in Figure 3.  

 

Figure 3. Adversarial Training Model 
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NSL layers were integrated into the CNN architecture. These layers add a regularization 
term to the loss function, encouraging the model to learn structured representations. For this 
study, “AdversarialRegularization” was employed and the following hyperparameters were 
considered: learning rate = 0.0001, batch size = 0.2, NSL regularization strength = 0.2, and 
optimizer choice =’Adam’. 

3.5 Evaluation Metric  

In assessing the classifier's effectiveness, this research introduced several conventional 
evaluation measures, including accuracy, precision, recall, and F1-score. These metrics are 
derived from the concepts of True Positive (TP), True Negative (TN), False Positive (FP), 
and False Negative (FN). TP denotes the count of correctly identified stroke samples, TN 
signifies the count of correctly identified non-stroke samples, FP represents the count of non-
stroke samples erroneously classified as strokes, and FN indicates the count of stroke samples 
inaccurately classified as non-strokes.  

Accuracy: calculates the ratio of inputs in the test set correctly labeled by the classifier. 
Mathematically, accuracy can be denoted as Equation (3). 

accuracy =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (3) 

Precision: defines the percentage of the number of correctly predicted positive outcomes 
divided by the total number of predicted positive outcomes. Thus, precision can be mathe-
matically denoted as Equation (4). 

precision =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (4) 

Recall: measures the classifier's completeness. It is the percentage of correctly predicted 
positive output to the actual number of positive outcomes from the dataset. Recall can be 
mathematically denoted as Equation (5). 

recall =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (5) 

Area Under the Curve (AUC) is a metric used to encapsulate the overall effectiveness of 
a model or to measure data distribution across different fields. It yields a single numeric value 
that captures performance or distribution within a specific context, making it a broadly uti-
lized and significant metric in numerous applications. 

4. Results and Discussion 

This section presents the results of the experiments carried out. The stroke detection 
model was meticulously crafted within Anaconda's robust computational environment. Its 
intricacies are seamlessly integrated into Python, executed on a Windows OS, harnessing the 
power of a dual-core Intel Core i5 processor and 4GB RAM. Leveraging the TensorFlow 
API, it meets the intricate demands of deep neural networks in machine learning. Alongside 
TensorFlow, pivotal Python libraries like NumPy handle numerical operations, while pandas 
aid in dataset parsing. Matplotlib, a versatile visualization tool, is judiciously employed to il-
lustrate model behavior with precision and clarity.       
 After the data preprocessing stage, Figures 4 and 5 depict the enhanced images that 
serve as input images for the model. Figure 4 shows the clean image after executing all the 
necessary preprocessing stages. Meanwhile, Figure 5 shows the outcome of image augmenta-
tion.  

The data augmentation process implemented in this study focused on the strategy in-
volved rotating, zooming, shifting, brightening, and contrasting mirrored versions, enriching 
the dataset with diverse anatomical structures and orientations. This targeted augmentation 
approach, emphasizing structure changes and lightening, contributed to increased dataset di-
versity. Consequently, it facilitated improved generalization and robustness of the CNN 
model during training. The original dataset contains 2,501 image data. After the augmentation, 
the images increased to 6,126, the distribution depicted in Figure 6. Both the original dataset 
and augmented data were mixed and used for the training and testing of the model's perfor-
mance.  
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Figure 4. Enhanced image 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

Figure 5. Images Augmentation Outcome (a) Rotated CT scan; (b) Shifted CT scan; (c) Zoomed CT 
scan; (d) Brightened CT scan; (e) Contrasted Image. 

4.1 Parameter Setting  

Table 1 outlines the parameter configurations for the proposed CNN model. It's crucial 
to emphasize that these parameters are pivotal for training and optimizing the ischemic stroke 
detection model using the CNN algorithm. The selection of the loss function, specified as 
Binary-Crossentropy, indicates the model's setup for binary classification, suitable for tasks 
with outputs of either positive or negative outcomes, as seen in this context likely representing 
the presence or absence of ischemic stroke. The maximum number of training epochs is de-
fined as 150, determining how many times the model iterates over the complete training da-
taset. The Adam optimizer, known for its effectiveness and adaptability, is chosen to adjust 
the model weights during training. A learning rate of 0.0001 is employed to control the step 
size in weight updates, influencing the speed and stability of the optimization process. Acti-
vation functions utilized include Rectified Linear Unit (ReLU) and Sigmoid, introducing non-
linearity to enhance the model's learning capabilities. Additionally, a decay rate of 0.96 is set, 
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potentially indicating a diminishing factor applied to the learning rate over time, which aids 
in fine-tuning the model's performance throughout training. 

 

Figure 6. Data Distribution 

Table 1. Ischemic stroke model parameter setting. 

Parameter  Values 

Loss Binary-Crossentropy 

Max epochs 150 

Optimizer Adam 

Learning Rate  0.0001 

Activation  ReLU/Sigmoid 

Decay Rate  0.96 

Loss Binary-Crossentropy 

 
These parameter configurations collectively establish the training and optimization at-

tributes of the ischemic stroke detection model, influencing its capacity to learn from and 
generalize across the input data. To ensure a thorough assessment, 30% of the data records 
from each dataset were reserved for testing purposes, while the remaining 70% were em-
ployed for the extensive training of the ischemic stroke detection model. 

4.2. Model Architecture 

Figure 7 shows the CNN model architecture designed for ischemic stroke detection. The 
model architecture begins with a Reshape layer, named "reshape," which transforms input 
data into a 5D tensor with dimensions (128, 128, 64, 1), essential for preparing three-dimen-
sional volumetric data. Four sets of convolutional layers with max pooling, denoted as 
"conv3d" and "maxpooling3d," are responsible for learning hierarchical features and reducing 
spatial dimensions. Batch Normalization layers, named "batch_normalization," enhance con-
vergence and training speed. Subsequently, a Global Average Pooling 3D layer condenses 
feature maps, and two Dense layers, one with 512 units and dropout regularization, precede 
the final prediction by the second dense layer, "dense_1." 

4.3 Models Result 

The outcomes from the ischemic stroke detection model, as displayed in Table 2, 
demonstrate noteworthy performance indicators for the CNN model trained over 150 epochs 
without data augmentation. The 94% precision signifies the model's capacity to correctly 
identify actual positive cases within the projected positive instances, showcasing a strong level 

0 2000 4000 6000 8000 10000

Normal

Stroke

Total

Data distribution Before and After Augmentation

Before Augmentation Afer Augmentation
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of dependability in categorizing ischemic stroke occurrences. The recall rate of 81% repre-
sents the percentage of true positive instances accurately detected by the algorithm, highlight-
ing its sensitivity in identifying cases of ischemic stroke. The model's accuracy of 91% demon-
strates its efficacy in accurately predicting outcomes in both positive and negative circum-
stances, offering a full assessment of its performance. The results indicate that the CNN 
model demonstrates a favorable equilibrium between precision, recall, and accuracy, empha-
sizing its potential usefulness in detecting ischemic stroke. The excellent precision signifies a 
reduction in false positives, while the commendable recall showcases the model's capacity to 
identify a significant proportion of true positives accurately. The attained precision highlights 
the model's competence in accurately classifying images, further emphasizing its potential as 
a valuable tool in diagnosing ischemic stroke in medical image analysis. 

 

Figure 7. Proposed CNN model architecture 

We also performed an ablation analysis to remove the preprocessing step with PBT. The 
purpose was to demonstrate the impact of PBT on the Model’s performance. The average of 
ten experiments carried out were detailed in Table 2. The findings indicate that there was a 
significant improvement in the model’s performance when PBT was used for image enhance-
ment. 
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Table 2. Ischemic stroke CNN model result. 

Mode Epoch Precision (%) Recall (%) Accuracy (%) AUC (%) 

Without Augmenta-
tion 

150 0.94 0.81 0.91 0.98 

With PBT 150 0.94 0.81 0.91 0.98 

Without PBT 150 0.80 0.67 0.76 0.83 

 
The Convolutional Neural Network (CNN) model results for detecting ischemic stroke, 

as shown in Table 3, exhibit encouraging performance with data augmentation under 150 
epochs. The precision of 1.0 signifies that all instances classified as positive (ischemic stroke) 
were correctly identified as true positives. This indicates a significant degree of precision in 
detecting cases of ischemic stroke without producing incorrect positive results. The recall, 
measured at 0.91, indicates that the model accurately detected a significant part (91%) of the 
true positive instances, demonstrating its efficacy in correctly identifying cases of ischemic 
stroke. The model's high overall accuracy of 0.97 demonstrates its ability to anticipate out-
comes, whether good or negative, accurately. These results highlight the strength and depend-
ability of the CNN model, demonstrating its potential for accurately detecting ischemic 
strokes. The model's excellent precision and recall values and its commendable overall accu-
racy indicate its strong performance in recognizing cases of ischemic stroke. This makes it a 
significant tool in medical image analysis and diagnosis. 

Table 3. Ischemic stroke CNN model result with augmentation. 

Epoch Precision (%) Recall (%) Accuracy (%) AUC (%) 

15 0.6522 0.6818 0.7414 0.8472 

30 0.8571 0.8182 0.8793 0.9470 

45 0.9091 0.9091 0.9310 0.9870 

60 1.0000 0.8636 0.9483 0.9962 

75 0.8363 0.8363 0.8966 0.9703 

90 0.9524 0.9091 0.9483 0.9924 

105 1.0000 0.9545 0.9828 1.0000 

120 1.0000 0.9091 0.9655 1.0000 

135 1.0000 1.0000 1.0000 1.0000 

150 1.0000 0.9191 0.9789 0.9886 

 
The results from Table 3 showed that: 1. As the number of epochs increases, precision 

generally increases, indicating the model makes fewer false positive predictions. 2. Recall fluc-
tuates across epochs but tends to improve over time, meaning the model is better at correctly 
identifying positive instances. 3. Accuracy shows an increasing trend, signifying that the over-
all correct predictions by the model are improving. 4. AUC values are consistently high, indi-
cating that the model has a strong ability to distinguish between different classes. 

Overall, the table suggests that as the training progresses through epochs, the model's 
precision, recall, accuracy, and AUC performance generally improves, with some fluctuations 
at certain epochs. 

The graphical presentation of results from two CNN models is shown in Figure 8, one 
with data augmentations (CNN-A) and the other without. The bar chart displays precision, 
recall, and accuracy performance metrics on the x-axis. CNN-A incorporates data augmenta-
tions during training, such as rotation and scaling, to enhance model generalization. Precision, 
recall, and accuracy are common evaluation measures plotted on the x-axis. Comparing CNN-
A and CNN results on the chart offers insights into the impact of data augmentation on 
model performance, aiding interpretation of their strengths and weaknesses. Therefore, the 
results showed there was an improvement in the performance metrics of the model when the 
augmentation images were used to train the model despite the adversarial situation (noise 
added to the images) used for the model. 
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Figure 8. Ischemic CNN model graphical result with and without augmentation. 

5. Comparison 

Table 4 compares state-of-the-art algorithms comprehensively, contrasting the utilized 
algorithms with those employed by three other authors in various research studies. The table 
encompasses five distinct features as columns for the state-of-the-art comparison. These col-
umns delineate the respective authors, the datasets utilized, the algorithms implemented, the 
optimal algorithm chosen by each author, and the corresponding best algorithm scores rec-
orded in the final column. This comparative analysis offers a detailed insight into the perfor-
mance and efficacy of the algorithms applied by different researchers, aiding in identifying 
superior approaches within the given context. 

Table 4. State-of-the-Art comparison. 

Authors Dataset Used Algorithm Used  Best Algorithm  Accuracy  

Alom et al., 
(2019)[33] 

Digital Pathology Im-
age 

DCNN DCNN 96% 

Badriyah et al., 
(2020)[25] 

Ischemic Stroke & 
Stroke Haemorrhage 

Eight machine learn-
ing algorithms 

Random Forest 95.97% 

Tarkanyi et al., 
(2022)[29] 

(LVO) strokes four various machine 
learning methods 

 All proved to per-
form well 

73-77% 

Bacchi et al., 
(2020)[34] 

Ischemic Stroke CNN & ANN Both at the ratio 74:71% 

Current Study Ischemic Stroke  CNN CNN 97% 

 
Table 4 represents the state-of-the-art comparison of the accuracy performance against 

the various models of other relevant studies used to classify and predict ischemic stroke eti-
ology. The current study's performance accuracy was rated above that of other models. There 
is a significant improvement from the work of Bacchi et al.[34] which yielded 74% accuracy 
compared to the current study, which gave 97%. This results from the PBT used for image 
enhancement, the augmentation approach to generate more images to train the model and 
adversarial training integrated into CNN model training. 

6. Conclusions 

Deep learning models computer-aided techniques, though, will never replace doctors 
and radiological experts. But it helps automate image processing and analysis. Stroke medicine 
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has evolved rapidly in the past 30 years, epitomized by mechanical thrombectomy's consider-
able difference in patients' lives. Also, computer-aided techniques for analyzing medical im-
ages have grown significantly recently, contributing to medical research and clinical applica-
tions. DL has shown continuous optimization in the segmentation process of stroke lesion 
regions from the brain stroke. This research aimed to observe the improvements and the 
growth of DL architectures adopting the CNN model with augmentation and adversarial 
training approach of stroke lesions so that the model mitigates against the attack or compro-
mising of medical images. Over the past few years. Despite these advancements, there are still 
some limitations and, thus, more improvements are needed. This pattern of gradual enhance-
ments in stroke lesion region augmentation can potentially become a scientific revolution if 
medical doctors and radiological experts also play a part in conceiving and building the frame-
work for deep learning models. Though deep learning has yielded significant results in the 
medical domain, remarkable research prospects exist for exploiting the above-discussed 
methods and deep architectures to solve complex image augmentation problems. The results 
showed a significant improvement in classification accuracy from 91% to 97%. This study 
recommends using this model for doctors and radiological experts in their diagnosis, and 
further studies should be focused on modifying the CNN algorithm based on augmentation 
with more datasets. The future direction for this study is to employ an autoencoder approach 
for feature extraction and consider other CNN architecture. 
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