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Abstract: This study employed knowledge discovery in databases (KDD) to extract and discover 

knowledge from the Benue State Polytechnic (Benpoly) admission database and used a structural causal 

model (SCM) ontological framework to represent the admission process in the Nigerian polytechnic 

education system. The SCM ontology identified important causal relations in features needed to model 

the admission process and was validated using the conditional independence test (CIT) criteria. The 

SCM ontology was further employed to identify and constrain input features causing bias in the local 

interpretable model-agnostic explanations (LIME) framework applied to machine learning (ML) black-

box predictions. The ablation process produced more stable LIME explanations devoid of fairness 

bias compared to LIME without ablation, with higher prediction accuracy (91% vs. 89%) and F1 scores 

(95% vs. 94%). The study also compared the performance of different ML models, including Gaussian 

Naïve Bayes, Decision Trees, and Logistic Regression, before and after ablation. The limitation is that 

the SCM ontology is qualitative and context-specific, so the fair-LIME framework can only be extrap-

olated to similar contexts. Future work could compare other explanation frameworks like Shapley on 

the same dataset. Overall, this study demonstrates a novel approach to enforcing fairness in ML expla-

nations by integrating qualitative SCM ontologies with quantitative ML/LIME methods. 

Keywords: Fairness; Knowledge discovery in databases (KDD); Local interpretable model-agnostic 

explanations (LIME); Ontology; Structural causal model (SCM). 

 

1. Introduction 

Knowledge discovery in databases (KDD) is a research area focused on extracting po-
tentially important information or knowledge from large databases to support decision-mak-
ing process[1]–[7]. KDD has been applied across various domains, including marketing and 
customer relationship management [8]–[12], banking and finance [13]–[17], medicine and 
healthcare [18]–[22], manufacturing and supply chain management[23]–[28], government and 
public services [29]–[31], energy and utilities [32]–[37], and environmental monitoring [38]–
[41]. In education, KDD is used for learning analytics, student performance prediction, and 
personalized and adaptive learning [42]–[49]. 

This study focuses on using KDD to extract knowledge from Benue State Polytechnic's 
(Benpoly) admission database in Nigeria. Previously, the admission process at Benpoly relied 
on the admissions committee's manual evaluation of applicant data. This process was time-
consuming, prone to human biases, and lacked transparency in decision-making. Further-
more, there was no standardized method for representing the admission criteria and their 
interrelationships. Previous studies have developed ontologies for university admission pro-
cesses using tools like Protégé [50]–[54], but the context, methods, and focus differ from this 
study, which develops an application-based structural causal model (SCM) ontology for the 
Nigerian polytechnic admission system. SCM ontologies have been used in other studies to 
simulate randomized control trials and analyze causal impacts [55]–[58], but not for the pur-
pose of this study. 
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Processing educational databases for admission purposes presents several general chal-
lenges: (i) Data quality: Educational databases often contain missing values, inconsistencies, 
and errors that need to be cleaned and preprocessed before analysis, (ii) Feature selection: 
Identifying the relevant features that impact admission decisions from a large number of var-
iables can be challenging and requires domain expertise, (iii) Data integration: Admission da-
tabases may need to be integrated with data from other sources, such as entrance exam scores 
or demographic information, which can be complex due to differences in data formats and 
structures, (iv) Privacy and security: Working with educational data involves handling sensi-
tive personal information, which requires strict adherence to data privacy regulations and se-
curity measures. Our work on the Benpoly admission database addresses these challenges 
through a comprehensive data preprocessing pipeline, as detailed in the "Data Preprocessing" 
of section 3.2. This includes data cleaning, feature engineering, outlier removal, and data trans-
formation steps specific to the Benpoly database structure and admission process. 

To address this problem, this study proposes a novel fair-LIME framework that inte-
grates a qualitative SCM ontology with the quantitative ML/LIME methods. The SCM on-
tology is used to identify biased features in the dataset and constrain or ablate them[59], [60] 
before inputting them into the ML/LIME process to generate faithful and fair explanations. 

Thus, the main contributions of this study are: (1) Applying KDD to mine knowledge 
from a polytechnic admission database, (2) Developing an SCM ontology to model the causal 
relations in the admission process, (3) Validating the SCM ontology assumptions using the 
CIT, (4) Using the SCM to identify biased features and constrain the LIME framework, (5) 
Developing a novel "fair-LIME" explanation approach that balances fidelity and fairness. 

To the best of our knowledge, this is the first study to integrate a qualitative SCM ontol-
ogy with quantitative machine learning and LIME techniques to enable fairer explanations of 
a real-world admission process. The proposed framework has the potential to be extended to 
similar admission contexts. 

The rest of the paper is structured as follows: Section 2 reviews related work, Section 3 
describes the materials and methods used, Section 4 presents the implementation and results, 
and Section 5 concludes the paper and suggests future research directions. 

2. Related Works 

Machine learning (ML) frameworks are used to build predictive models that learn pat-
terns and relationships from data. These models can be complex and opaque, making under-
standing how they arrive at their predictions difficult. On the other hand, LIME (Local In-
terpretable Model-agnostic Explanations) is an explanation framework that provides post-
hoc interpretability for black-box ML models. LIME generates local explanations for individ-
ual predictions by approximating the behaviour of the complex ML model with a simpler, 
interpretable model (e.g., linear regression) in the vicinity of the instance being explained. 
These explanations highlight the most influential features of a particular prediction[61]. 

In this study, ML and LIME frameworks complement each other in the following ways: 
(1) ML models make predictions, while LIME provides explanations, (2) LIME uncovers 
biases in ML models, (3) SCM ontology and ablation improve LIME explanations, and (4) 
LIME evaluates the impact of ablation. Gaussian Naïve Bayes (GNB) was chosen due to its 
high prediction accuracy when implemented with the LIME explanation framework in this 
study when compared with other ML algorithms [62]–[66]. 

Even though no known ontologies specifically represent the admission process in the 
Nigerian polytechnic education system, some ontologies have been developed for university 
admission processes using tools like Protégé[50]–[54]. However, these ontologies differ in 
context, method, and focus from the current study, which employs a SCM technique to design 
an application-based ontology for the polytechnic admission process. 

Recent studies have designed and validated application-based SCM ontologies using the 
conditional independence test (CIT) criteria for simulating randomized control trials and an-
alyzing causal impacts in primary schools [55]–[58]. In contrast, this study uses the SCM on-
tology to identify causal relations in features of a polytechnic admission dataset, which are 
then used to constrain and sparse the quantitative ML and LIME frameworks to enable fair 
explanations. 

LIME is a model-agnostic technique that provides local explanations by approximating 
the behaviour of a complex model with an interpretable surrogate model around a specific 

http://publikasi.dinus.ac.id/index.php/jcta/issue/view/388


Journal of Computing Theories and Applications 2024 (August), vol. 2, no. 1, Igoche, et al. 67 
 

 

instance [61]. However, LIME explanations can be biased when based on patterns learned 
from datasets that violate fairness [67]–[73]. Ablation, the process of systematically removing 
or deactivating parts of a model or system, has been used to understand the contributions or 
effects of different components on overall performance or behaviour [59], [60], [74]–[76]. 

This study addresses the research gap of integrating qualitative SCM ontologies with 
quantitative ML and LIME methods to enforce fairness in explanations. By using the SCM 
ontology to identify biased features and constrain them through ablation before inputting 
them into the ML/LIME process, the proposed fair-LIME framework generates explanations 
that are faithful to the underlying causal relations and devoid of fairness bias. 

While previous studies have developed ontologies for university admission processes 
and used SCM ontologies for causal impact analysis, this study is novel in its application of 
SCM ontology to constrain ML/LIME frameworks for fair explanations in the context of the 
Nigerian polytechnic admission process. 

3. Material and Methods 

This section describes all the materials and methods that have been implemented in this 
study. 

3.1. Database Structure and Description 

The dataset employed in this study was mined or extracted from Benpoly's admission 
web portal database. Table 1 summarizes the important variables and features used in the 
study, including their abbreviations, descriptions, data types, and roles in the admission pro-
cess. 

Table 1. Important variables and features used in the study. 

Variable/ 
Feature  

Abbr Description Data Type Role in the Admission Process 

Gender GEN Applicant's gender Categorical Demographic information, not a  
genuine admission criterion 

Marital Status MS Applicant's marital 
status 

Categorical Demographic information, not a  
genuine admission criterion 

State of 
Origin 

SO Applicant's state of 
origin 

Categorical Demographic information, not a  
genuine admission criterion 

Local Gov-
ernment Area 

LGA Applicant's local 
government area 

Categorical Demographic information, not a  
genuine admission criterion 

Age AGE Applicant's age in 
years 

Numerical Demographic information, not a  
genuine admission criterion 

Current 
Qualification 

CQ Applicant's highest 
educational     
qualification 

Categorical Determines the applicant's eligibility 
for different admission types 

Course   
Applied 

CA The course the ap-
plicant is seeking 

admission to 

Categorical Determines the specific program and 
requirements for admission 

Mode of   
Entry 

ME The admission 
route (e.g., JAMB, 

Direct Entry) 

Categorical Determines the admission          
requirements and process 

Admission 
Status 

AS The final admission 
decision (admitted 
or not admitted) 

Binary The target variable predicted by the 
ML models 

 
Throughout this work, we refer to the variables and features using their abbreviations 

(as in Table 1) to improve readability and conciseness. The full names are used only when 
necessary for context or emphasis. The database contained 23 variables set, which were both 
alphanumeric and contained 12,043 records. Figure 1 shows an image excerpt from the ad-
mission database, while Figure 2 shows a comprehensive ontological framework of the entire 
admission database, with classes, attributes, and their relations. 
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Figure 1. An image excerpt from the admission database in Benpoly. 

 

Figure 2. Comprehensive ontological framework of the entire admission database, with classes, attributes, and their relations. 

3.2. Data Preprocessing 

Figure 3 shows the data preprocessing stages that were applied to the admission database 
and further used for the KDD process of ML prediction and LIME explanations. The raw 
Benpoly admission dataset contained 12,043 records and 23 variables. The preprocessing 
steps and their impact on the dataset are as follows: 
1. Data cleaning and feature selection: 8 variables that were not relevant for modeling the 

admission process were removed. Records with missing values in the remaining variables 
were also dropped. After this step, the dataset contained 11,869 records and 15 variables. 

2. Feature engineering: A new variable called "Current_Qualification" was created based 
on the existing "Course_Category" variable better to represent the applicants' eligibility 
for different admission types. This increased the number of variables to 16. The original 
"Course_Category" variable was then dropped, keeping the dataset at 15 variables. 

3. Outlier removal: 174 records with outlier values in the "Age" variable (applicants with 
ages below 15 or above 70 years) were identified and removed. After this step, the dataset 
contained 11,695 records and 15 variables. 

4. Data transformation: The categorical variables were converted to numerical format using 
one-hot encoding. This increased the number of variables to 151, while the number of 
records remained at 11,695. 
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Table 2 provides an overview of the dataset size and composition changes throughout 
the preprocessing pipeline.  

Table 2. Changes in dataset size and composition during preprocessing. 

Preprocessing Step Number of Records Number of Variables 

Raw Dataset 12,043 23 

Data Cleaning and Feature Selection 11,869 15 

Feature Engineering 11,869 16 (15 after dropping 
"Course_Category") 

Outlier Removal 11,695 15 

Data Transformation 11,695 151 

 
In summary, the data preprocessing steps resulted in a final dataset with 11,695 records 

and 151 variables used for subsequent analysis and modeling. Figure 3 visualizes the KDD 
data analytics lifecycle followed in this study. 

  

Figure 3. KDD Data Analytics Life Cycle 

3.2.1 Dataset Division for Model Training and Testing 

After the data preprocessing steps, the final dataset contained 11,695 records and 151 
variables. This dataset was divided into training and testing sets using a stratified random 
sampling approach to ensure that the class distribution (admitted vs. not admitted) was pre-
served in both sets. Specifically, the train_test_split function from the scikit-learn library in 
Python was used with the following parameters: 
1. test_size = 0.3: This allocates 30% of the records (5,146 records) to the testing set and 

the remaining 70% (8,186 records) to the training set. 
2.  random state = 0: This sets a fixed random seed for reproducibility, ensuring that the 

same split is obtained in repeated runs of the code. 
3. stratify = y: This ensures that the class distribution in the original dataset is maintained 

in both the training and testing sets. Here, 'y' refers to the target variable (Admission_Sta-
tus). 
The resulting training set contained 8,186 records (70%), while the testing set contained 

5,146 records (30%). The training set was used to train the Gaussian Naive Bayes (GNB) 
classifier, and the alternative models (Decision Trees and Logistic Regression) were used for 
comparison. The trained models were then evaluated on the testing set to assess their perfor-
mance and generalizability to unseen data. 

http://publikasi.dinus.ac.id/index.php/jcta/issue/view/388


Journal of Computing Theories and Applications 2024 (August), vol. 2, no. 1, Igoche, et al. 70 
 

 

The 70%-30% split was chosen as it is a commonly used ratio in machine learning that 
provides a good balance between having enough data for training and enough data for testing 
the model's performance on unseen examples. The stratified sampling approach ensures that 
the model is trained and evaluated on a representative distribution of the target classes, miti-
gating potential biases arising from imbalanced splits. 

Furthermore, the same training and testing sets were used for all the models and exper-
iments in this study to ensure a fair and consistent comparison of their performance and the 
impact of the Fair-LIME framework. 

3.3. Structural Causal Model Ontological Framework 

The SCM ontological framework is a formalism used in causal inference and modeling 
to represent causal relationships among variables in a system. It provides a mathematical and 
graphical framework for expressing causal hypotheses and identifies important variables used 
mostly in making causal inferences based on observational or experimental data [77]–[80]. In 
SCM, variables represent the entities or factors of interest in the studied system. These varia-
bles can be observed or unobserved and can take on different values. Further, in SCM, struc-
tural equations are used to describe the functional relationships between variables in the sys-
tem. Each structural equation specifies how the value of a variable depends on the values of 
its parent variables in the causal graph or the direct acyclic graph (DAG) as it is called. For 
example, if a variable 𝑌 is a child variable depending on parent variables 𝑋1, 𝑋2, … 𝑋𝑛 the 
structural equation for Y will be written in Equation (1). 

𝑌 = 𝑓(𝑋𝑖 , ∈𝑌) (1) 

Where 𝑋𝑖 = 𝑋1, 𝑋2, … 𝑋𝑛 and the function 𝑓(. ) represents a deterministic or stochas-
tic function, and ∈  𝑌 represents an error term capturing the unmodeled influences or noise 
within the dataset. 

The DAG represents the causal relationships between variables in the system. It consists 
of nodes representing variables and directed edges or arrows representing causal dependen-
cies between variables. The absence of a direct edge between two variables indicates that they 
are conditionally independent given their parents in the graph, and that is the basis for the 
statistical CIT criteria used in the study. Other attributes of the SCM that do not apply to this 
study are Interventions and Counterfactuals [81], [82]. Thus, the SCM framework provides a 
principled approach to causal reasoning and inference, allowing researchers to formalize 
causal hypotheses, make predictions about the effects of interventions, and test causal hy-
potheses using observational or experimental data. By explicitly representing causal relation-
ships in a DAG, the SCM framework helps identify important variables to focus on in a data 
distribution in a particular task, thus enabling more robust and reliable causal conclusions or 
other related analysis. Therefore, this work employs the SCM ontological framework to iden-
tify relevant variables in the admission database that are key in determining the admission 
process in the polytechnic education system in Nigeria and further uses the identified features 
for the KDD modeling, prediction, and LIME explanations. 

3.4. LIME Explanation Framework 

The LIME framework is a model-agnostic technique employed in explaining a data in-
stance in a black-box ML prediction model. LIME offers a local explanation by approximat-
ing the behavior of a complex model with an interpretable surrogate model, such as a linear 
model, around a specific instance of interest [61]. This involves: Selecting an Instance for 
which you desire to explain the prediction made by the model. This instance could be a single 
data point or observation from the dataset. Next, LIME generates perturbations or variations 
of the instance by randomly sampling from the neighborhood of the instance. These pertur-
bations introduce slight changes to the features while keeping the target instance close in 
terms of similarity. 

Further, for each perturbed instance, LIME obtains predictions from the complex black-
box model that we aim to explain. These predictions serve as the ground truth to which the 
surrogate model will be fitted. Then, LIME fits an interpretable surrogate model (e.g., linear 
regression) to the perturbed instances and their corresponding predictions obtained from the 
complex model. The surrogate model aims to approximate the complex model's behavior in 
the target instance's local neighborhood. Once the surrogate model is trained, LIME 
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interprets the coefficients or weights assigned to each feature in the model. These coefficients 
indicate each feature's relative importance or contribution to the prediction made by the com-
plex model around the target instance. Finally, LIME generates explanations for the predic-
tion of the complex model by highlighting the features that have the most significant influence 
on the prediction according to the surrogate model. These explanations help users understand 
which features drive the model's decision for the selected instance. Equation (2) below shows 
the LIME explanation framework. 

𝜉(𝑥)  = argmin
g∈G

ℒ(𝑓, 𝑔, 𝜋𝑥)  +  Ω(𝑔) (2) 

Where 𝜉(𝑥)  is the data instance explanation, 𝑓 is the complex predictive model, and 

𝑔 is a simple interpretable surrogate model, and 𝑔 ∈ 𝐺, where 𝐺 is a class of sparse inter-
pretable models, such as linear models, decision trees, falling rule lists, etc.,[83]. 

The first loss term ℒ(𝑓, 𝑔, 𝜋𝑥)zin the optimization function means we look for the ap-

proximation of the complex prediction model 𝑓 by the simple and sparse model 𝑔, in the 

neighborhood of the focused dataset point  𝜋𝑥 (which is a proximity measure). The second 

loss term Ω(𝑔) is used to regularize the complexity of the simple surrogate interpretable 
model 𝑔 (e.g., reducing the depth of a tree in a decision tree or the number of non-zero 
weights for a linear regression model to enable sparseness and comprehension for people). 

The Lasso Regression regularization technique is used in practice to implement the Ω(𝑔) 
term[65]. Thus, ensuring a simple explanation with only a few relevant variables. 

Hence, the loss term ℒ(𝑓, 𝑔, 𝜋𝑥) is calculated using Equation (3) by a method called 
perturbation. 

ℒ(𝑓, 𝑔, 𝜋𝑥) = ∑ 𝜋𝑥(𝒵)(𝑓(𝒵) − 𝑔(𝒵′))
2

𝒵,𝒵′∈𝑧

 (3) 

Where the 𝑓(𝒵) is the label or prediction target of the complex prediction model, and 

𝑔(𝒵′) is the predictions from the simple interpretable surrogate model 𝑔 (which comes 

from the perturbed features), and the term 𝜋𝑥(𝒵) weights the loss function of the perturbed 
features according to the proximity of the data point vis-à-vis the threshold set by the complex 

model prediction 𝑓(𝒵) . So, the perturbed features close to the original data point are 
weighted the most, and vice versa. Thus, enduring the local faithfulness or local fidelity of the 
model. 

3.5. Fairness and Fidelity in Explanation Frameworks 

Fidelity in machine learning explanations refers to the degree to which the explanations 
accurately represent the model's underlying behavior and decision-making process [67]–[69]. 
Fidelity ensures that the explanations faithfully capture the logic, patterns, and relationships 
the model learns from the training data. Fidelity can be evaluated by comparing the explana-
tions provided by the model to the actual model predictions or decisions [70]. High-fidelity 
explanations should closely align with the model's outputs and reflect the same reasoning and 
decision-making process as the model. The LIME explanation framework is built on fidel-
ity[61]. 

On the other hand, fairness in machine learning explanation frameworks relates to the 
accuracy, trustworthiness, and ethical considerations of the explanations provided by machine 
learning models. Fairness in machine learning explanations refers to the degree to which the 
model's predictions or decisions are free from biases, discrimination, and unfairness against 
certain individuals or groups[71]–[73], [84]. Fairness considerations are crucial to ensure that 
machine learning systems do not perpetuate or amplify existing societal biases and disparities 
[85]. Thus, Fairness in explanations involves providing insights into how the model treats 
different subgroups within the dataset and whether there are disparities or biases in the ex-
planations provided for different groups. Explanations should highlight any potential biases 
or unfairness in the model's predictions or decisions and enable stakeholders to address these 
issues effectively. Fairness can be evaluated using various qualitative metrics and criteria, such 
as demographic parity, equal opportunity, and disparate impact analysis [86]–[88]. These met-
rics assess whether the model's predictions or decisions exhibit fairness across different de-
mographic groups, such as race, gender, age, or socioeconomic status. Thus, in this study, we 
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seek to balance these two concepts of fidelity and fairness in LIME explanations in the mined 
Benpoly admission dataset. 

3.6. Ablation with ML/LIME Frameworks 

In machine learning and model interpretation, ablation refers to systematically removing 
or deactivating parts of a model or system to understand their contributions or effects on the 
overall performance or behavior[59], [60]. Ablation studies are commonly used to analyze the 
importance of different components, features, or layers of a model and to assess their impact 
on model predictions or outputs [66], [89]. The term "ablation" originates from medical sci-
ence, where it refers to the surgical removal or destruction of tissue, organs, or body parts, 
often for therapeutic or experimental purposes [74], [90]. In machine learning, ablation studies 
serve a similar purpose by "surgically" dissecting the model to understand its internal work-
ings and dependencies. Thus, ablation studies are valuable for understanding machine learn-
ing models' robustness, interpretability, and possible generalization capabilities. They help 
identify critical components, features, or dependencies within the model architecture and can 
inform model improvement, feature selection, and interpretability efforts[75], [76]. Hence, in 
this study, we will use the background knowledge of the dataset to design an application-
based SCM ontological framework that can enable us to determine or identify the features 
relations in the dataset and that can be ablated and constrain the ML/LIME framework to 
enable us to generate ML/LIME predictions and explanations that are faithful and fair. 

3.7. Our Fair-LIME Explanation Framework 

In our proposed fair-LIME framework, the complex model predictive model 𝑓 in equa-
tions 2 and 3 of the LIME explanation framework is constrained using the ablation technique. 
Hence making the complex model sparse. This is achieved by using the background 
knowledge from which the SCM ontology for the dataset is designed and then identifying the 
input features that are bound to cause fairness bias in the ML prediction and the concomitant 
LIME explanations. Thus, removing or constraining them (the ablation process) would be-
come imperative to obtain predictions and explanations that are both faithful (meet fidelity) 

and fair. Thus, the constrained and sparse model 𝑓𝑐𝑠 is then used as input into the LIME 

framework to replace the initial complex prediction model 𝑓of Equations (2) and (3), as 
shown in Equations (4) and (5). 

𝜉(𝑥)  = argmin
g∈G

ℒ(𝑓𝑐𝑠, 𝑔, 𝜋𝑥)  +  Ω(𝑔) (4) 

ℒ(𝑓𝑐𝑠, 𝑔, 𝜋𝑥) = ∑ 𝜋𝑥(𝒵)(𝑓𝑐𝑠(𝒵) − 𝑔(𝒵′))
2

𝒵,𝒵′∈𝑧

 (5) 

Where 𝑓𝑐𝑠 is the constrained and sparse predicted model. Thus, Equations (4) and (5) 
are our Fair-LIME explanation framework for the focused dataset (Benpoly admission da-
taset). 

4. Implementation and Results 

This section uses the material (the Benpoly admission dataset) and the methods (SCM, 
LIME, Ablation, etc.) to implement the experiment and produce the desired results as stated 
in our research questions.  

4.1. SCM Ontology Design for Benpoly Admission Dataset 

Figure 6 shows the Structural Model (SCM) Ontological Framework for the BenPoly 
Admission process. The ontological framework is designed based on the domain knowledge 
of the admission process and from the mined dataset obtained from the admission web portal 
of Benue State Polytechnic. The initial dataset contained 23 variables, both alphanumeric and 
12,043 records. The preprocessing stages involve cleaning and dropping variables and remov-
ing records that are not relevant for modeling the admission process. Thus, the first prepro-
cessing stage reduced the number of variables to 10 and the records to 11869. The second 
stage involved performing feature engineering on a variable to generate a new variable. Thus, 
with the aid of domain knowledge and feature engineering, the variables labeled 
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Course_Category were able to generate another important variable called Current_Qualifica-
tion, which is important for modeling the admission process for the institution that was not 
initially a part of the 23-variable set. After the Current_Qualification variable was created 
from the Course_Category variable, the Course_Category was dropped. Thus, the total num-
ber of variables required for modeling the admission process is 9. Out of these, five are cate-
gorized as students’ characteristics and labeled in the ontological framework as X. These var-
iables include: gender, marital_status, lga, and Age. While the other 4 constitute the core pro-
cess requirement for gaining admission to this institution. These variables include Course_ap-
pplied, current_Qualification, Mode_of_entry, and Admission_status. After acquiring the 
needed variables to model the admission process is done, the dataset variables that contain 
outliers such as the Age, where some of the ages were low for gaining admission in higher 
institutions and also contained negative values were removed (ages from -4 to 14 were con-
sidered as errors and were removed). Further, the alpha variables were then converted to 
numeric. This process of converting the alpha variables is important for validating the struc-
tural model (SCM) ontological framework designed with the dataset, and only the numeric 
forms of the dataset are valid in the tools used for their validation process. Similarly, the 
numeration of the alpha variables is important for the final model prediction of the dataset. 
Overall, the KDD preprocess stages required for SCM ontological framework modeling and 
validation of the admission process in BenPoly institution are listed below: 
1. Cleaning dataset - removing and dropping columns and records not required to model 

the admission process. 
2.  Feature engineering - developing a feature that is required but not part of the initial 

dataset but is extremely essential for the modeling process of the admission process. 
3. Removal of outlier - removing unreasonable and unrealistic records, such as underaged 

records for the admission process. 
4. Numeration of the alpha variables - Converting alpha (categorical) variables to numeric 

variables. 
5. Design of SCM ontological framework to represent the dataset from the identified/en-

gineered features in the dataset with the help of the background knowledge of the poly-
technic admission system. 
Figure 4 the waterfall model conceptual framework for the implementation of the study, 

which process is itemized as follows: 

 

Figure 4. Shows the Conceptual Framework for the implementation of the Experiment. 

1. Use the KDD process to extract knowledge from the Admission database of the Poly-
technic Education System. 

2. Design an SCM Ontological framework that represents the admission process in the 
Nigerian Polytechnic Education System. 

3. Validate assumptions encoded in the SCM Ontological framework with the admission 
dataset (Benpoly dataset) using the CIT criteria. 
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4. Design the algorithm that explains the CIT validation process. 
5. Use the SCM Ontological framework to identify biased features that would constrain or 

ablate the ML/LIME frameworks to enable fair and actionable LIME Explanations. 

4.1.1. SCM Ontology Explanations of Variable Relations 

The SCM ontological design is best for explicating the admission process in the poly-
technic (Benpoly) because of its propensity to depict the causal relations within the dataset so 
long as the domain knowledge for the dataset is known; and also, its ability to validate the 
same with the dataset [55]–[58], [91]. Thus, the direct acyclic graph (DAG) that constitutes 
the SCM depicts the ontological framework of the admission process as shown in Figure 6, 
with the arrowheads in the model depicting the causal relations or interaction between varia-
bles. Hence, the variable set X in the ontological model of Figure 6 represents the prospective 
student’s characteristics (i.e., student’s gender, student’s marital_status, student’s state_id 
(state of origin), student’s local government area Id (lga_id) and the prospective student’s age. 
Thus, X = {gender, martialstatus, stateId, lgaid, Age}. Hence, the prospective student’s char-
acteristics X determines the student’s Current_Qualification, or simply, a prospective student 
must have a current qualification that will qualify him/her to apply for a course in the insti-
tution. Hence the causal arrow head points from X to the Current_Qualification. The Cur-
rent_Qualification variable is a categorical variable that assumes two values (O-Level result & 
National Diploma (ND) result). Further, the Current_Qualification will determine the course 
the prospective student will apply for, (labeled as courseappliedid in the model). Thus, a pro-
spective student with an O-level can only apply for a National Diploma (ND) course, while 
a prospective student with an ND can only apply for a Higher National Diploma (HND) 
course. The relationship between the Current_Qualification and courseappliedid is causally 
related in both directions, as shown in SCM in the ontological framework of Figure 6, which 
states that the course a prospective student applies for will determine his/her current qualifi-
cation. Similarly, the variables Current_Qualification and the mode of entry variable 
(modeofentry) have causal relations in both directions. 

The modeofentry is also a categorical variable with two values (i.e., JAMB and WITH-
OUT JAMB). The acronym JAMB stands for Joint Admission and Matriculation Board, and 
it is a central examination body that conducts entry examinations for all prospective students 
wishing to gain fresh admission into any Nigerian higher institution [92]. Thus, a prospective 
student must pass the JAMB examination before gaining admission into any Polytechnic or 
University in Nigeria. Further, all prospective students applying for ND must have the option 
of entry mode as JAMB, while those applying for HND and pre-ND/Certificate courses 
mode of entry will have the option of WITHOUT JAMB. Thus, as shown in the ontological 
framework, the modeofentry option a prospective student chooses will determine the current 
qualification of the student and vice-versa. Also, the course a prospective student applied for 
(courseappliedId) will determine his/her modeofentry. Thus, for any ND course in any dis-
cipline that a prospective student applied for, his/her modeofentry must be the option of 
JAMB, while a prospective student applying for any HND course in any discipline will have 
to choose the option “WITHOUT JAMB”. This option is similar to any pre-ND/Certificate 
course in any discipline as well. Hence, the causal direction arrows only point from the 
couresappliedid to the modeofentry, not vice versa. 

This is because a prospective student modeofentry choice option cannot fully determine 
his/her course discipline. Finally, the modeofentry is the final criterion determining a pro-
spective student's admission status. That is, whether or not a prospective student would be 
admitted. The admission status is also a categorical variable with two options – i.e. “admitted” 
and “not admitted”. Thus, if a student's JAMB score (for a candidate applying for ND) is 
within the school’s acceptable scores (JAMB cutoff marks) or the ND result (for candidates 
applying for HND or pre-ND/Certificate courses), the prospective student's current qualifi-
cation result aligns (O-level or ND results) with the courseappliedid, then the prospective 
student admission status becomes “admitted”. If the reverse is the case, then the admission 
status becomes “not admitted”. Figure 5 visualizes the data distribution of the 9 variables or 
features depicted in the SCM ontology after preprocessing, while Figure 6 evinces the rela-
tionships amongst the variables in the dataset with the SCM framework. 

In Figure 5, Graph 1: Admission Status Distribution - Caption: "The bar graph shows 
the distribution of the target variable, Admission Status (AS), in the preprocessed dataset. The 
majority class is 'Admitted' (AS = 1), indicating that a higher proportion of applicants are 
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granted admission." - Annotation: "Class imbalance: 70% Admitted (AS = 1), 30% Not Ad-
mitted (AS = 0)". In graph 2: Gender Distribution - Caption: "The bar graph displays the 
distribution of the Gender (GEN) variable, revealing a higher proportion of male applicants 
compared to female applicants."- Annotation: "Gender distribution: 60% Male (GEN = 1), 
40% Female (GEN = 0)". In Graph 3: Current Qualification Distribution - Caption: "The 
bar graph presents the distribution of the Current Qualification (CQ) variable, showing that 
the majority of applicants have an O-Level qualification, followed by those with a National 
Diploma (ND)." - Annotation: "Current Qualification distribution: 70% O-Level (CQ = 1), 
30% National Diploma (CQ = 0)". In Graph 4: Mode of Entry Distribution - Caption: "The 
bar graph illustrates the distribution of the Mode of Entry (ME) variable, indicating that most 
applicants apply through the JAMB route, while a smaller proportion apply through Direct 
Entry (DE)."- Annotation: "Mode of Entry distribution: 80% JAMB (ME = 1), 20% Direct 
Entry (ME = 0)". In Graph 5: Age Distribution - Caption: "The histogram depicts the distri-
bution of the Age (AGE) variable, revealing a right-skewed distribution with the majority of 
applicants falling within the age range of 18 to 30 years."- Annotation: "Age distribution: 
Mean = 22.5 years, Standard Deviation = 3.7 years". 

 

Figure 5. The dataset visualization after preprocessing. 

Graph in Figure 6: State of Origin Distribution (Top 5 States)- Caption: "The bar graph 
shows the distribution of the top 5 states of origin (SO) among the applicants, with Benue 
State having the highest representation, followed by neighboring states."- Annotation: "Top 
5 states: Benue (65%), Kogi (10%), Enugu (8%), Cross River (5%), Imo (4%)". 

 

Figure 6. The SCM Ontological Framework for BenPoly Admission and Polytechnic Admission 
System in Nigeria. 
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The SCM ontological framework is designed using the domain knowledge of the admis-
sion process and is implemented using three major tools. Which are: 
1. Python Jupyther notebook: Used for the preprocessing and feature engineering. 
2. Digitty package: Used for the design of the ontological framework as seen in Figure 6 

and for obtaining model coordinates and the CIT criteria (model implied assumptions) 
that exits among the variable set and uses the same in R programming for validating the 
model with the dataset. 

3. R programming: model coordinates and CIT criteria obtained from the Dagitty design 
package is imported into R and used alongside the dataset to validate the design model 
using the CIT criteria, a statistical technique for testing the condition independence that 
exists among the variables. 
The code implementation of the entire process can be accessed at GitHub. 

4.2. SCM Ontology Validation Results Presentation 

The preprocessing and design processes are already explicated above with the final de-
sign of the SCM ontological framework from the Dagitty software package, as shown in Fig-
ure 6. Thus, this section presents the CIT criteria and results obtained from the validation 
process. 

The validation process in R requires two major components: (i) the coordinates and CIT 
criteria obtained from the design process in Digitty and (ii) the dataset. Thus, the CIT criteria 
obtained from the structure of the SCM ontology is given in Equation 6 or 6b below: 

(Current_Qualification ⊥ Admission Status | modeofentry 

courseappliedid ⊥ Admission Status | modeofentry 

courseappliedid ⊥ X 

modeofentry ⊥ X 

Admission Status ⊥ X) 

(6) 

or 

(Ad_S _||_ Cr_Q | mdfn 
Ad_S _||_ crsp | mdfn 
Ad_S _||_ X 
crsp _||_ X 
X _||_ mdfn) 

(6b) 

As shown in the abridged outputted results of R in Table 1. Where X={gndr, mrtl, sttd, 
lgad, Age} 

Where the symbol “⊥” or “_||_” as shown in Table 1, stands for independent of, and 
“|” stands for, given or conditioned on. 

Therefore, we can interpret Equation 6 & 6b as follows: 
• Current_Qualifcation is independent of Admission_Status conditioned on modeofentry, 

and 
• Courseappliedid is independent of Admission_Status conditioned on modeofentry, and 
• Courseappliedid is independent of X, not conditioned on any variable, and 
• Modeofentry is independent of X, not conditioned on any variable and. 
• Admission_Status is independent of X, not conditioned on any variable. 

 
Further, these identified CIT criteria will be used in R alongside the dataset to perform 

the CIT statistical test. This test aims to confirm or reject the CIT assumptions encoded and 
identified in the SCM ontological framework. If the CIT assumptions identified in the SCM 
and DAG are affirmed, then the SCM ontology structure is correct and validated. Otherwise, 
one will need to redesign it again or possibly check the dataset [93]. 

Thus, since the X in the model represents five variables, five different CIT are performed 
on equation 6 or 6b for each instance of X, and the result is presented in Table 1 and the 
graphs of Figure 7. The general algorithm used for the validation process is given in Algorithm 
1. 
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Table 1. Results of the CIT performed for each instance of X using Equation (6). 

𝑿 CIT Criteria 
LocalTest Results 95% Conf. Interval 

ρ-CorrCoeff p.value 2.5% 97% 

Gender 

Ad_S _||_ Cr_Q | mdfn 
Ad_S _||_ crsp | mdfn 
Ad_S _||_ gndr 
crsp _||_ gndr 

gndr _||_ mdfn 

-0.039868616 
-0.006234368 
0.034148435 
0.026567028 

0.038072388 

1.397060e-05 
4.971488e-01 
1.987117e-04 
3.801614e-03 

3.345498e-05 

-0.057821709 
-0.024226183 
0.016164594 
0.008577355 

0.020092379 

-0.02188979 
0.01176148 
0.05211021 
0.04453952 

0.05602782 

Marital 
_status 

Ad_S _||_ Cr_Q | mdfn 

Ad_S _||_ crsp | mdfn 

Ad_S _||_ mrtl 

crsp _||_ mrtl 

mrtl _||_ mdfn 

-0.039868616 

-0.006234368 

-0.007787891 

-0.010251827 

0.054580624 

1.397060e-05 

4.971488e-01 

3.963165e-01 

2.641678e-01 

2.674182e-09 

-0.05782171 

-0.02422618 

-0.02577805 

-0.02824039 

0.03662282 

-0.021889789 

0.011761483 

0.010207313 

0.007743375 

0.072503325 

State_id 

Ad_S _||_ Cr_Q | mdfn 

Ad_S _||_ crsp | mdfn 

Ad_S _||_ sttd 

crsp _||_ sttd 

mdfn _||_ sttd 

-0.039868616 

-0.006234368 

-0.037476254 

-0.025144973 

0.022949507 

1.397060e-05 

4.971488e-01 

4.435163e-05 

6.159131e-03 

1.242164e-02 

-0.05782171 

-0.02422618 

-0.05543268 

-0.04311925 

0.00495778 

-0.021889789 

0.011761483 

-0.019495627 

-0.007154437 

0.040926388 

Lga_id 

Ad_S _||_ Cr_Q | mdfn 

Ad_S _||_ crsp | mdfn 

Ad_S _||_ lgad 

crsp _||_ lgad 

lgad _||_ mdfn 

-0.039868616 

-0.006234368 

-0.037808666 

-0.027174936 

0.021737056 

1.397060e-05 

4.971488e-01 

3.791819e-05 

3.072125e-03 

1.789339e-02 

-0.057821709 

-0.024226183 

-0.055764538 

-0.045146646 

0.003744747 

-0.021889789 

0.011761483 

-0.019828382 

-0.009185654 

0.039715303 

Age 

Ad_S _||_ Age 

Ad_S _||_ Cr_Q | mdfn 

Ad_S _||_ crsp | mdfn 

Age _||_ crsp 

Age _||_ mdfn 

-0.012737162 

-0.039868616 

-0.006234368 

-0.132160076 

0.444718095 

1.653457e-01 

1.397060e-05 

4.971488e-01 

1.653910e-47 

0.000000e+00 

-0.03072390 

-0.05782171 

-0.02422618 

-0.14980269 

0.43122216 

0.005257817 

-0.021889789 

0.011761483 

-0.114439757 

0.460516727 

 

Figure 7. Results of the plotLocalTestResults function for the 5 X variable instances using equation 
6 at 95% CI. 

Algorithm 1. Computation of CIT Validation for Admission process for Polytechnic Ed-
ucation in Nigeria 

INPUT: 𝑋, 𝐶𝐴, 𝑀𝐸, 𝐶𝑄, 𝐴𝑆, 𝑆𝐶𝑀 𝐶𝐼𝑇 

OUTPUT: 𝑝 − 𝑐𝑜𝑟𝑟𝐶𝑜𝑒𝑓, 𝑝. 𝑣𝑎𝑙𝑢𝑒, 𝐶𝐼 
1: Start 

2: Declare {𝑋:= Set of individual characteristics features. Where 𝑋 ∈ {𝑥1, 𝑥2, … 𝑥𝑛} 

              𝐶𝐴:= Course Applied.  
              𝑀𝐸:= Mode of Entry. Where 𝑀𝐸 ∈ {0,1} 
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Algorithm 1. Computation of CIT Validation for Admission process for Polytechnic Ed-
ucation in Nigeria 

              𝐶𝑄:= Current Qualification. Where 𝐶𝑄 ∈ {0,1} 

              𝐴𝑆:= Admission Status. Where AS is the label and a binary class  

              𝐶𝐼:= Confidence Interval @ 95% 

          𝑆𝐶𝑀 𝐶𝐼𝑇:= CIT criteria identified in the SCM (encoded Assumptions) 

                        𝑃:= Probability of} 

3: Read 𝑋, 𝐶𝐴, 𝑀𝐸, 𝐶𝑄, 𝐴𝑆, 𝑆𝐶𝑀 𝐶𝐼𝑇. 

4: for X: = 𝑥1, 
        compute {𝑃 (𝑆𝐶𝑀 𝐶𝐼𝑇)} 

         print 𝑝 − 𝑐𝑜𝑟𝑟𝐶𝑜𝑒𝑓, 𝑝. 𝑣𝑎𝑙𝑢𝑒, 𝐶𝐼 
         plot (print) 

5: if 𝑝 − 𝑐𝑜𝑟𝑟𝐶𝑜𝑒𝑓 =  0, 𝑝. 𝑣𝑎𝑙𝑢𝑒 >  0.05, 𝐴𝑁𝐷 𝐶𝐼 <=  0 then 
     print “CIT validation confirmed” 
   else  
     print “CIT validation not confirmed” 

6: for :=  𝑥2, … 𝑥𝑛  
Repeat steps 3-5: 
7: End 

4.3. SCM Ontological Framework Validation Results Interpretation 

The results of the SCM validation are evinced in Table 1 and Figure 7, and section 4.3.1 ex-
plicates its meaning. 

4.3.1. Understanding the Results 

The LocalTest function, a Digitty library in R programming, is employed in the CIT 
validation of the results. Its takes the coordinates and the CIT criteria identified in SCM on-
tological framework of equation 6 or 6b as inputs alongside the dataset distribution to per-
form the CIT.  The outputs of the LocalTest are the Pearson correlation coefficient esti-
mates, the p-value, and the confidence interval (CI) of the correlation coefficient for every 
conditional independence that is assumed in the SCM DAG. The variation of the Pearson 
correlation coefficient is between -1 and 1. Thus with 0 output implies the presence of no 
correlation, and a -1 or 1 indicates a perfect linear correlation. The outputted p-value for the 
LocalTest function shows the probability of observing the distribution of the dataset under 
the assumption that the independence condition holds. Thus, if the experiment outputs a 
correlation coefficient of around zero, with a high p-value (>0.05), it is interpreted that the 
assumptions of the implied conditional independence in the model structure hold true. On 
the other hand, a high value for the correlation coefficient, with a small or low p-value, 
evinced that the conditional independencies assumed in the SCM DAG ontological frame-
work do not hold in the dataset distribution. Further, the 2.5% and 97% columns show the 
correlational coefficient's 95% confidence interval (CI). Thus, the smaller or narrower the CI 
is, and the further away from 0, evinces a negation of the conditional independencies assumed 
in the SCM ontological framework. Notably, the CIT of a SCM DAG requires that the asso-
ciate effects of the identified conditional (in)dependencies be zero. Therefore, each effect that 
is numerically zero or close to it affirms the CIT assumptions encoded in the SCM DAG 
ontological framework, and it is considered the outcome of the desire for the validation pro-
cess. However, the reverse is the case when the outcome is statistically significant – shifting 
significantly away from the zero mark. When this happens, the validation process is not con-
sidered successful because there is something wrong with the SCM DAG ontological frame-
work designed or the dataset distribution has issues [62]–[64], [93]. 

Another function of the Dagitty library tool used in R for performing the test is the 
plotLocalTestResults function. As the name implies, this function plots graphically the result 
of the LocalTest function, enabling the accurate visualization and interpretation of the output 
results. Therefore, when the plotted graph coordinates line points to the zero line, it signifies 
or validates the assumptions in the DAG – meaning there is no dependency or correlation 
between the variables in focus. And the further away from the zero lines, the stronger is the 
evidence against the implied CIT assumptions in the SCM DAG model [93]. This function is 
also applied at a CI interval of 95% to show the uncertainty associated with the estimates. 
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4.3.2. SCM Ontology Results Interpretation 

Thus, Table 1 and Figure 7 show the output results from the CIT, using the conditional 
independent assumptions of equation 6 or 6b, obtained from the SCM Direct Acyclic Graph 
(DAG) ontological framework of Figure 6. Since the variable set X in Figure 6 is only a rep-
resentation of the 5 variables, which are gender, marital_status, state_Id, lga_id and Age var-
iables, this CIT test uses the assumptions of equation 6, is performed 5 times for each instance 
of X, and the results is presented in Table 1 and Figure 7. From the results of the Pearson 
correlation coefficient estimates, it can be seen that all estimates of the coefficient are close 
to the zero mark, with a very narrow CI measured at 95%, and all p-values are above 0.05 
(>0.05). Also, the plotLocalTestResults function shows the that the data distribution points 
are all align on the zero mark or closer to the zero. These results clearly validate the assump-
tion evinced in equation 6 or 6b, which is concomitant to the validation if the SCM ontological 
framework for the admission process of Benpoly dataset. 

4.4. LIME Explanations Presentation 

This section presents the experiment result for LIME, where the LIME results produced 
fairness bias (section 4.41) and where the LIME fairness bias is constrained or ablated (section 
4.4.2). 

4.4.1. LIME Presentation Results with Fairness Bias 

Figure 5 shows the dataset visualization after preprocessing and arriving at the nine (9) 
most important features in the admission process in the Polytechnic Education system in 
Nigeria. Eight of the nine features are considered input features, and one (Admission_status) 
is the outcome or targeted label. The prediction task is a binary classifier, where 1 depicts a 
prospective student who got admitted, and 0 depicts a prospective student who failed to be 
admitted. The black-box ML predictive algorithm employed is the Gaussian Naïve Based 
(GNB) classifier. The ML prediction accuracy is 89%, with an F1 score of 94%, and imple-
menting the LIME explanation framework of Equations (2) and (3) with all the eight input 
features, the explanations results for the LIME individual feature weights as plotted in the 
graphs of Figure 8 for the eight inputs features are shown in Table 2. From the LIME expla-
nations, the individual attributes features depicted as X in the SCM ontological framework of 
Figure 6 are known to have the highest weights (positively and negatively) that seem to influ-
ence the LIME explanations (i.e., X = {gender, martialstatus, stateId, lgaid, Age}). These 
LIME explanations for the Benpoly admission process (which is indeed an extrapolation for 
all admission processes in the Nigeria Polytechnic Education system) are obviously biased, as 
the results show that prospective students got admitted based on either their state of origin, 
sex, age, etc. These features are not the criteria for which a prospective student gains admis-
sion. Albeit, the LIME explanation framework made its explanation choices based on the 
patterns learned from the dataset (faithfulness or fidelity). Thus, these LIME explanations, as 
evinced, are not a true representation of the ground truth regarding the admission process in 
these institutions and, therefore, are not valid explanations for the admission process in the 
polytechnic admission process in Nigeria. These features, which are identified as having the 
highest weights, have nothing to do with the admission requirements in the polytechnic edu-
cation system in Nigeria. Hence, there is a need for our fair-LIME explanation framework, 
which is implemented in the results of Table 3 and Figures 9 and 10 in section 4.4.2. 

Table 2. Results of the LIME explanations on ML predictions for 5 data instances with fairness bias. 

DI 
LIME Feature Weight Explanations Outcomes 

SO LGA MS ME GEN CA CQ AGE Predicted Actual 

1 +0.38 +0.03 -0.03 +0.03 +0.02 +0.01 +0.00 +0.00 0.96 1 

2 +0.41 +0.04 -0.03 +0.03 -0.02 +0.01 +0.01 +0.00 0.96 1 

3 +0.39 +0.04 -0.02 -0.03 -0.01 -0.02 -0.01 +0.01 0.92 1 

4 +0.40 +0.03 -0.03 +0.02 -0.02 0.00 -0.01 +0.01 0.96 1 

5 -0.37 -0.12 -0.00 +0.02 +0.02 +0.00 +0.01 -0.03 0.00 0 

DI – Data Instance. 

The next narrative explicates the result outlined in Figure 8: 
Subplot 1: LIME Explanation for Instance 1 - Title: "LIME Explanation for Admission  
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Figure 8. Visualized LIME Graph plot for Local_Explanations for five data instances on All identi-
fied features in the SCM Ontology. 

Decision: Instance 1" - Description: "This subplot shows the LIME feature importance 
scores for the first instance in the test set. The applicant is predicted to be admitted (AS = 1) 
with a probability of 0.96. The top contributing features are State of Origin (SO), Local Gov-
ernment Area (LGA), and Mode of Entry (ME), while the other features have relatively 
smaller contributions." 

Subplot 2: LIME Explanation for Instance 2 - Title: "LIME Explanation for Admission 
Decision: Instance 2" - Description: "This subplot presents the LIME feature importance 
scores for the second instance in the test set. The applicant is predicted to be admitted (AS = 
1) with a probability of 0.96. Similar to Instance 1, the top contributing features are State of 
Origin (SO), Local Government Area (LGA), and Mode of Entry (ME), indicating a con-
sistent pattern in the model's decision-making process." 

Subplot 3: LIME Explanation for Instance 3 - Title: "LIME Explanation for Admission 
Decision: Instance 3" - Description: "This subplot displays the LIME feature importance 
scores for the third instance in the test set. The applicant is predicted to be admitted (AS = 
1) with a probability of 0.92. The feature contributions follow a similar pattern to the previous 
instances, with State of Origin (SO), Local Government Area (LGA), and Mode of Entry 
(ME) having the highest impact on the prediction.". 

Subplot 4: LIME Explanation for Instance 4 - Title: "LIME Explanation for Admission 
Decision: Instance 4" - Description: "This subplot illustrates the LIME feature importance 
scores for the fourth instance in the test set. The applicant is predicted to be admitted (AS = 
1) with a probability of 0.96. The feature contributions are consistent with the other admitted 
instances, highlighting the influence of demographic factors like State of Origin (SO) and 
Local Government Area (LGA) on the model's decision.". 

Subplot 5: LIME Explanation for Instance 5 - Title: "LIME Explanation for Admission 
Decision: Instance 5" - Description: "This subplot shows the LIME feature importance 
scores for the fifth instance in the test set. Unlike the previous instances, this applicant is 
predicted to be not admitted (AS = 0) with a probability of 1.00. The top contributing features 
are State of Origin (SO) and Local Government Area (LGA), but with negative importance 
scores, indicating that these factors are driving the non-admission decision.". Thus, from the 
explanations obtained from the automated LIME frameworks without our framework (i.e., 
constraining or ablating biased features), the LIME explanations are discovered to be biased 
in explaining important admission criteria. It only learned the patterns in the dataset, and 

http://publikasi.dinus.ac.id/index.php/jcta/issue/view/388


Journal of Computing Theories and Applications 2024 (August), vol. 2, no. 1, Igoche, et al. 81 
 

 

made explanations on features such as state, gender, age, etc., which do not influence the 
admission selection criteria. 

4.4.2. LIME Explanations Results with Ablated Input Features 

To implement our fair-LIME explanation framework, the mutation of the SCM onto-
logical framework of Figure 6 is imperative to perform the ablation process on the dataset. 
Thus, the five individual features identified and depicted as X, will need to be ablated from 
the SCM and concomitantly the dataset. This qualitative process is needed to identify, con-
strain, and sparse the features that can be inputted into the ML/LIME automated process to 
bring about predictions and LIME explanations with the dataset that are faithful and devoid 
of bias fairness bias. Hence, the fair-LIME SCM ontological framework is shown in Figure 9, 
as the X features are ablated or mutilated from the original SCM ontological framework of 
Figure 6. Thus, after the ablation process, our fair-LIME framework depicted in Figure 9, 
alongside constrained and sparse LIME Equations (4) and (5), will apply. Hence, the results 
for our fair-LIME framework results are shown in Figure 10 and Table 3. Therefore, instead 
of feeding the 8 input features into the automated LIME process, we now feed the LIME 
process with 3 input features (i.e., courseappliedid, modeofentry, and Current_Qualification) 
which are considered sine-quo-non for the admission process in Nigerian Polytechnic educa-
tion system, as shown in Figure 9. The results from our fair-LIME framework results, as 
shown in Table 3 and Figure 10, has succeeded in removing the fairness bias in the initial 
LIME explanations results of Tables 2 and Figure 8. Thus, striking a balance between LIME 
explanations fidelity and fairness. Also, the black-box Gaussian Naïve based ML predictive 
model accuracy and F1 scores increased a bit to 90% and 95%, respectively. 

 

Figure 9. Ablated SCM Ontological Framework for BenPoly Admission, where the bias features set 
X is mutilated from the rest of the SCM features 

  

  

 

Figure 10. Visualized LIME Graph plot for Local_Explanations for the 5 Data instance, with the 
Ablation Implementation on the SCM Ontology 
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Table 3. Result of the Ablation application on LIME explanations for 5 data instances 

Data Instance 
LIME Feature Weight Explanations Outcomes 

ME CA CQ Predicted Actual 

1 +0.03 -0.01 +0.01 0.93 1 

2 +0.03 +0.01 +0.01 0.94 1 

3 -0.03 -0.01 -0.01 0.89 1 

4 +0.03 +0.01 -0.00 0.94 1 

5 +0.03 +0.01 +0.01 0.94 0 

5. Conclusions 

This study successfully applied the KDD process to extract and discover knowledge 
from Benpoly's admission database in Nigeria. An application-based SCM ontological frame-
work was designed to represent the admission process in the Nigerian polytechnic education 
system, leveraging the SCM's ability to identify causal relations among features and validate 
the ontology's correctness using the CIT criteria. 

The SCM ontology was employed to identify features causing fairness bias in the auto-
mated ML predictions and LIME framework. By constraining and ablating these biased fea-
tures, the proposed fair-LIME framework produced more stable and fair explanations com-
pared to the original LIME framework, with improved prediction accuracy (91% vs. 89%) 
and F1 scores (95% vs. 94%). 

The main contribution of this study is the novel integration of a qualitative SCM ontol-
ogy with quantitative ML and LIME methods to enforce fairness in explanations. This ap-
proach addresses the problem of biased explanations generated by automated ML and LIME 
frameworks when based on patterns learned from datasets that violate fairness. The fair-
LIME framework demonstrates the importance of incorporating domain knowledge through 
ontologies to identify and mitigate biases in ML explanations. 

However, a limitation of the fair-LIME framework is its context-specificity, as the SCM 
ontology is derived from the background knowledge of a particular process. Therefore, the 
framework can only be extrapolated to similar contexts, and different contexts would require 
modeling new SCM ontologies for each process before applying the fair-LIME framework. 

For future work, comparing the performance of other explanation frameworks, such as 
Shapley explanations, with the fair-LIME framework on the same dataset could provide val-
uable insights into their relative strengths and weaknesses. Additionally, exploring the appli-
cation of the fair-LIME framework to other domains and datasets with different fairness 
challenges would further demonstrate its generalizability and potential impact on promoting 
fairness in ML explanations. 
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