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Abstract: Obtaining high-quality, diverse, accurate datasets for sentiment analysis has always been a 

significant challenge. Traditional approaches include annotators, which may introduce bias to datasets 

and are also time-consuming and expensive. These types of datasets may also not represent the variety 

needed to train robust and generalizable sentiment analysis models. This study introduces a novel com-

bination of techniques to approach the problem with a novel solution. The proposed system, Senti-

GEN includes the use of a transformer, T5, fine-tuned and optimized using an evolutionary algorithm 

to generate high-quality, diverse, accurate data for sentiment analysis. The generated data is validated 

using XLNet to ensure high sentiment accuracy. This combination of technologies has proven suc-

cessful based on the results derived from evaluating multiple models. From complex transformers such 

as BERT to more straightforward approaches like KNN, those trained using synthetic data demon-

strated superior performance compared to their counterparts trained on real data. This enhancement 

in predictive accuracy was observed when evaluated on benchmark datasets such as SST-2 and Yelp. 

SentiGEN can generate high-quality, diverse, accurate, realistic data for sentiment analysis and success-

fully increased the performance of models trained on synthetic data compared to the same model 

trained on real data. 
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1. Introduction 

Obtaining adequate, less biased, sentimentally accurate, diverse datasets has always been 
a challenge in sentiment analysis. Since the size and quality of the dataset play a huge role in 
more robust, generalizable, and accurate sentiment analysis models, it is essential to have high-
quality, large datasets[1], [2]. While datasets are available for sentiment analysis models, there 
are circumstances in which the dataset is inadequate or incorrectly labeled, which would lead 
to inaccurate sentiment classification by models. Collecting and labeling data is also expensive 
and time-consuming. Human-labeled data are often prone to bias, and there are security and 
privacy concerns about using specific datasets[3]–[7]. All these issues result in limited gener-
alization and suboptimal performance of models. Synthetic data has the potential to over-
come most of these issues.  

Synthetic data generation has been a long-term research process in NLP due to its sig-
nificant impact and requirement in several other research fields, such as finance, the health 
sector, politics, etc. Accuracy, balance, size, diversity, coherence, realism, and reduced bias 
can result in the generation of high-quality synthetic datasets[3], [5], [8]–[11]. 

One of the most common issues in datasets is imbalance and the unavailability/scarcity 
of high-quality datasets. Although datasets are available for sentiment analysis, most of the 
datasets available are imbalanced, where one/two classes have more data, whereas the other 
classes have none or few data. This is problematic as it can cause incorrect classification of 
text. Most classifiers trained on imbalanced datasets tend to classify text as the majority class, 
which can lead to wrong conclusions and results. Imbalanced datasets can also hinder the 
classifier’s performance. Most datasets available are targeted at social media and product re-
views, leaving out other domains. These other domains have fewer or no datasets. Classifiers 
trained on social media/product review datasets cannot accurately classify most text from 
other domains, such as the health sector, due to its different topics and expressions. This is 
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where synthetic data can be of significant use. Large synthetic datasets can be easily generated 
for many domains, which could also be balanced, leading to accurate classification of text[2], 
[5], [9], [12]–[15]. 

Lack of diversity and bias are other common issues faced in datasets. When imbalanced 
datasets tend to be biased towards the majority classes, it leads to inaccurate text classification 
by classifiers. Sentiment analysis datasets tend to have repetitive content in different expres-
sions, leading to bias and less diversity. When datasets are less diverse, datasets tend to express 
a smaller range of emotions, which could also lead to inaccurate text classification. Generating 
unbiased datasets, which are also diverse, are still ongoing research areas. Synthetic datasets 
have the potential to overcome this problem as there is full control of the development of 
the dataset[1], [2], [5], [6], [9], [16], [17]. 

Another issue that datasets commonly have is that they may contain private data. It is 
unethical to use or publish another individual’s private data. This issue can be avoided with 
synthetic datasets as artificial data presents itself as realistic. Synthetic datasets have the po-
tential to protect individuals' privacy. However, this is still an ongoing area of research as 
certain techniques, such as GANs and data augmentation, may generate data that it was 
trained on, which may contain private data. Even though this issue persists with some tech-
niques, a significant number of techniques have succeeded in generating synthetic data that 
safeguards individual confidentiality[16]–[20]. 

While it is important to generate data of high diversity and reduced bias, it is also neces-
sary to ensure that it reflects realistic expressions and is consistent and understandable. This 
is one of the major properties that makes data high-quality. There are circumstances where 
data is diverse yet unclear. Unclear data can lead to incorrect classification of data by classifi-
ers. This is a common issue faced with using GANs, as it is challenging to generate coherent 
data using GANs[1], [6]. Nevertheless, pre-trained models trained on extensive data have 
readily overcome this challenge due to their comprehensive training knowledge. Pre-trained 
models are currently the most successful and trending technique in carrying out several tasks 
in NLP. Most pre-trained models are transformer-based architectures, such as the GPT vari-
ants that have been proven successful in generating coherent, realistic data in the NLP do-
main[21], [22]. 

Most research focused on utilizing different variants of GANs and other traditional data 
augmentation techniques such as Back-Translation (BT) and Easy Data Augmentation (EDA) 
for synthetic data generation [1], [2], [5], [14], but did not consider all the aspects that make 
up a high-quality dataset such as balance, diversity, and sentiment accuracy.  

Generating high-quality, diverse, sentimentally accurate, less biased, balanced datasets 
for sentiment analysis is essential as high-quality data are scarce. Training models on poor-
quality datasets can hinder model performance as models will not be able to understand the 
complexities and nuances of sentiments. To address these challenges, a novel approach was 
proposed where a transformer, T5 was fine-tuned and optimized using Neural Architecture 
Search (NAS). The type of NAS used was an evolutionary algorithm that optimized T5 to 
generate high-quality, diverse, sentimentally accurate data, ensuring the generated synthetic 
data reflects real-world complexities and is tailored to enhance sentiment analysis models' 
performance. As a validation mechanism, the generated synthetic data will be validated using 
XLNet to ensure sentiment accuracy. 

This research contributes to the field of sentiment analysis and synthetic data generation 
in several ways: 
1. Introduces a novel combination of techniques by optimizing T5 using an evolutionary 

algorithm and utilizing a validation mechanism using XLNet, addressing the issue of 
high-quality data scarcity. 

2. Generates synthetic data that accurately mirrors the complexities of real-world sentiment 
data, bridging the gap between synthetic and real data representations. 

3. The generated synthetic data improves the performance of various sentiment analysis 
models, showcasing its efficacy and application. 

4. Sets a new benchmark in the field by conducting comparative performance analysis of 
models trained on real, synthetic, and combined datasets (real and synthetic data), 
providing a comprehensive view of model robustness and performance. 
The rest of the paper is organized as follows: a thorough literature review examines ex-

isting research. A detailed explanation of the proposed method follows this. Afterwards, the 
results are presented and discussed. The paper concludes with a summary of the findings, 
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highlighting the research's implications and suggesting potential directions for future studies 
that could extend the work presented here. 

2. Literature Review 

Although less research has been conducted on synthetic data generation for the senti-
ment analysis domain, the synthetic data generation domain in general, is not new and has 
been researched for several years. It is a rapidly evolving domain with several new advance-
ments and approaches being found[1], [14], [19], [22], [23]. 

2.1. Usage of GANs to Generate Synthetic Data for Sentiment Analysis 

An interesting approach was taken by [1] to generate synthetic datasets by augmentation 
using Sequential GAN (SeqGAN) and sentence compression using Long Short-Term 
Memory (LSTM) networks with attention mechanisms, as SeqGAN is unable to work well 
with long text. Data screening was also added to the system where a Bidirectional LSTM (Bi-
LSTM) classifier would predict the sentiment of the data and remove incorrect data, resulting 
in a highly accurate filtered dataset. This work generated diverse data, which also increased 
the classification accuracy by 1%, which was marginal. The dataset bias issue was also not 
addressed, which reduced the data quality. Research [14] focusing on the data scarcity issue 
uses Conditional GAN (cGAN) to augment datasets. After cGAN was pre-trained, Gaussian 
random noise was injected into the data, one-sided label smoothing was used as a regulariza-
tion technique, and batch normalization was also used, which successfully generated a dataset 
that increased the performance of classification models. However, this work only focused on 
the positive and negative emotions leaving out the neutral emotion which is unrealistic in a 
real-world scenario where all three basic categories are present. The dataset generated was 
imbalanced and biased towards the majority classes. 

Research by [5] explored using SentiGAN and Category-Aware GAN (CatGAN) for 
synthetic data creation for the classes where data was scarce. This research was mainly focused 
on finding a solution for the class imbalance issue. It was able to successfully increase the 
classification accuracy and performance of a range of classifiers on the generated balanced 
dataset (BERT, Convolutional Neural Network (CNN), Bi-LSTM, and other classifiers) com-
pared to the decreased performance of most classifiers on the imbalanced dataset. However, 
the quality and diversity of the dataset were not focused, which could have increased model 
performance and accuracy. A rather uncommon yet ingenious technique approached by [24] 
where TextGAN with an LSTM generator and CNN discriminator and TransGAN with a 
transformer generator and a transformer discriminator are used to generate synthetic data 
through augmentation of a dataset. While TextGAN showed marginal results in increasing 
the accuracy of the classifiers, TransGAN performed outstandingly well in increasing the ac-
curacy of the classifiers, proving the capability of transformer-based architectures.  

2.2. Usage of Data Augmentation Techniques to Generate Synthetic Data for 
Sentiment Analysis 

Numerous researchers have utilized data augmentation methods to create synthetic data 
for sentiment analysis. Traditional approaches used were BT, EDA, and Word Mix-up [2], 
[25]–[27], Unsupervised Data Augmentation (UDA) was used [26] to augment datasets, which 
was successful in reducing bias in datasets, but UDA reduced the diversity of sentences. Part-
of-speech (POS) focused Lexical Substitution for Data Augmentation (PLSDA) successfully 
increased classification model performance by augmentation of the dataset[28]. Data augmen-
tation using Part-of-speech Wise Synonym Substitution (PWSS) and Dependency Relation-
based Word Swap (DRAWS) resulted in the development of generalizable models with in-
creased f1-scores and classification performance for aspect-based sentiment analysis[7]. In 
the context of Persian sentiment analysis, a novel augmentation strategy involved translating 
the original text into English and then back into the original language using the Google Trans-
late API, effectively increasing the initial data volume. The position of sentences were shuffled 
after the completion of the translation[29]. This approach was successful in increasing the 
classification accuracy for Persian sentiment analysis.  

While these approaches were successful in generating larger datasets and increasing the 
accuracy of the sentiment analysis models, since augmentation does not generate data from 
scratch, data quality and diversity were limited. Generating data from scratch has a higher 
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possibility of producing data of higher diversity and quality. The bias and imbalance issue in 
datasets can also be solved in this way. This approach has a higher chance of increasing the 
accuracy of sentiment analysis models by a greater value.  

2.3. Usage of Pre-Trained Models to Generate Synthetic Data for Sentiment Analysis 

GPT-3 was used to label the sentiment for a collected set of tweets. The labeled dataset 
was used for Thai sentiment analysis, which successfully increased the classification models' 
accuracy[22]. However, GPT-3 was only used for labeling instead of generating the whole 
dataset, resulting in limited data diversity, novelty, and quality. This capability could have been 
utilized since GPT-3 can generate high-quality data from scratch. In another research, Pre-
trained Data AugmenTOR (PREDATOR) and BART were used to augment datasets by gen-
erating new sentences or parts of the existing sentences in the dataset according to the pattern 
of the dataset[2]. PREDATOR performed exceptionally well compared to BART. PREDA-
TOR increased the classification accuracy and performance, whereas results from BART were 
marginal. Even though model performance for sentiment analysis was increased, data quality 
was not focused upon. As data generated through data augmentation generates data according 
to the specific pattern of the dataset, data diversity was also limited. High-quality data is key 
to model generalization, performance, accuracy and robustness. 

2.4. Other Synthetic Data Generation Techniques for Sentiment Analysis 

k-means and Density-based Spatial Clustering of Applications with Noise (DBSCAN) 
were used to break down and cluster classes to understand data trends. Class Decomposition 
Synthetic Minority Class Oversampling (CDSMOTE) was used to generate synthetic datasets 
for sentiment analysis after the breakdown of classes [9]. Although CDSMOTE-DBSCAN 
outperformed CDSMOTE-k-means in producing balanced, unbiased datasets and increasing 
the performance of classification models, data quality was not focused upon. 

2.5. Review of Technologies Utilized in Synthetic Data Generation 

2.5.1. Generative Models 

a. Introduction to GANs 

Introduced in 2014, GANs feature a dual-component system: a generator and a discrim-
inator. The generator's role is to produce data, and the discriminator evaluates whether this 
data is real or fabricated. This process iterates continuously until the generator can produce 
data indistinguishable from actual data. Unlike the discriminator, which has access to both 
real and synthetic data, the generator learns to produce data solely based on feedback from 
the discriminator. Both the generator and discriminator are types of neural networks working 
together to refine the quality of the synthetic data produced. GANs are used mostly in unsu-
pervised learning. GANs are usually computationally intensive due to their structure and na-
ture. The continuous requirement for generating data using the generator while the discrimi-
nator continuously pushes the generator to generate realistic data is time-consuming and re-
source-intensive. GANs exhibit instability due to the competitive min-max optimization dy-
namic between the generator and discriminator[8], [11], [20], [30]–[32]. 

b. Architecture of GANs 

cGAN: cGAN stands for a specialized form of GAN, which shares the core components 
of a generator and a discriminator. What sets cGAN apart is its use of conditions to steer the 
generation and evaluation processes. In this setup, both the generator and discriminator are 
structured as feed-forward neural networks operating under specific conditions. This arrange-
ment allows the generator to create text tailored to these guidelines. At the same time, the 
discriminator critiques the generator towards producing outputs that better align with the 
given conditions, ultimately enhancing the precision and relevance of the generated con-
tent[14]. 

SeqGAN: The generator in SeqGAN is an LSTM whereas a Convolutional Neural Net-
work (CNN) is the discriminator. This combination is typically used for numerical data. Given 
the complexity of text compared to numerical data, SeqGAN incorporates Reinforcement 
Learning (RL), where the generator is rewarded or penalized based on the grammatical accu-
racy and variety of its generated text. This approach allows the generator to refine its output 
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by learning from the discriminator's feedback and insights gained through RL, enhancing the 
quality of the text it produces[1]. 

CatGAN: CatGAN consists of the category-aware model and the hierarchical evolution-
ary algorithm. The generator contains a Relational Memory Core, which compares the fabri-
cated text and the original text, attempting to reduce the distinction between the original text 
and the fabricated text. The hierarchical evolutionary algorithm is the training strategy that 
also acts as the discriminator, where it differentiates the fabricated text from the original text 
and provides feedback so that the generator improves the category text generation[5], [33]. 

SentiGAN: SentiGAN is comprised of several LSTM-based generators and a single clas-
sifier. LSTM generators work independently and are not influenced by each other. The gen-
erator uses the Monte Carlo Search to explore different writing styles and fine-tunes itself to 
use the best-suited writing style. The classifier classifies the text and checks if the correct 
sentiment is generated and if the text generated is realistic. Feedback from the classifier helps 
the generator improve the text generated. SentiGAN also consists of a penalty-based system 
which ensures that the generated text contains the correct sentiment[5]. 

TextGAN: TextGAN consists of an LSTM generator and a CNN discriminator. The 
generator generates sentences sequentially by predicting the next word. The discriminator 
checks if the generated text is synthetic or real and provides feedback to the generator, helping 
improve the text generated. The generator aims to produce text indistinguishable from the 
original text, mirroring the function of a standard GAN[24]. 

TransGAN: TransGAN functions similarly to a typical GAN. The only difference be-
tween a GAN and a TransGAN is that the generator and the discriminator are transformers 
[24]. 

Synthetic Data Generation GAN (SDG-GAN): Both the generator and the discrimina-
tor operate as feed-forward neural networks, utilizing a Multilayer Perceptron (MLP) design. 
The generator is tasked with creating data that closely resembles the characteristics of genuine 
data, leveraging features learned from actual data during its training. Meanwhile, the discrim-
inator evaluates whether the data is fabricated or authentic by examining it against features 
derived from real data. SDG-GAN is specially designed for imbalanced datasets[16]. 

CTGAN: CTGAN features a generator and a discriminator, both of which are types of 
neural networks. The generator generates data based on a given condition, resulting in more 
diverse data, whereas the discriminator uses PacGAN, which differentiates real and fake data 
in groups. This is proven to be better at differentiating real and fake data[23], [32], [34]. 

UniformGAN: Neural networks are utilized for the generator. The generator also uses 
a Scaled Exponential Linear Unit activation, which helps improve training. The generator 
adds noise to the data to generate better realistic synthetic data. It utilizes a technique where 
the generator is penalized if the data generated is not equal across a range. This can result in 
reduced bias in data. The discriminator is a CNN using Scaled Exponential Linear Unit acti-
vation[19]. 

Medical Text GAN (mtGAN): mtGAN generates electronic medical records based on a 
condition. Like SeqGAN, mtGAN also uses a reinforcement learning technique called RE-
INFORCE, a policy gradient algorithm to generate data that allows for the realistic generation 
of electronic medical records. The data generated successfully protected the privacy of real 
data while maintaining diversity. However, this technique had less control over the data gen-
erated[13]. 

c. Other Generative Models 

Categorical Latent Gaussian Process (CLGP): CLGP takes complex data as input and 
presents them in a simplified version on a latent space. The Gaussian Process grasps the 
patterns between the data. The Softmax function identifies the attributes of the data and as-
signs a value to each feature, enabling the creation of synthetic data that closely replicates the 
original data trends. This process increases the computational workload due to the Gaussian 
Process requiring a lot of time to do calculations, especially for complex, large data[8]. 

2.5.2. Data Augmentation 

a. Introduction to Data Augmentation 

This is a technique that generates artificial data using the existing data by making modi-
fications to it and presenting the modified data as new data. This approach increases the size 
of the existing dataset without gathering new data, yielding both the original and the altered 
data as outcomes. While data augmentation is a convenient way of generating data using 
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existing data, diversity is limited as data is not generated from scratch. Bias may also be intro-
duced into the data unknowingly, as there is less control over how the data is generated[2], 
[25], [27], [35]. 

b. Architecture of Data Augmentation Techniques 

BT: This augmentation method involves translating the text from its original language 
to another chosen language and then back to the original language. The result is the text of a 
similar sense but presented in a different form. However, the effectiveness of this technique 
depends on the languages chosen as it may not work for all languages[2], [25], [27], [35], [36]. 

Word Mix-up: This technique arranges sentences in a way that allows all sentences to be 
of equal length. The sentences are shuffled while maintaining coherence and meaningfulness. 
However, it can be challenging to maintain semantics in the shuffling process[25], [36]. 

EDA: This technique involves altering words while maintaining semantics, introducing 
alternate words at different positions of sentences, interchanging words, and removing words. 
EDA can introduce repetitiveness into the data, can be challenging to maintain semantics 
during the augmentation process, and can lose important information embedded in sentences 
during the removal process[2], [25], [27], [35], [36]. 

PLSDA: PLSDA uses POS tags to guide the replacement of synonyms, with a 50% 
chance of the synonym being swapped. The word being replaced is selected based on gram-
matical accuracy and semantics[28]. 

PWSS: POS tags and Spacy are used to identify words suitable to be swapped with and 
replaced with words from WordNet, a repository of English words based on grammatical 
correctness[7]. 

DRAWS: The structure of sentences is observed, and words are identified based on the 
connection to the main topic structure, substituting the identified words between similar sen-
tences. Words are also modified or removed if needed. The entire process depends on the 
relationship to the main topic[7]. 

Contextual Word Embeddings (CWE): In this technique, words are identified and re-
placed by using Large Language Models (LLM) such as BERT[35]. 

2.5.3. Pre-trained Models 

a. Introduction to Pre-trained Models 

Pre-trained models, often deep learning models, are developed using extensive datasets. 
They possess a wide range of knowledge across numerous domains and can be adapted or 
fine-tuned for various specific tasks, including text classification and synthetic data creation. 
Due to their vast knowledge, these models are more accurate and robust, have better perfor-
mance, generalization, and are more computationally intensive than other models due to the 
immense amount of data it was trained on, hyperparameters, and layers they possess[21], [37]. 

b. Architecture of Pre-trained Models 

BART: This auto-regressive transformer mainly rephrases text, which can be a useful 
technique when attempting to generate synthetic data or augment data. The encoder derives 
information from the input. The decoder uses the masked multi-head attention mechanism 
and the Beginning of the Statement (BOS) token. This token specifies the topic to generate 
text initially, ensuring pertinence, fluency, and grammatical correctness[2], [35], [38]. 

PREDATOR: PREDATOR uses pre-trained models for its generator and filter. The 
generator creates new text while the filter removes the low-quality text and only outputs the 
final data containing high-quality data[2], [39]. 

GPT Variants: GPT is an auto-regressive transformer with several versions – GPT-2, 
GPT-3, GPT-3.5, GPT-3.5 Turbo and GPT-4. While GPT-3.5 Turbo and GPT-4 are rela-
tively new and have not been researched widely, the other previous versions have been used 
to generate text. While other differences remain, one main difference between all models is 
the amount of data they were trained on and the number of hyperparameters they have, mak-
ing the latest versions more powerful and precise due to increased knowledge and hyperpa-
rameters[35], [40]. GPT utilizes a multi-head self-attention mechanism to process input, uses 
layer normalization to enhance training stability, and adopts Byte Pair Encoding (BPE) to 
tokenize the input. Meanwhile, its decoder produces text by leveraging these methods[41]–
[43]. 
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2.5.4. Reinforcement Learning 

a. Introduction to Reinforcement Learning  

RL involves an agent that engages with the environment and receives continuous feed-
back through penalties and rewards. This feedback encourages the agent to continuously ex-
plore new actions in the environment to maximize the rewards, resulting in the agent excelling 
at its function with time[44], [45]. 

b. Architecture of Reinforcement Learning Techniques 

Reinforcement Learning-based Text Generator (RLTG): RLTG utilizes a language 
model for word recommendation, utilizing Deep Q-learning, a form of RL technique, as its 
RL agent to create text based on these suggestions. An adversarial RL mechanism assesses 
the realism of the generated text, offering feedback that translates into rewards or penalties 
for the agent. This process progressively enhances the agent's ability to produce realistic data, 
optimizing for maximum rewards[44]. 

2.5.5. Neural Networks 

Recurrent Neural Networks (RNN) and LSTM: RNN represents a category of neural 
networks that can understand trends in data. The loops in RNN can pass information from 
one level to another in the networks, allowing it to recall the previous data in the loop. How-
ever, it cannot retain information in the long term. This is where LSTM, an RNN, excels at 
retaining information long-term. This is an advanced version of RNN with a built-in mecha-
nism that allows it to update, recall, or forget information selectively. RNN and LSTM gen-
erate realistic synthetic data by remembering the patterns from the training data[12], [46].  

Autoencoders (AE) and Variational Autoencoders (VAE): AE comprises an encoder 
and a decoder. The encoder compresses the incoming data into a latent space representation 
at a fixed point. The decoder regenerates the data in a different form. VAE is a type of AE 
that is similar to AE, but the encoder in VAE presents the data in a latent space as a range 
instead, which allows for better generalization and pertinent data[23], [32], [47]. 

Differentially Private Synthetic Data Generation (DP-SYN): This method divides the 
data into clusters, utilizing a distinct AE for each cluster to identify and learn the trends unique 
to that group. It then creates synthetic data for each cluster, reflecting the trends observed 
[18]. 

2.5.6. Probabilistic and Stochastic Techniques 

Copula: Copulas alone cannot generate synthetic data. In novel research studies of Cop-
ulas, Copulas takes uniform random variables and converts them so all are related. Correlation 
is introduced between these variables. By applying inverse transform sampling on the corre-
lated variables, new data is generated that represents the same patterns in the original data 
[17], [48], [49]. 

Bayesian Networks (BN): Using graphs, BN shows the relationships between variables. 
Synthetic data is generated by observing the relationships in real data using the Chow-Liu 
tree. Even though it is efficient, it can miss out on important information if unable to observe 
all relationships between variables, making it most suitable for discrete data[8], [23] 

Markov Chains: Markov Chains create a chain where each state represents a word from 
the chain. The initial word is chosen based on the frequency of it in the text or a user-defined 
condition. The following words are predicted based on the patterns learned in a given data 
and the preceding words in the data, successfully generating text that imitates the pattern and 
style of the original data[12]. 

Multivariate Imputation by Chained Equations (MICE): First, a sequence for the varia-
bles is created. The initial variable is selected based on empirical distribution. Subsequent 
variables are forecasted with a probabilistic model that estimates the next word by considering 
the preceding variable in the sequence. These variables form the synthetic data[8]. 

Independent Marginals (IM): This is a more straightforward technique that generates 
synthetic data by observing each variable separately without considering the relationships be-
tween other variables (empirical marginal distribution), resulting in less realistic data as it is 
unable to consider complex relationships[8]. 

Mixture of Product of Multinomials: Probability models are created for each pattern 
identified in the data. Weights are allocated to models based on how frequently the pattern is 
identified. The Dirichlet process is used to identify the different patterns to utilize in the 
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model. Gibbs sampling, a Markov Chain Monte Carlo algorithm variant, generates new data 
based on the identified patterns in the original data[8]. 

Gaussian Mixture Model (GMM): GMM assumes that all data can be represented as 
Gaussian distributions. Each Gaussian has a mean and standard deviation. The number of 
Gaussians is pre-decided. The expectation-maximization algorithm is utilized to fine-tune 
Gaussians, ensuring that all data fits well. After the finalization of the parameters, random 
sampling of the Gaussian distributions can generate synthetic data[23]. 

2.5.7. Sampling Techniques 

Random Oversampling: This method does not create new data. It merely duplicates the 
existing underrepresented class data to equal the size of the dominant class, leading to less 
diversity and overfitting. This technique is less preferred for data generation as it only repli-
cates data but can help with imbalanced classes in data[23]. 

Synthetic Minority Oversampling Technique (SMOTE) Variants: SMOTE causes inter-
polation between the minority classes. It selects a data point belonging to the less represented 
class and another close data point to create new data along that sequence of data points. This 
process is repeated until the necessary amount of data is generated. This technique tends to 
be biased as it focuses on the minority class, ignoring the majority class and reducing diversity 
as well. Borderline-SMOTE and Safe-level-SMOTE are different improved versions of 
SMOTE. Borderline-SMOTE focuses on generating samples that could be misclassified in 
the minority class, whereas Safe-level-SMOTE focuses on generating data that are concen-
trated with data points from the minority class within the attribute space. Adaptive Synthetic 
Sampling Approach for Imbalanced Learning (ADASYN) and SMOTE are similar. 
ADASYN generates data for the minority class data that classifiers find difficult to classify. 
The density distribution does this. This technique helps improve classifier performance as 
more samples that classifiers find challenging to classify will be available for the classifier to 
learn from. This leads to reduced bias and prevention of overfitting. K-means-SMOTE is 
another variant of SMOTE where K-means clustering is applied to the data to identify and 
form data clusters. Some clusters of the minority class are removed. SMOTE was applied to 
the remaining clusters afterward. This technique allows for better generalization and less noise 
as it focuses more on the data clusters, increasing data quality. Cluster-based Oversampling 
forms data clusters of all classes, which organize the data, and random oversampling is applied 
afterward. All of the SMOTE variants are similar and focus on providing a solution for data 
class imbalance. With the evolution of technologies, these techniques are less preferred over 
new technologies like GANs and pre-trained models due to their advancements. SMOTE 
variants are also computationally intensive for large data and cannot capture the complex 
structures in data[23]. 

2.5.8. Other Synthetic Data Generation Techniques 

Faker: Faker is an open-source engine that can generate realistic synthetic data, including 
mobile numbers, account details, addresses, zip codes, prices, product names, and more[17]. 

Universal Text Generator (UTG): UTG is a library that can generate text according to 
specific rules and conditions like variables and characteristics. It also maintains coherence and 
grammar[40]. 

2.6. Evaluation Methods 

The evaluation of synthetic data generated for sentiment analysis consists of two parts:  
1. Evaluating the quality of the generated dataset using a variety of evaluation metrics[1], 

[14]. 
2. Testing out the generated dataset by training classifiers on the generated dataset[1], [14]. 

2.6.1. Evaluation Methods for the Dataset 

1. Jaccard Similarity: This technique measures the diversity of the data by comparing each 
data point to another data point in the data but does not compare itself to provide a 
similarity score. The lower the similarity, the higher the diversity[1]. 

2. Negative Log-Likelihood (NLL): NLL checks how probable the data is from the model 
that generated the data. A low NLL value means better performance, better generaliza-
bility, and diversity. However, a too-low NLL value means overfitting, so a moderate 
NLL value is recommended[5], [33]. 
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3. Bilingual Evaluation Understudy (BLEU): This metric evaluates the n-grams between 
the reference text and the text produced, imposing penalties on shorter texts to deter-
mine a final score. A high score means the text is very similar to the reference text, which 
has low diversity and novelty. A low score means high diversity and high novelty [5]. 

4. Recall-Oriented Understudy of Gisting Evaluation (ROUGE): Like BLEU, this measure 
assesses the resemblance of the produced text to the reference material. A high rating 
indicates a close similarity to the reference, signaling low diversity and novelty. A low 
score means high diversity and high novelty[26]. 

5. t-distributed Stochastic Neighbor Embedding (t-SNE): This is a representation method 
where a set of high-dimensional data is presented on a 2D or 3D map. This helps to 
understand the patterns and clusters in the data, which were initially difficult to under-
stand in the high-dimensional data. Real data and fabricated text can be compared and 
visualized using t-SNE. The feature space that the authentic data occupies and the fea-
ture space that the fabricated text occupies can be compared on one flat space. This 
helps to understand if the synthetic data covers all the features and clusters the real-
world data covers[14], [50]. 

2.6.2. Evaluation Methods for the Classifier 

1. Accuracy: The classification accuracy of the classifier is evaluated to check how well the 
model classifies sentiments on the synthetic dataset[1], [5], [14], [22], [24], [27]–[29], [51]. 

2. Precision: Precision quantifies the proportion of accurately predicted instances among 
those identified by the model as correct[9], [27], [51]. 

3. Recall: Recall assesses the proportion of correctly identified instances by the model 
among all actual occurrences that were correct[9], [27], [51]. 

4. F1-Score: The f1-score combines both precision and recall, providing a balanced meas-
ure of performance[2], [5], [7], [9], [27], [51]. 
Based on the literature review conducted, higher-quality datasets for sentiment analysis 

are required that mirror the complexities of real-world data. Most researchers used GANs or 
different data augmentation techniques to increase the size and quality of the dataset pro-
duced. However, these techniques did not look into all the properties that make a high-quality 
dataset, such as balance, diversity, bias, accuracy, and size. While some of these properties 
were taken into account, all of the properties were not satisfied, which reduced the data quality 
[1], [14], [15], [25]. 

Based on current research, deep learning models and transformer-based architectures 
have successfully generated text-based data[52]. According to the current literature, although 
T5, a transformer-based deep learning model, has been used for generating text, it has not 
been used widely to create synthetic datasets for sentiment analysis[52]–[55]. 

Based on the literature review, NAS has not been utilized to optimize transformer mod-
els within the synthetic data generation and sentiment analysis domain to generate high-qual-
ity, accurate, realistic, and diverse data for sentiment analysis. This presents a new research 
opportunity that can be explored by optimizing T5 using NAS to generate high-quality, accu-
rate, and diverse synthetic sentiment data. Fine-tuning and optimizing T5 using NAS and 
XLNet to validate the NAS-optimized-T5-generated data for producing high-quality, accu-
rate, and diverse synthetic sentiment data remains an unexplored area yet to be explored. 
Successfully implementing these techniques can enhance dataset quality, resulting in im-
proved performance, robustness, generalization, and accuracy of sentiment analysis models. 

3. Proposed Method 

This research introduces a novel approach to enhance synthetic data generation for sen-
timent analysis through the optimization of T5 using an evolutionary algorithm - Distributed 
Evolutionary Algorithms in Python (DEAP) [56] framework and leverages two key diversity 
metrics, Jaccard Similarity and Self-BLEU scores, to evaluate the diversity and quality of the 
generated data. The DEAP framework facilitates an evolutionary approach to optimize model 
parameters systematically, enabling the generation of high-quality, diverse synthetic data. Af-
terward, XLNet classifies the sentiments generated by the optimized T5 to ensure the senti-
ment accuracy of the generated text.  
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Figure 1. The general flow of the proposed method 

Firstly, T5 is lightly fine-tuned over just two epochs to give the model preliminary 
knowledge of the task of generating text for sentiment analysis. The fine-tuned T5 is opti-
mized using DEAP to enhance the fine-tuned model further. The DEAP framework provides 
the platform for the evolutionary optimization process, enabling the efficient search and se-
lection of optimal hyperparameters for the T5 model. Through genetic algorithms, a search 
space, including learning rate, batch size, epochs, dropout rate, weight decay, and a custom 
loss weight aimed at encouraging data diversity, which determines the weight/impact of the 
custom diversity-encouraging loss function on the model training which is incorporated into 
the training function. Each set of parameters, or individual in the evolutionary context, un-
dergoes mutation and crossover operations to produce new parameter sets, with selection 
based on fitness scores derived from the diversity evaluation metrics.  

This diversity-encouraging loss function penalizes the generation of repetitive or similar 
sentences while promoting semantic coherence. It combines a token diversity penalty, which 
discourages repetitive token use, with a semantic coherence loss, minimizing the cosine sim-
ilarity between successive sentence embeddings generated by the model. This encourages the 
model to explore fewer common tokens and produce diverse, contextually relevant sentences.  

Jaccard Similarity and Self-BLEU metrics are utilized to assess the effectiveness of the 
optimized T5 model. The Jaccard Similarity measures the uniqueness of the generated sen-
tences by evaluating the overlap between the sets of tokens in different sentences. Lower 
Jaccard Similarity indicates higher textual diversity. The Self-BLEU score assesses the degree 
of similarity between a sentence and the other sentences generated by the model, with lower 
scores indicating greater diversity. The evolutionary algorithm's fitness function identifies op-
timal parameters by aiming for models that generate diverse text, as indicated by the low 
Jaccard Similarity and Self-BLEU scores. 

Table 1. Evolutionary algorithm settings 

Setting Selection 

Population Size 5 

Number of Generations 6 

Crossover Rate 0.8 

Mutation Rate 0.1 

Selection Strategy NSGA-II 

Evaluation Metrics for Model Selection Self-BLEU, Jaccard Similarity 

 
The model's training procedure incorporates the AdamW optimizer. This OneCycleLR 

learning rate scheduler starts with a lower learning rate that gradually increases to the maxi-
mum before annealing and selective weight decay, where the weight decay is not applied to 
biases and normalization layer weights. Gradient accumulation is also incorporated to manage 
the computational demands of larger batch sizes and stabilize the training. Once the evolu-
tionary algorithm finds the optimal parameters and the optimum diversity-encouraging loss 
function weight, the final T5 model is trained. The optimized T5 is used to generate synthetic 
data for sentiment analysis. Each piece of generated data undergoes a sentiment classification 
check by XLNet to confirm its sentiment accuracy. Only the data where XLNet's 
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classification aligns with the sentiment labels initially generated by T5 are incorporated into 
the final dataset, ensuring both accuracy and consistency in labeling. Table 1 shows the evo-
lutionary algorithm settings, and Table 2 shows the selected search space settings. 

Table 2. Search space settings 

Setting Selection Range 

Learning Rate 1e-5 – 4e-5 

Batch Size 5 - 9 

Epochs 1 - 7 

Dropout Rate 0 – 0.5 

Weight Decay 0 – 0.05 

Diversity-Encouraging Loss Weights 0.01 – 0.5 

4. Results and Discussion 

The validation model, XLNet, achieved an accuracy of 83.6% and an f1-score of 0.836. 
The parameters utilized to fine-tune XLNet were as follows: 

Table 3. XLNet fine-tuning parameters 

Hyperparameter Selection 

Learning Rate 3e-5 

Batch Size 46 

Epochs 2 

Weight Decay 0.01 

  
The generated synthetic dataset was evaluated using a variety of evaluation metrics, in-

cluding Jaccard Similarity, ROUGE, and BLEU, to calculate the diversity of the text gener-
ated. t-SNE analysis was also performed to visualize the real and synthetic data on a 2d plat-
form. The implementation and testing of this study were carried out using the A100 GPU on 
Google Colab, leveraging its powerful computing capabilities. 

4.1. Jaccard Similarity, ROUGE and BLEU 

Table 4. Jaccard Similarity and BLEU scores 

Evaluation Metric Score 

Jaccard Similarity 0.112 

BLEU 0.0029 

Table 5. ROUGE scores 

Evaluation Metric Recall Precision F1-Score 

ROUGE-1 0.148 0.191 0.123 

ROUGE-2 0.008 0.015 0.008 

ROUGE-L 0.134 0.173 0.110 

 
In assessing dataset diversity, the Jaccard Similarity measures the overlap between pairs 

of data samples. It is calculated by dividing the count of shared attributes by the count of all 
distinct attributes across both samples. Diversity is then determined by subtracting the max-
imum Jaccard Similarity found among all unique pairs from one. Lower scores of Jaccard 
Similarity indicate greater diversity, pointing to a broader array of distinct elements within the 
dataset. Jaccard Similarity of two data points, 𝐼1  and 𝐼2 are expressed in Equation (1)[1]. 

Sim(𝐼1, 𝐼2) =  
| 𝐼1 ∩  𝐼2 |

| 𝐼1 ∪  𝐼2 |
  (1) 
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The inverse of the highest resemblance is viewed as the diversity of the data and is ex-
pressed in Equation (2)[1]. 

Diversity(𝐼𝑠) = 1 − max{Sim(𝐼𝑠, 𝐼𝑡)} 𝑠, 𝑡 ∈ {1,2, ⋯ 𝑛}, 𝑡 ≠ 𝑠  (2) 

A lower Jaccard Similarity score indicates a higher diversity. This indicates that the gen-
erated dataset is diverse. A score of 0.112 is closer to 0, indicating high diversity in the data 
generated. 

Brevity penalty (𝐵𝑃) and BLEU are expressed in Equation (3) and (4)[57]. 

𝐵𝑃 =  {
 1                   if 𝑐 > 𝑟

 𝑒
(1−

𝑟

𝑐
)
         if 𝑐 ≤ 𝑟

   (3) 

BLEU = 𝐵𝑃 × 𝑒𝑥𝑝 (∑ 𝑤𝑛 𝑙𝑜𝑔 𝑝𝑛

𝑁

𝑛=1

) (4) 

Equation (4) incorporates a BP to account for the length of the generated text compared 
to the reference text. There is no penalty if the generated text is longer than the reference. 
The BLEU score itself is the product of the BP and the exponentiated average log precision 
of matched n-grams between the generated and reference texts, weighted by 𝑤𝑛 . N-gram 
matches of the generated text against the reference text are evaluated to determine their sim-
ilarity. For diversity assessment, lower n-gram precision would yield a lower BLEU score, 
signaling that the generated text varies from the reference and thus contains a richer variety 
of language use. In short, the brevity penalty ensures that the generated text is not trivially 
short, while the weighted precision captures the novelty of the generated text.  

Table 4 shows the BLEU scores of the generated data. Lower BLEU scores indicate that 
the generated text differs from the reference text (training data). Since the BLEU score is 
closer to 0, this indicates that the model was successful in generating data that was significantly 
different from the training data, successfully generating diverse data. 

ROUGE-1 measures the overlap of unigrams (single words). ROUGE-2 measures the 
overlap of bigrams (pairs of consecutive words). ROUGE-L measures the longest common 
subsequence. Table 5 shows the ROUGE scores of the generated data. Lower ROUGE 
scores indicate that the generated text differs from the reference text (training data). Since the 
ROUGE scores are closer to 0, this indicates that the model successfully generated data that 
was significantly different from the training data, successfully generating diverse data. 

4.4. t-SNE Visualization 

 

Figure 2. t-SNE visualization comparison between SentiGEN and GAN-generated data 

Figure 2 shows a t-SNE visualization of real data and synthetic data generated by a GAN 
in research [14] on the right side whereas the left side of Figure 2 shows a t-SNE visualization 
of real data and synthetic data generated by SentiGEN. SentiGEN generates data very similar 
to real data and covers almost the entire feature space that real data covers. According to the 
t-SNE, SentiGEN surpasses the GAN-based model in generating diverse data that mirrors 
the complexities and nuances of real-world data. 
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4.5. Comparative Performance Analysis: Models Trained on Real, Synthetic, and a 
Combination of Real and Synthetic Data 

A range of classifiers were trained on the synthetic data, real data, and a dataset, which 
consisted of an equal number of real data and synthetic data for model performance compar-
ison. 
1. Real data – 60,000 samples  
2. Synthetic data – 60,000 samples 
3. Real data + synthetic data – 30,000 samples of real data and 30,000 samples of synthetic 

data. 
The training conditions remained the same across the three datasets (real, synthetic, and 

combined) for each model to make a fair comparison and to check how each dataset type 
affects the model's performance. All the trained models (real, synthetic, and combined) were 
evaluated on the SST-2 benchmark dataset and the Yelp benchmark test dataset, which was 
not a part of the training dataset and, as a result, was completely unseen to all the models. 
The SST-2 dataset consists of positive and negative sentiments. For the model evaluation 
using the SST-2 dataset, 15,000 positive samples and 15,000 negative samples were utilized. 
The Yelp dataset consists of positive, neutral, and negative sentiments. For the model evalu-
ation using the Yelp dataset, 5000 positive samples, 5000 neutral samples, and 5000 negative 
samples were utilized. 

Table 6 and Table 7 provide a comparative analysis of the performance of various mod-
els across two different datasets: SST-2 and Yelp. Each table showcases the models' perfor-
mance when trained on three data types: real, synthetic, and a combination of real and syn-
thetic. The tables clearly indicate the impact of training data type on model accuracy and F1-
score, which are critical measures of a model's predictive capabilities and the balance between 
precision and recall, respectively.  

When examining models trained on real data, a general trend can be observed in both 
datasets where transformer-based models demonstrate high accuracy and F1-scores, indicat-
ing their robustness in understanding complex language patterns found in real-world data. 
On the other hand, traditional machine learning models such as Decision Trees show signif-
icantly lower scores, suggesting a potential inadequacy in capturing the intricacies of natural 
language compared to deep learning models. 

Table 6. Performance comparison of multiple models on SST-2. 

Model 

 

Real Data Proposed Method  

(Synthetic Data) 

Real Data + Proposed 
Method (Synthetic 

Data) 

Accuracy F1-Score Accuracy F1-Score Accuracy F1-Score 

XLNet 84.01 0.858 88.43 0.890 85.69 0.872 

BERT 82.61 0.846 86.92 0.872 84.18 0.856 

RoBERTa 84.68 0.867 88.03 0.884 86.46 0.876 

DistilBERT 81.24 0.833 85.14 0.856 82.63 0.842 

ERNIE 84.42 0.858 88.19 0.885 84.72 0.862 

Decision Trees 47.21 0.520 54.10 0.560 48.53 0.530 

Random Forest 54.94 0.570 61.35 0.600 61.63 0.600 

Logistic Regression 66.94 0.710 68.09 0.690 67.08 0.700 

KNN 57.76 0.610 62.62 0.640 60.35 0.630 

SVM 66.85 0.710 69.91 0.700 67.56 0.710 

Adaptive Boosting 51.77 0.570 58.46 0.590 52.54 0.570 

Table 6 shows that models trained on synthetic data and those trained on a combination of real and 
synthetic data outperform those trained on real data. 

On both datasets, all models trained on synthetic data and models trained on the hybrid 
dataset (synthetic + real data) show superior performance compared to their counterparts 
trained on real data, indicating the synthetic data’s quality, representativeness, and accuracy. 
On the SST-2 dataset, models trained on synthetic data perform best. However, while some 
models excel with synthetic data on the Yelp dataset, some models, like DistilBERT achieve 
better results on the hybrid dataset. The varying performances also highlight how the source 
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of the training data can impact model effectiveness. The contribution of synthetic data to 
improved model performance emphasizes the optimization of the T5 model and the high 
fidelity of the synthetic data it generates. Overall, the tables reveal that synthetic data posi-
tively impacts the model's ability to generalize and accurately predict sentiments. These find-
ings show that synthetic data can be crucial in addressing data scarcity and diversity issues. 
Additionally, the results show the value of exploring hybrid datasets as a means to potentially 
leverage the strengths of both real and synthetic data for improved model performance. 

Table 7. Performance comparison of multiple models on Yelp. 

Table 7 shows that models trained on synthetic data and those trained on a combination of real  
and synthetic data outperform those trained on real data. 

Model 

 

Real Data Proposed Method  

(Synthetic Data) 

Real Data + Proposed 
Method (Synthetic 

Data) 

Accuracy F1-Score Accuracy F1-Score Accuracy F1-Score 

XLNet 78.43 0.788 79.88 0.802 79.83 0.801 

BERT 77.35 0.778 78.62 0.791 78.41 0.788 

RoBERTa 79.23 0.795 79.62 0.800 80.03 0.804 

DistilBERT 76.41 0.768 77.52 0.780 77.79 0.782 

ERNIE 75.25 0.759 79.17 0.796 79.23 0.796 

Decision Trees 50.21 0.500 51.48 0.520 50.91 0.510 

Random Forest 57.05 0.570 61.15 0.610 61.04 0.610 

Logistic Regression 69.52 0.700 69.80 0.700 70.28 0.710 

KNN 46.46 0.450 51.73 0.520 49.71 0.490 

SVM 69.14 0.700 69.95 0.700 69.97 0.710 

Adaptive Boosting 62.91 0.640 64.33 0.650 65.13 0.660 

4.6. Comparative Analysis: Model Performance on NAS-Optimized-T5-Generated 
Synthetic Data with and without Custom-Diversity Encouraging Loss Function 

Table 8 compares model performance, specifically accuracy scores, using two types of 
training data sources: synthetic data generated by NAS-optimized T5 models, both with and 
without a custom diversity-encouraging loss function. The accuracy scores show that incor-
porating the custom diversity-encouraging loss function during the optimization of T5 using 
NAS has a positive impact across all models. Models utilizing synthetic data generated by the 
T5, which included the diversity-encouraging loss function in its optimization, demonstrated 
superior performance compared to those trained on data produced without this specialized 
loss function. This indicates the effectiveness of the custom loss function in improving the 
quality of synthetic data for training sentiment analysis models, as reflected in the enhanced 
accuracy scores across the table. 

Table 8. Models' accuracy comparison with and without the custom diversity-encouraging loss func-
tion on SST-2 

Table 8 shows that all models trained on synthetic data generated by the NAS-optimized T5 with the 
custom diversity-encouraging loss function have increased accuracy. 

Model 

 

Training Data Source 

NAS-Optimized T5 Without Custom 
Diversity-Encouraging Loss Function 

NAS-Optimized T5 With Custom 
Diversity-Encouraging Loss 

Function 

XLNet 87.85 88.43 

BERT 86.31 86.92 

RoBERTa 87.73 88.03 

DistilBERT 84.75 85.14 

ERNIE 87.66 88.19 
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5. Conclusions 

The primary goal to refine and enhance the T5 transformer through NAS, supplemented 
by XLNet's validation of text outputs, was to create high-quality synthetic text that accurately 
reflects diverse sentiments. This objective has been effectively achieved, as evidenced by var-
ious performance indicators. The application of metrics such as BLEU, ROUGE, Jaccard 
Similarity, and t-SNE visualization collectively attest to the synthetic data's quality, diversity, 
and fidelity. Furthermore, models trained on this synthetic dataset demonstrated superior 
performance compared to those trained solely on real data, reinforcing the synthetic data's 
effectiveness and the successful realization of the project's aim. The generated data also mir-
rored the complexities and nuances of real-world data. This research also sets a new bench-
mark by comparing the performance of models trained on real and synthetic data and a com-
bination of both real and synthetic data. This unique combination of techniques has the po-
tential to open up new research avenues, where this combination of techniques can be applied 
to generate synthetic data for various other domains. This research focuses solely on gener-
ating data for three basic emotions: positive, negative, and neutral. Future research could ex-
plore generating data for a broader range of nuanced emotions. Additionally, a novel, smaller 
T5 architecture could be developed using NAS to enhance the speed of synthetic data gener-
ation, as the current model requires approximately 5 hours and 21 minutes to generate 75,000 
texts. 
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