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Abstract: In the evolving landscape of agricultural technology, recognizing rice diseases through com-

putational models is a critical challenge, predominantly addressed through Convolutional Neural Net-

works (CNN). However, the localized feature extraction of CNNs often falls short in complex scenar-

ios, necessitating a shift towards models capable of global contextual understanding. Enter the Vision 

Transformer (ViT), a paradigm-shifting deep learning model that leverages a self-attention mechanism 

to transcend the limitations of CNNs by capturing image features in a comprehensive global context. 

This research embarks on an ambitious journey to refine and adapt the ViT Base(B) transfer learning 

model for the nuanced task of rice disease recognition. Through meticulous reconfiguration, layer aug-

mentation, and hyperparameter tuning, the study tests the model's prowess across both balanced and 

imbalanced datasets, revealing its remarkable ability to outperform traditional CNN models, including 

VGG, MobileNet, and EfficientNet. The proposed ViT model not only achieved superior recall 

(0.9792), precision (0.9815), specificity (0.9938), f1-score (0.9791), and accuracy (0.9792) on challenging 

datasets but also established a new benchmark in rice disease recognition, underscoring its potential as 

a transformative tool in the agricultural domain. This work not only showcases the ViT model's supe-

rior performance and stability across diverse tasks and datasets but also illuminates its potential to 

revolutionize rice disease recognition, setting the stage for future explorations in agricultural AI appli-

cations. 

Keywords: Multi-head Attention; Paddy Disease Classification; Rice Leaves Disease Recognition; Self-

Attention; Transfer Learning; Vision Transformer. 

 

1. Introduction 

Rice is a crucial food source for nearly half the global population, fulfilling over 21% of 
the worldwide calorie intake, crucial for food security and societal well-being[1]. The year 
2021 saw global rice production soar to 787 million tons, highlighting the urgent need for a 
swift shift to sustainable agricultural and food systems to safeguard global food security, es-
pecially concerning rice. However, efforts to maintain and increase rice production cannot be 
separated from the threat of disease [2]–[5].  

Computer vision has experienced significant development within the agricultural sector, 
with numerous studies focusing on plant disease recognition through machine learning (ML) 
approaches.  Various methods, including logistic regression (LR), support vector machine 
(SVM), k-nearest neighbors (KNN), and Random Forest (RF), have been employed[6]–[8]. 
These ML methods usually require manual feature extraction and selection for image recog-
nition tasks, which may prove suboptimal for analyzing complex images. They struggle with 
high-dimensional data and are not inherently designed for capturing spatial hierarchies in 
images. ML methods also tend to perform relatively slowly when processing large datasets 
and struggle with imbalanced datasets[9]. In contrast, deep learning (DL) approaches can 
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automatically learn hierarchical features from raw images. They offers superior performance 
in recognizing patterns and objects in images due to their deep architecture that can capture 
intricate details and spatial relationships[10], [11]. One widely used DL approach is the Con-
volutional Neural Network (CNN), which excel at image recognition by learning feature hi-
erarchies directly from images and automatically identifying important features through spe-
cialized layers. This architecture mimics biological visual processing, making CNNs more ef-
fective for spatial data tasks, offering superior accuracy and efficiency compared to traditional 
ML methods[2], [10], [12], [13]. However, CNN has disadvantages, especially in the training 
process, which can consume a lot of resources and require large amounts of computing power 
and data, thus necessitating a longer training period than traditional ML methods. In contrast, 
transfer learning leverages models pre-trained on large data sets, thereby significantly reducing 
computational resource and data requirements. It accelerates training and enhances perfor-
mance on tasks with limited data, making it a more efficient approach in certain scenarios[13], 
[14]. Significant advancements have been made in the development of CNN-based transfer 
learning models for image recognition tasks. Notable examples include VGG[15], MobileNet 
[16], EfficientNet [17], [18], Xception [19], Residual Network (ResNet) [20], dan AlexNet[21]. 
However, CNN methods or CNN-based transfer learning still face limitations due to their 
reliance on local convolution operations for feature detection, where each pixel interacts only 
with its immediate neighbors in a small environment.  
The Vision Transformer (ViT) model emerges as an alternative to overcome CNN's short-
comings by modeling  long-range dependencies between image parts[22]–[24]. ViTs employ 
self-attention mechanisms to capture global context, thereby improving performance in com-
plex visual tasks [25]–[27]. The ViT architecture, adapted from a scalable transformation 
mechanism, can be adjusted for various image sizes and types, offering new opportunities for 
detailed image analysis and object detection [28]. Several studies have tested ViT for image 
classification tasks, such as in research [29] obtained a result of 98.49%, and research [30]  
produced an accuracy value of up to 99%, wherein both studies, it was also compared that 
ViT showed better performance than prior-art. However, further exploration is required to 
ascertain ViT's specific advantages in disease classification tasks in rice plants. 

Based on the existing literature, there is a significant potential for the Vision Transformer 
(ViT) model to outperform Convolutional Neural Networks (CNNs) in image recognition 
tasks. This research aims to delve deeper into the application of ViT for classifying rice dis-
eases. Our contributions include: 

1. Tailoring the ViT model for the specific task of rice disease recognition. 
2. Evaluating the ViT model's performance on both balanced and imbalanced datasets. 
3. Comparing ViT and CNN models to assess their effectiveness in rice plant disease clas-

sification, with a focus on ViT’s global pattern recognition capabilities. 
The remainder of this paper will delve into the development and evaluation of the Vision 

Transformer (ViT) model for disease recognition in rice plants. Section 2 will cover a com-
prehensive review of ViT literature. Section 3 will discuss our research methodology, encom-
passing data collection, the model training process, and the metrics we used for evaluation. 
Following this, Section 4 will present our experimental findings and provide a detailed analysis 
of these results and their broader significance. The paper will conclude with a summary of 
our key findings and offer recommendations for future investigations in the realm of plant 
disease detection through image processing technologies. 

2. Preliminaries 

In the evolving landscape of machine learning and its application to agricultural technol-
ogy, the Vision Transformer (ViT) model emerges as a groundbreaking approach, offering a 
novel perspective on image-based classification tasks. Unlike conventional convolutional neu-
ral networks (CNNs) that process images through localized convolution operations, ViT lev-
erages the power of the Transformer architecture, originally designed for natural language 
processing, to interpret visual data. This section delves into the foundational elements of ViT, 
including its innovative use of self-attention mechanisms to analyze images as sequences of 
patches, thereby capturing intricate patterns and relationships within the data. By dissecting 
the mechanics of ViT and its components, such as self-attention, we aim to illuminate its 
potential to surpass traditional methods in accurately classifying rice diseases. Through a com-
prehensive review of related literature and theoretical frameworks, we will explore the current 
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state of ViT development, identify gaps in existing research, and highlight the unique contri-
butions of our study in optimizing and applying ViT for enhanced disease recognition in rice 
plants. 

2.1. Vision Transformer (ViT) 

Vision Transformer (ViT) represents a neural network model architecture that adopts a 
Transformer approach for processing visual information, especially images. In contrast to 
traditional methods, which often use convolutional layers for image processing, ViT works 
by changing the input images into small patches, where each patch will be represented in 
vector form[31]. These patch vectors are then flattened into a one-dimensional sequence, 
serving as the input for the Transformer model.Each patch vector is infused with positional 
information (position embedding) to preserve the spatial context of the image. Subsequently, 
this sequence is processed by the Transformer encoder, which comprises several self-atten-
tion layers and a Multi-Layer Perceptron (MLP). This configuration enables the model to 
discern the intricate relationships among different parts of the image. The output from the 
Transformer encoder is then directed to the classification layer, which generates class predic-
tions[25]. The architecture of Vision Transformer is illustrated in Figure 1. 

 

Figure 1. Vision Transformer (ViT) Architecture[25] 

2.2 Self-Attention 

The self-attention mechanism is a key component of the Transformer architecture in 
artificial neural networks, enables the model to focus on and evaluate the significance of var-
ious relationships between elements within a data sequence, such as words in text or patches 
in an image [28]. Figure 2 visualizes the self-attention mechanism, illustrating how the model 
assesses the importance of each element within a data sequence in relation to others, thereby 
focusing on the weighted significance of these elements. 

Following are the basic steps of the self-attention mechanism: 
1. Image Division: Images are segmented into small chunks, analogous to “words” or to-

kens in natural language models. Each patch in the image is considered an entity treated 
by self-attention. 

2. Query, Key, and Value Representation: Each image patch has a Query, Key, and Value 
representation. This is obtained through a linear transformation of each image patch. 

3. Conformity Score Calculation (Dot Product): Each patch is used to query the con-
formity score (dot product) with every other patch in the key image. This score indicates 
how relevant the patch-query is to the patch-key. 

4. Normalization and Weighting: The suitability scores are normalized using a softmax 
function, generating weights that emphasize the most relevant patches in relation to the 
query patch. These weights are then used to multiply by the values of the image patches, 
producing a new weighted representation for each patch based on its relationship to other 
patches in the image. 
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5. Integration and Output: The weighted representations of each patch are combined to 
produce an output of self-attention at the level of the whole image. This output is then 
used for subsequent steps in the ViT model. 

 

Figure 2. Self-Attention Mechanism[28] 

Through this self-attention mechanism, the model can understand the relationship be-
tween each element in the data sequence and determine its importance in the context of its 
relationship to other elements. This allows the model to focus on the most important parts 
of the input data sequence. This arrangement evolves into multi-head attention, comprising 
a stack of self-attention layers, enhancing the model's capacity to capture diverse relationships 
within the data. 

2.3 Review of the State-of-the-Art 

As the landscape of image classification evolves, Vision Transformers (ViT) have 
emerged at the forefront of research, demonstrating significant potential in various domains. 
This section reviews the current state of the art, focusing on the application of ViT across 
different fields and comparing its performance with traditional Convolutional Neural Net-
works (CNNs). Through a detailed examination of recent studies, we aim to highlight the 
advancements brought about by ViT, particularly its use of self-attention mechanisms for 
global pattern recognition and its impact on improving classification accuracy. 

Vision Transformers (ViT) have undergone extensive evaluation in the field of image 
classification, with numerous studies showcasing their remarkable efficacy. Specifically, re-
search [32], the focus was on diabetic retinopathy in the retina. The self-attention mechanism 
in ViT was utilized  to recognize the level of diabetic retinopathy, employing a collection of 
retinal images for training and performance testing. ViT achieved an accuracy performance 
of 91.4% with specificity, precision, and recall of 97.7%, 92.8%, 92.6%, respectively. The 
comparative evaluation results of ViT against the CNN model are very comparative. The self-
attention mechanism in ViT is very promising for recognizing the level of diabetic retinopa-
thy. Furthermore, research [33] explored the performance of ViT in detecting fractures using 
a manually annotated dataset of fracture images  according to the AO/OTA system. The 
ViT model was deployed for classification and subsequent evaluation, which was then com-
pared to the CNN approach and manual classifications by medical professionals. ViT accu-
rately predicted 85% of the images, achieving precision, recall, and f1-score values of 77%, 
76%, 77% respectively. Notably, the accuracy of doctors' diagnoses improved by 29% when 
supplemented by ViT predictions, reaching a 97% accuracy rate. 

In research [29] ViT was used for remote sensing image classification tasks with 3 da-
tasets, namely Merced land, AID, and Optimal-31. The multi-head attention mechanism was 
a focal point in this research for global pattern recognition. The evaluation results on each 
dataset tested on ViT obtained accuracy results of 98.49% on the Merced dataset, 95.86% on 
the AID dataset, and 95.56% on the Optimal-31 dataset. 
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The synthesis of the state-of-the-art reveals that the Vision Transformer (ViT) method 
not only shows superiority but also holds promise for future advancements in image classifi-
cation tasks. Evaluation metrics from prior research illustrate ViT's competitive edge over 
traditional Convolutional Neural Network (CNN) models. The distinct operational mecha-
nisms of self-attention and multi-head attention within ViT are pivotal, diverging significantly 
from those of CNN models. Specifically, the self-attention mechanism empowers the model 
with the capability to discern and prioritize different segments of an image by assigning vari-
able weights to specific features, thereby understanding its contextual importance. Concur-
rently, the multi-head attention architecture facilitates the model in processing these segments 
through multiple self-attention mechanisms in parallel. This approach enables the model to 
capture a comprehensive array of aspects and relationships within the image, viewing them 
from diverse perspectives. Such a multifaceted view substantially augments the model’s pro-
ficiency in pattern and object recognition, by considering the minutiae of the image from 
various angles.  

Building upon this advanced understanding, the proposed research endeavors to harness 
the multi-head attention capability of ViT specifically for the nuanced task of rice plant disease 
classification. By optimizing and tailoring the ViT model to this context, this study aims to 
explore the uncharted potentials of ViT in recognizing and classifying the countless diseases 
affecting rice plants. The forthcoming sections will delve into the methodology employed in 
developing and evaluating the ViT model for this purpose.3. Proposed Method 

This research was carried out in several stages, namely data collecting, data prepro-
cessing, training, and evaluation. Each stage is discussed in more detail in the subsections 
below. 

3.1 Data Collection 

This research uses two datasets, each with distinct characteristics and varying record 
counts, as illustrated in Figure 3. In addition to varying classes, these datasets also differ in 
the number of classes and the distribution of records. The first dataset [34] is a balanced 
dataset, 2628 color images with the .jpg extension, which has six classes. For additional details, 
refer to Table 1. The dataset is segmented into training and validation data, as depicted in 
Figure 3. This dataset has six classes, and the data distribution in each class is presented in 
Table 2. Images for each class are presented in Figure 4. 

 

Figure 3. Datasets Record 

Table 1. First Dataset Description. 

Class Records 

Bacterial Leaf Blight 438 

Brown Spot 438 

Healthy 438 

Leaf Blast 438 

Leaf Scald 438 

Narrow Brown Spot 438 

Total 2628 
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(d) 

 
(e) 

 
(f) 

Figure 4. Image samples for each class in the first dataset (a) Bacterial Leaf Blight, (b) Brown Spot, 
(c) Healthy, (d) Leaf Blast, (e) Leaf Scald, (f) Narrow Brown Spot 

Table 2. Second Dataset Details 

Class Records 

Brown spot 40 

Leaf smut 40 

Blast 80 

Blight 80 

Tungro 80 

Total 320 

 

 

(a) 
 

(b) 

 

(c) 

 

(d) 

Figure 5. Image samples for each class in the second dataset (a) Blast, (b) Blight, (c) Brown Spot, (d) 
Leaf Smut 

Meanwhile, the second dataset [35] comprises 320 color images in .jpg format, cate-
goriezed into five distinct classes with varying data volumes, as presented in Table 3. In this 
study, the tungro class will be used because it refers to research [1], and this research compares 
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it with that research. So, only four classes are used in this dataset.  For an in-depth analysis 
of the class distribution and to understand the extent of data imbalance, refer to Table 3. 
Figure 5 illustrates sample images from the selected classes within the second dataset, provid-
ing a visual representation of the data utilized in this study.  

3.2 Preprocesing Dataset 

All images across the datasets were resized to 224×224×3 to ensure uniform dimensions. 
Subsequently, the datasets were partitioned into training, validation, and testing subsets, ad-
hering to an 80:10:10 ratio. Figure 7 presents the data distribution following the splitting pro-
cess for the first dataset. Meanwhile, due to limited data volume the dataset is only divided 
into training and testing data subsets. The partitioning outcomes for this dataset are depicted 
in Figure 8.  

Data augmentation was performed on the training subset to enhance image diversity, 
aiming to facilitate an optimal training process[13], [36], [37]. Some augmentation techniques 
applied include rotation, flip, and image enlargement. The goal is to vary the training data, 
helping the model adapt to object orientation, viewpoint, and shape differences. Visualization 
of the argumentation technique can be seen in Figure 6. 

 

Figure 6. Example of Augmentation Results in Second Dataset 

 

Figure 7. Splitting First Dataset 



Journal of Computing Theories and Applications 2024 (May), vol. 1, no. 4, Rachman, et al. 453 
 

 

 

Figure 8. Splitting Second Dataset  

3.3 Proposed Model Vision Transformer (ViT)  

The Vision Transformer (ViT) is available in two principal variants: Base (B) and Large 
(L). ViT Base (B) has fewer layers and dimensions than ViT Large (L). The base is lighter and 
faster in learning and inference, suitable for limited resources or where inference speed is 
important. Meanwhile, ViT Large offers more layers and dimensions, making it more immer-
sive and capable of capturing more complex information, but it requires more computing 
resources. For this study, the ViT Base (B) model, specifically the ViT-B16, was selected due 
to its adequacy for the relatively modest dataset size, constrained research resources, and its 
sufficient computational efficiency for the task at hand. Additionally, the selection of the ViT-
B16 model was influenced by its adaptability for deployment in mobile environments, a crit-
ical consideration given the model's inherent flexibility and the future research aspirations. 
ViT-B16 was previously pre-trained on the ImageNet-21K (14 million images, 21,843 classes) 
and imagenet2012 (1 million images, on classes) datasets from Keras. This model has several 
important configurations, namely patch size, hidden dimension, Multi-Layer Perceptron 
(MLP) dimension, hidden dimension, attention heads, and encoder depth, and the configura-
tions, detailed in Table 3. Patch Size is the size of a small piece of image or patch. The hidden 
dimension and MLP dimension define the size of the embedding layer and the number of 
hidden units in the MLP layers of the Transformer encoder, respectively. The number of 
attention heads in the Multi-Headed Self-Attention (MSA) enables the model to discern di-
verse patterns or relationships within the input. Lastly, the encoder depth specifies the count 
of encoder transformer blocks within the model. 

Table 3. Proposed ViT Model Configuration 

Configuration Value 

Patch Size 16 

Hidden dimension 758 

MLP dimension 3072 

Attention Head 12 

Encoder depth 12 

 
Next, enhanced ViT B16 was carried out by adding several layers and changing the top 

layer according to the number of classes classified. Details are provided in Table 4. 
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Table 4. Detail of Proposed ViT Model 

Layers (type) Output Shape Param# 

vit-b16 (Functional) (None, 768) 85798656 

flatten_1 (Flatten) (None, 768) 0 

dense_3 (Dense) activation='relu' (None, 64) 49216 

dense_4 (Dense) activation='relu' (None, 32) 2080 

dense_5 (Dense) activation=' softmax' (None, 4), (None, 6) 132 
 

Total params: 85850084 (327.49 MB) 

Trainable params: 85850084 (327.49 MB) 

Non-trainable params: 0 (0.00 Byte) 

 
The proposed ViT model is compiled using several hyperparameters and tuning strate-

gies, including the loss function and optimizer metrics, to evaluate the model during the train-
ing and validation process. The chosen loss function is ‘categorical_crossentropy’, with 
‘Adam’ as the optimizer, and ‘Accuracy’ as the metric for model evaluation. Early stopping is 
also activated. The aim is to stop the training process based on the ̀ val_loss` value, specifically 
when the model start experiencing an increase in this value, to prevent overfitting. The pri-
mary goal of employing a reduced learning rate is to dynamically adjust it during training, 
enhancing the efficiency of the learning process. The epoch size in this training is 25, with a 
batch size of 32. For more details, see Table 5. 

Table 5. Hyperparameter dan Tunning Parameter ViT_B16 

Parameter Value 

Optimizer Adam (learning_rate = 0.0001) 

Loss funtion CategoricalCrossentropyc(label_smoothing = 0.0001) 

Metrics Accuracy 

Callback EarlyStopping (monitor=' val_loss ', patience=5, restore_best_weights=True) 

ReduceLROnPlateau (monitor=' val_loss ', patience=3, factor=0.001, verbose=1) 

Batch size 32 

Epochs 25 

3.4 Model Evaluation 

The evaluation of the model's performance is structured in two distinct parts: The first 
involves assessing the training and validation datasets using accuracy and loss metrics. The 
second part focuses on evaluating the test dataset through the use of a confusion matrix and 
accuracy metrics. The accuracy metrics employed in this research include recall, f1-score, pre-
cision, and overall accuracy. Recall quantifies the model's capability to correctly identify all 
true positive cases. Precision determines the proportion of positively predicted instances that 
are indeed positive. The f1-score, the harmonic mean of recall and precision, offering a bal-
ance between them. Specificity assessing the model's effectiveness in identifying true negative 
instances, thereby minimizing false positive errors. Accuracy measuring the model's overall 
performance in classifying the dataset accurately[38], [39]. This comprehensive evaluation 
aims to elucidate the Vision Transformer (ViT) model's efficacy in classification tasks prior 
to its practical application. 

4. Results and Discussion 

This research was carried out using Python language with a Jupyter Notebook editor, 
while the hardware specifications were an Intel I7 gen 11 processor and 16GB memory. As a 
note, the computing was carried out without using a GPU. Model testing uses two test sce-
narios, which include testing on the first dataset, namely the balance dataset, and the second 
on an imbalanced and relatively small dataset. The evaluation results are evaluated with the 
four matrices described in section 3.4 and compared with popular CNN models such as Mo-
bileNet [16], EfficientNetV2 [9], VGG16 [15], Xception [19], as well as models that use the 



Journal of Computing Theories and Applications 2024 (May), vol. 1, no. 4, Rachman, et al. 455 
 

 

same dataset (specifically the second dataset). Apart from that, training time is also measured 
using the library time in Python. 

4.1 First Scenario Test 

In the first dataset, all images were used with a total of 2628, divided into training data 
of 1680, validation data of 420, and test data of 528. Table 6 illustrates the results of the ViT 
proposed model achieving a 99.35%, which shows the superiority of the proposed model 
compared to other CNN models. However, ViT's training time is relatively longer than other 
CNN models. The ViT model is relatively more complex compared to CNN models, but it 
also has satisfactory performance. Moreover, it requires significantly fewer epochs than other 
models to achieve stable values. Figure 9 presents detailed graphs of accuracy and loss for the 
training and validation stages. The analysis of the results depicted in the graph highlights 
several significant advantages of the proposed model. At the beginning of training, the model 
demonstrated exceptional learning capability, with a sharp decrease in loss and a rapid increase 
in accuracy, indicating that the used architecture could efficiently capture important features 
of the data. High accuracy on validation data indicates not only proficient learning of the 
training dataset but also effective generalization to previously unseen data. Despite initial in-
dications of overfitting, characterized by a gap between training and validation loss, the model 
managed to maintain high accuracy without showing a significant increase in validation loss. 
This indicates that the model can maintain its generalization ability as training continues. Sta-
bilization of loss and accuracy on validation data shows that the model has achieved con-
sistent and reliable performance. 

Table 6. Measurement Results on the First Dataset 

Model Epochs 
Accuracy Loss Train 

Time 
(seconds) 

Model 
Size 

(MB) 
Train Val Train Val 

MobileNet 17 95.54% 89.29% 11.72% 27.75% 754 24.58 

EfficientNetV2 B0 25 97.38% 93.10% 8.93% 18.72% 1,520 22.9 

VGG 16 25 87.56% 77.86% 34.19% 53.85% 6,889 62.27 

Xception 25 96.96% 91.90% 9.17% 26.21% 3,282 104.09 

Proposed 16 99.35% 97.62% 1.94% 7.63% 20,457 327.49 

 

Figure 9. ViT_B16 Loss and Accuracy Graph on the First Dataset 

The results of the test data evaluation in Table 7 show that the proposed model has 
excellent performance with recall, precision, specificity, f1-score and overall accuracy values 
of 0.971591, 0.972956, 0.995076 0.971709, and 0.971591, respectively. The highest results on 
other models are EfficientNet V2 B0 with recall, precision, specificity, f1-score, and overall 
accuracy values of 0.933712, 0.937222, 0.98645, 0.932942, and 0.933712, respectively. 
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Meanwhile, the VGG16 model obtained the lowest results. See the confusion matrix visuali-
zation in Figure 10 for clearer information on the evaluation results. 

Table7. Test Data Evaluation Results on the First Dataset 

Model Recall Precision Specificity F1-Score Accuracy 

Proposed 0.9716 0.9730 0.9951 0.9717 0.9716 

MobileNet 0.8883 0.8921 0.9762 0.8869 0.8883 

EfficientNetV2 B0 0.9337 0.9372 0.9865 0.9329 0.9337 

VGG16 0.7822 0.8006 0.9510 0.7763 0.7822 

Xception 0.9242 0.9256 0.9822 0.9242 0.9096 

 
It can be concluded that the model shows excellent reliability in correct and consistent 

classification. Correlating these results with previous training and validation graphs, the high 
values are consistent with high validation accuracy and low loss, indicating that the model fits 
well with the training data and has also been generalized successfully to previously unseen 
data. 

 

Figure 10. Confusion Matrix of First Dataset 

4.2 Second Scenario Test 

In this test, the dataset is relatively small and imbalanced, namely, comprising a total of 
320 records. However, excluding the tungro class reduces this number to 240 records. The 
dataset is divided into 192 training data and 48 test data. Therefore, it appears that all models 
exhibit a tendency towards overfitting to some degree. However, the proposed model demon-
strates superiority, achieving a training accuracy of 100% and a validation accuracy of 91.67%, 
as shown in Table 8. Similar to the first scenario, the training time for the proposed model is 
the longest, attributable to the greater complexity of ViT compared to other CNN models. 
Figure 11 presents more detailed training and validation graphs for the proposed model ap-
plied to the second dataset. 

Table 9 demonstrates the superiority of ViT, showcasing stable results across recall, pre-
cision, specificity, f1-score, and overall accuracy, with respective values of 0.979167, 0.981481, 
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0.99375, 0.979085, and 0.979167. Despite the occurrence of overfitting during training and 
validation, testing revealed stable and superior results compared to all models, including those 
in research [2]. Particularly in the context of disease classification, recall is often deemed a 
more critical metric due to the serious consequences of failing to identify actual disease cases, 
especially in imbalanced datasets  [38], [40]. The results achieved by ViT affirm its stability in 
handling diverse datasets, whether large, small, or imbalanced. See the confusion matrix vis-
ualization in Figure 12 for clearer information on the evaluation results. 

Table 8. Measurement Results on the Second Dataset 

Model Epochs 
Accuracy Loss Train 

Time 
(seconds) 

Model 
Size 

(MB) 
Train Val Train Val 

MobileNet 13 98.44% 87.50% 4.78% 36.07% 129.6 24.58 

EfficientNetV2 B0 25 98.44% 91.67% 16.22% 21.97% 346.2 22.9 

VGG 16 25 94.79% 93.75% 22.75% 29.89% 706.2 62.27 

Xception 9 98.96% 87.50% 3.41% 35.55% 210 104.09 

Proposed 20 100% 91.67% 0.44% 18.98% 5,580 327.49 

 

 

Figure 11. ViT_B16 Loss and Accuracy Graph on the Second Dataset 

 

Figure 12. Confusion Matrix on the Second Dataset 
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Table 9. Test Data Evaluation Results on the Second Dataset 

Model Recall Precision Specificity F1-Score Accuracy 

MobileNet 0.8542 0.8554 0.9547 0.8541 0.8542 

EfficientNetV2 B0 0.9375 0.9392 0.9813 0.9373 0.9375 

VGG16 0.8958 0.8971 0.9672 0.8958 0.8958 

Xception 0.8333 0.8380 0.9469 0.8332 0.8333 

Model [2] 0.9300 0.9300 0.9800 0.9300 0.9700 

Proposed 0.9792 0.9815 0.9938 0.9791 0.9792 

5. Conclusions 

The results from two test scenarios demonstrate that the proposed model can outper-
form others. The first test revealed promising results for handling balanced datasets with 
larger amounts of data, where ViT achieved an overall accuracy of 97%, surpassing other 
CNN models such as EfficientNetV2_B0, which achieved an overall accuracy of 93%. It is 
important to note that the proposed model requires a longer training time compared to other 
CNN models, attributable to its extensive number of parameters, size, and complexity. The 
second scenario, which utilized an imbalanced dataset with significantly less data, also showed 
satisfactory results, indicating that the proposed model is more adaptable to various dataset 
characteristics. The model's accuracy, assessed using metrics such as recall, precision, speci-
ficity, and F1-score, also surpassed the state-of-the-art for the same dataset. The self-attention 
mechanisms for capturing global context have notably enhanced performance in complex 
visual tasks. In practical scenarios, classifying rice diseases based on leaf images presents spe-
cific challenges, including variations in leaf appearance due to lighting conditions, shooting 
angles, and the stage of disease development. These challenges necessitate a model capable 
of understanding complex visual contexts and the subtle differences between disease catego-
ries. ViT has shown considerable promise in this regard, owing to its capability to process 
global information from images. This enables a more accurate identification of disease fea-
tures by understanding the context of the entire image, rather than relying solely on local 
features. Consequently, ViT emerges as a promising candidate for further development in the 
recognition or classification of rice diseases based on leaf images. 

The exploration of the Vision Transformer (ViT) model for rice disease recognition pre-
sents a promising advancement beyond traditional CNN approaches, offering enhanced per-
formance through global context capture and self-attention mechanisms. The research 
demonstrated ViT's superiority in handling complex visual tasks, outperforming established 
CNN models across balanced and imbalanced datasets. Future endeavors could focus on re-
fining ViT's efficiency for broader application, including optimizing its computational de-
mands for real-time use and enhancing its adaptability across diverse agricultural environ-
ments. This streamlined approach would not only advance disease classification techniques 
but also pave the way for integrating cutting-edge AI into sustainable agricultural practices, 
ultimately contributing to improved crop management and yield. 
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