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Abstract: This study proposes an approach for human fall classification utilizing a combination of 

Weighted Moving Average (WMA) and Convolutional Neural Networks (CNN) on the SisFall dataset. 

Falls among elderly individuals pose a significant public health concern, necessitating effective auto-

mated detection systems for timely intervention and assistance. The SisFall dataset, comprising accel-

erometer data collected during simulated falls and activities of daily living, serves as the basis for train-

ing and evaluating the proposed classification system. The proposed method begins by preprocessing 

accelerometer data using a WMA technique to enhance signal quality and reduce noise. Subsequently, 

the preprocessed data are fed into a CNN architecture optimized for feature extraction and fall classi-

fication. The CNN leverages its ability to automatically learn discriminative features from raw sensor 

data, enabling robust and accurate classification of fall and non-fall events. Experimental results 

demonstrate the efficacy of the proposed approach in accurately distinguishing between fall and non-

fall activities, achieving high classification performance metrics such as accuracy, precision, recall, and 

F1-score. Comparative analysis with existing methods showcases the WMA-CNN hybrid approach's 

superiority in classification accuracy and robustness. Overall, the proposed methodology presents a 

promising framework for real-time human fall classification using sensor data, offering potential appli-

cations in wearable devices, ambient assisted living systems, and healthcare monitoring technologies to 

enhance safety and well-being among elderly individuals. 

Keywords: Accelerometer; Convolutional Neural Network; Gyroscope; Human Fall Classification; 

Weighted Moving Average. 

 

1. Introduction 

Falls are a common occurrence in daily human life. A fall is an unexpected event that 
can happen during various activities. According to WHO data, approximately 37.3 million 
falls occur yearly, many requiring serious medical attention. Additionally, WHO estimates that 
there are about 646,000 fatal falls annually[1], [2]. Moreover, the consideration of falls is the 
second major cause of accident death after the injury occurred through the accident of traffic 
in road. Furthermore, the highest death rates occur among adults over 60 aged people. Ac-
cording to the survey, the highest number of fatal falls occurs in older people. The physical 
capabilities of human life, like sense, vision, and balance, are weakened when life goes 
through. These events might occur in older people who are more likely to achieve falls, un-
fortunately [3], [4]. It has many facts concerned with the health issues occurring unfortunately 
in older people like stroke, vertigo, hypertension, rheumatic, and headache. Another cluster 
that has a higher incidence of falls is the children. All events require intensive monitoring to 
eliminate the issue of serious injury by aiding them suddenly after the fall [5], [6]. 

The challenges in human fall classification primarily stem from the complexity and var-
iability of human motion patterns and the diverse environmental conditions that can occur. 
Falls can occur in various ways, including forward, backward, sideways, and falls from differ-
ent heights. Additionally, age, health conditions, and environmental factors can contribute to 
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the variability in fall patterns. This variability makes it challenging to develop a one-size-fits-
all approach for fall detection and classification[7], [8]. Non-fall activities, such as sitting 
down, lying down, or performing daily activities, can sometimes exhibit motion patterns sim-
ilar to falls. Distinguishing between genuine falls and non-fall activities with similar motion 
characteristics poses a significant challenge in fall classification. Falls can occur in diverse 
environmental conditions, including indoor and outdoor settings, lighting conditions, and 
terrain. Environmental factors such as cluttered environments, obstacles, and uneven surfaces 
can impact the accuracy of fall detection algorithms [9], [10]. 

Traditional methods for fall detection often rely on wearable sensors, surveillance cam-
eras, or environmental sensors to collect data, which is then processed using machine learning 
algorithms to classify human activities and detect falls. Among these algorithms, Convolu-
tional Neural Networks (CNNs) and Weighted Moving Average (WMA) have gained increas-
ing attention for their potential to enhance the accuracy and reliability of fall classification 
systems. CNNs have demonstrated remarkable performance in image classification tasks and 
have been successfully applied to various pattern recognition problems [11]–[13]. By auto-
matically learning hierarchical features from raw data, CNNs can effectively extract discrimi-
native features and capture complex patterns inherent in sensor data collected from wearable 
devices or surveillance systems. Meanwhile, WMA is a well-established technique in time se-
ries analysis, commonly used to smooth out fluctuations and identify underlying trends in 
data. By assigning weights to recent observations, WMA enables the detection of short-term 
changes while preserving long-term trends, making it suitable for capturing temporal dynam-
ics in human motion data.  

The integration of CNNs and WMA presents a promising approach to human fall clas-
sification, leveraging the strengths of both methodologies to improve the accuracy and ro-
bustness of predictive models. In this paper, we propose to explore the combined use of 
CNNs and WMA for human fall classification to develop a comprehensive and effective fall 
detection system. The hypothesis behind combining CNNs and WMA lies in their comple-
mentary strengths. While CNNs excel at capturing spatial and temporal patterns in sensor 
data, WMA provides a mechanism for smoothing out noise and identifying underlying trends. 
By preprocessing the raw sensor data using WMA to capture temporal dynamics and reduce 
noise and then feeding the smoothed data into a CNN for further feature extraction and 
classification, we aim to enhance the accuracy and reliability of our fall classification system. 
The Sisfall dataset trains the data with the CNN deep learning model. The system implemen-
tation is performed for the Sisfall dataset. The contribution of this paper is  
1. The convolutional neural network is applied for the human fall classification. 
2. WMA was used to remove the noise of sensor data to achieve the most accurate classi-

fication results. 
The remainder of this document is structured as follows: In Section 2, we explore related 

literature and background theory pertinent to the subject matter in Section 3. Section 4 dis-
cusses the proposed system design, detailing its components and architecture. Following this, 
Section 5 delineates the methodology employed for performance evaluation, shedding light 
on the metrics utilized and the experimental setup. Finally, Section 6 encapsulates the key 
insights drawn from the study and offers concluding remarks on the research endeavor. 

2. Related Works 

The authors [14] presented a deep-learning approach to automatic human fall detection 
through frames with the camera. This approach provided the propositions of humans through 
information to segmentation and body joint locations. The presented ideas were applied to 
convert multimodal visual presentations to input to FallNet, where the CNN applies multiple 
and modality-specific layers and uses higher embedding attributes to recognize falls. The hu-
man fall dataset contains synthetically created segmentation and human pose data among 
many camera viewpoints. The performance evaluation of complex public presented about 
this system provided higher recall and accuracy in fall recognition.  

In this study [15], Wi-Sense is introduced as a system for human activity recognition, 
employing a CNN to discern human actions based on distinctive Wi-Fi channel state infor-
mation (CSI) patterns that are independent of environmental factors. Initially, Wi-Sense cap-
tures CSI data using a standard Wi-Fi network interface card, then employs the CSI ratio 
method to mitigate noise and phase offset effects, supplemented by principal component 
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analysis to eliminate redundant information. This preprocessing step not only reduces data 
dimensions but also mitigates environmental influences. Subsequently, processed data spec-
trograms are computed, revealing environment-independent time-variant micro-Doppler fin-
gerprints corresponding to various activities. These spectrogram images are then utilized for 
training a CNN model. The effectiveness of the proposed approach is assessed using a dataset 
of human activities collected from nine participants in an indoor setting, demonstrating an 
overall accuracy of 97.78% in activity recognition. Additionally, the integration potential of 
Wi-Sense into existing eHealth infrastructure is discussed, highlighting its relevance within 
the context of health information systems standards. 

The article [16] introduced a novel framework for representing human posture dynamics 
during falls, termed the 'five-point inverted pendulum model.' It employs an advanced two-
branch multi-stage convolutional neural network (M-CNN) to capture and reconstruct the 
inverted pendulum structure of human posture in complex real-world scenarios. Additionally, 
the study addresses the temporal continuity of fall events by employing multimedia analytics 
to track changes in the time-series representation of the human inverted pendulum structure. 
This approach enables the construction of a spatio-temporal evolution map illustrating the 
movement patterns of human posture over time. Moreover, by integrating computer vision 
techniques and multimedia analytics, the study identifies visual characteristics associated with 
the spatiotemporal evolution of human posture during potentially unstable states. Further-
more, the research investigates two key features of human fall behavior: motion rotational 
energy and generalized force of motion. Experimental findings in real-world settings demon-
strate the method's robustness, broad applicability, and high accuracy in detecting falls. 

This study built upon our previous research focusing on designing and implementing a 
Fall Detection System (FDS) utilizing an inertial measurement unit worn at the waist [17]. 
The dataset used for analysis is sourced from SisFall, a publicly available repository containing 
a variety of Activities of Daily Living and fall instances. Initially, we conducted preprocessing 
and feature extraction procedures on the dataset, followed by applying five distinct Machine 
Learning algorithms, facilitating a comparative analysis. Notably, ensemble learning tech-
niques such as Random Forest and Gradient Boosting exhibited superior performance, 
demonstrating Sensitivity and Specificity values nearing 99%. Our primary contribution lies 
in developing a multi-class classification framework for fall detection, coupled with examining 
the impact of sensor sampling rates on FDS efficacy. In our multi-class classification ap-
proach, falls are categorized into three distinct phases: pre-fall, impact, and post-fall, a novel 
extension that requires thoughtful consideration. Through extensive experimentation with 
sampling rates ranging from 1 to 200 Hz, we observed nuanced effects on system perfor-
mance. While higher sampling rates generally enhance detection accuracy, our findings sug-
gest that a sampling rate of 50 Hz typically suffices for reliable fall detection. 

3. Background Theory 

3.1. Weighted Moving Average(WMA) 

A WMA is a moving average that places a higher emphasis on recent data points in a 
time series data set [18]. This is achieved by assigning weights to each data point in the series, 
with the most recent data points assigned the highest weights. The WMA is then calculated 
by multiplying each data point by its assigned weight, summing the products, and dividing by 
the sum of the weights. A WMA is a statistical technique used to smooth out a time series 
data set by giving different weights to different periods in the data set. Unlike a simple moving 
average, which assigns equal weights to all periods, a WMA assigns higher weights to more 
recent periods and lower weights to older periods. It is represented in Equation (1). 

𝑀 =
∑ 𝑊𝑡 ∗ 𝑉𝑡

𝑛
𝑡=1

∑ 𝑊𝑡
𝑛
𝑡=1

 (1) 

Where 𝑀 is the average value, 𝑉 is the actual value, 𝑊 is the weighting factor, and 𝑛 
is the number of periods in the weighting group. 

3.2. Convolutional Neural Network (CNN) 

A CNN is a deep, feedforward neural network specifically developed to address the pro-
cessing demands of complex data[19]. The architecture of CNNs consists of various layers, 
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including convolutional layers, pooling layers, and fully connected layers. These layers are 
organized sequentially, with the input data fed forward through the network. The final layer 
typically produces a set of predicted labels or a probability distribution representing possible 
labels. A CNN comprises essential components, including an input layer, an output layer, and 
hidden layers encompassing various specialized layers such as pooling, convolutional, nor-
malization, and fully connected layers. The input layer represents input data, such as text 
documents or images as vectors, initializing the neural network's processing. The pivotal 
building block within a CNN is the convolutional layer, which generates feature activation 
maps from the input layer by applying multiple filters. These filters traverse the input layer's 
height and width, computing dot products between the input layer and filter entries, produc-
ing two-dimensional activation maps. These activation maps are subsequently passed to pool-
ing layers for further processing. The stride parameter determines the movement of filters 
across the input layer, typically set to one. 

Additionally, the Rectified Linear Unit (ReLU) activation function is commonly em-
ployed within convolutional layers to rectify negative values by converting them to zero. Each 
convolutional layer within the CNN is characterized by various parameters, including the 
kernel size, zero padding, stride, input size, and the map stack. Finally, the input signal under-
goes processing through the activation function (ReLU), ensuring that the dimensions of the 
input and output data remain consistent throughout the network's architecture. Equation (2) 
is used for the ReLU activation function. 

𝑓(𝑥)  =  max (0, 𝑥) (2) 

The pooling layer is utilized in CNNs to reduce the spatial dimensions of the output 
obtained from the convolutional layers. This serves two main purposes: to decrease the net-
work's computational complexity and help mitigate overfitting. Various types of pooling lay-
ers, such as max pooling and average pooling, select the maximum or average value from a 
group of pixels. The Pooling Layer serves as an intermediary component within CNNs, tasked 
with diminishing the spatial dimensions of the input data. Unlike the convolutional layer, the 
pooling layer does not incorporate weights in its operations. Instead, it applies a filter across 
all input data, facilitating the extraction of essential features without introducing additional 
weights. 

One common pooling technique is maximum pooling, which involves the selection of 
the pixel with the highest value as the filter traverses the input. This selected pixel is then 
forwarded to the output array, thereby retaining the most prominent features from the input 
data while discarding less relevant information. On the other hand, average pooling calculates 
the average value within the receptive field and sends it to the output array as the filter moves 
across the input. While this layer provides several benefits to the CNN, it may lead to infor-
mation loss. However, its advantages, such as noise feature reduction, efficiency improve-
ment, and overfitting prevention, outweigh this limitation. 

The fully-connected layer in a CNN resembles the layers found in traditional neural net-
works. It takes the output from the convolutional and pooling layers and utilizes it to make 
predictions about the input data. During training, the network learns the optimal weights for 
the fully connected layers based on the specific task. The fully connected layer in a CNN 
serves a crucial role akin to the output layer in a multilayer perceptron (MLP). Its primary 
responsibility is consolidating information gleaned from the final feature maps and producing 
the final classification output. In this layer, each neuron from the preceding layer is intercon-
nected with every neuron in the current layer. This comprehensive connectivity ensures that 
all extracted features are effectively integrated to make informed decisions during the classi-
fication process. Essentially, the fully connected layer is the ultimate processing stage within 
the CNN architecture, functioning analogously to fully connected layers in traditional artificial 
neural networks. The input to this layer is a flattened column vector derived from the previous 
layers, transforming feature vectors through backpropagation during training over multiple 
epochs. In the final element of the fully connected layer, an activation function is applied to 
generate class label predictions, representing the ultimate output of the CNN. Activation 
functions such as Sigmoid or SoftMax are commonly utilized for this purpose. The role of 
this final element is to process the aggregated information from the preceding layers and 
produce meaningful predictions regarding the classification of the input data. The process 
involves reducing the data dimensionality at the pooling layer to a single dimension and 
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establishing connections with every neuron in the fully connected layer. This comprehensive 
connectivity allows for integrating relevant features extracted by the convolutional layers, en-
abling the network to make informed decisions during the classification task. The activation 
function employed in the final layer is crucial for classification tasks. In this context, the sig-
moid activation function is often utilized to map the network's output to a probability distri-
bution, facilitating the classification of input data into distinct classes. This activation function 
is characterized by Equation (3). 

𝜎(𝑥) =
1

1 + 𝑒−𝑥
 (3) 

For the sigmoid activation function, the output is between 0 and 1. If the output value 
is near 0, the output classification label is ‘Fall’; otherwise, it is ‘Not Fall’. 

4. Proposed Method 

This system aims to develop the human fall classification system using a CNN model. 
This system classifies the fall or non-fall from the motion sensors' data. We extract automat-
ically learned features from the accelerometer and gyroscope sensor data and provide them 
to a classification algorithm in this system. Figure 1 describes the design of the system.  

 

Figure 1. System Design 
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4.1. Data Collection 

In this system, the dataset for fall/not fall detection, the SisFall dataset, is employed [20]. 
The SisFall dataset is a widely used benchmark dataset in human fall detection and classifica-
tion. It was developed by researchers at the University of Granada, Spain, to facilitate research 
and development in fall detection algorithms. The dataset consists of accelerometer and gy-
roscope data collected from wearable sensors worn by participants performing various activ-
ities, including falls and activities of daily living. The data was collected from 15 healthy vol-
unteers, including males and females, aged between 23 and 55. Participants wore a 
smartphone containing a built-in accelerometer and gyroscope sensors while performing ac-
tivities in a controlled indoor environment. The dataset includes data from four different 
types of activities: 

Falls: Participants simulated different types of falls, including forward falls, backward 
falls, and lateral falls.  

Activities of Daily Living (ADLs): Participants performed a range of common daily ac-
tivities, such as walking, sitting, standing, lying down, and picking up objects from the floor. 

The dataset includes data from the accelerometer and gyroscope sensors, capturing linear 
acceleration along three axes (x, y, z) and angular velocity around three axes (x, y, z), respec-
tively. Magnetometer data may also be included in some dataset versions, providing infor-
mation about sensor orientation. The SisFall dataset typically contains two classes: falls and 
activities of daily living (ADLs). Falls encompass various types of simulated falls, while ADLs 
include a range of common daily activities. The SisFall dataset contains 1048576 fall types 
and 1048576 not fall types. All the activities are recorded at a sampling rate Fs = 200 Hz using 
a wearable device mounted at the waist of the participant, having three motion sensors i.e., 
two accelerometers and one gyroscope. These motion sensor data contain noise, so a WMA 
is applied to remove noise. After noise removal, this data is classified into fall and not fall 
using a CNN. Figure 2 shows different features in the dataset. The definition of 'Fall' refers 
to the interval between 'Not Fall' status that changes to 'Lying' status. Regardless of whether 
the action taken is sitting or walking, this interval belongs to the 'Fall' class. Any status that 
does not fall into 'Fall,' belongs to the 'Not Fall' class. 
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Figure 2. Sample different features in dataset. 

4.2. Noise Removal  

. To ensure data quality, noise is removed from the dataset using a WMA technique. This 
dataset typically contains accelerometer and gyroscope data recorded during various activities, 
including falls. The relevant sensor data is extracted from the dataset. This usually includes 
three-axis accelerometer data and, optionally, gyroscope data. The sensor data is analyzed to 
understand the types of noise present. This can include sensor inaccuracies, environmental 
vibrations, and motion artifacts. The noise characteristics in the dataset, such as frequency, 

accelerometer accelerometer gyroscope 
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amplitude, and duration, are identified. Understanding these characteristics helps in designing 
an effective noise removal strategy. A suitable window size is chosen for the moving average 
filter. The window size determines the number of data points included in each calculation. 
The window size is 3, and each weighted average will be calculated based on the current value, 
one previous value, and one next value. A set of weights is designed to correspond to each 
data point within the window. Typically, weights decrease as the distance from the current 
point increases, giving more importance to recent data. Iterate over the sensor data, applying 
the moving average filter to each data point. This involves calculating the weighted average 
of the data points within the window for each timestamp. Update the sensor data with the 
filtered values, replacing the original noisy data. 

4.3. Classification  

Subsequently, the preprocessed data is classified into fall and not fall categories using a 
CNN model. Our CNN architecture is meticulously crafted to address the critical task of 
human fall classification. Drawing upon a blend of theoretical insights and iterative experi-
mentation, we meticulously design our model's convolutional, pooling, and fully connected 
layers. These layers are pivotal in extracting salient features from input data and performing 
accurate classification. The model undergoes compilation, employing the Adam optimizer 
with a learning rate of 0.01 and a batch size of 64 to enhance its performance and efficiency. 
Table 1 describes the proposed CNN model design. 

Table 1. CNN Model Design. 

Layer Parameter 

Convolutional layer Filters=512, kernel_size=2, activation='relu', input_shape=(shape,1) 

Average pooling layer Pool_size=2 

Convolutional layer Filters=256, kernel_size=2, activation='relu' 

Average pooling layer Pool_size=2 

Convolutional layer Filters=128, kernel_size=2, activation='relu' 

Average pooling layer Pool_size=2 

Convolutional layer Filters=64, kernel_size=2, activation='relu' 

Average pooling layer Pool_size=2 

Flattened layer None 

Dense layer Units=256 and activation=’relu’ 

Dropout layer 0.5 

Dense layer Units=1 and activation=’sigmoid’ 

 
The CNN model uses Keras, a high-level neural network API on TensorFlow. The ar-

chitecture of the model involves transforming the SisFall dataset into a 1-dimensional con-
volutional architecture. Since the dataset comprises non-numeric and numeric features, con-
verting them into a numeric matrix suitable for input into the CNN is essential. This conver-
sion is facilitated using techniques like one-hot encoding, which is particularly useful for han-
dling categorical features and avoids issues related to categorical conversion to integers. The 
CNN architecture consists of 512 kernels with a dimension of 1x2 and includes four convo-
lutional layers. An average pooling layer and a sigmoid activation function follow each con-
volutional layer. The pooling size is set to 2 for all pooling layers, except for the first one, 
which is set to 2. The sigmoid activation function is employed at the fully-connected layer of 
the network. 

5. Implementation and Discussion 

 In this system, the task involves classifying fall versus non-fall instances utilizing the 
SisFall dataset obtained from Kaggle. This dataset is specifically curated through the collec-
tion of motion sensor data. A WMA technique is employed to remove any existing noise to 
enhance the dataset's quality. Subsequently, the cleaned dataset is classified using CNN. The 
CNN model is developed and trained using Keras, which operates on the TensorFlow frame-
work. The dataset is divided into training and testing sets in a 75%-25% ratio to ensure a 
comprehensive evaluation. Specifically, 75% of the records are randomly selected for training, 
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while the remaining 25% are reserved for testing purposes. The performance of the proposed 
system is evaluated using key metrics such as accuracy, recall, f-measure, and precision. These 
metrics provide valuable insights into the system's effectiveness in accurately classifying fall 
and not-fall instances. 

Furthermore, comparative analysis is conducted to assess the performance of the pro-
posed model against alternative approaches. Figure 3 presents a comparative overview of the 
performance results obtained from the proposed model employing WMA and CNN and em-
ploying only CNN. Additionally, Figure 4 illustrates a graphical comparison of the accuracy 
achieved by the proposed model using these different methodologies. 

 

Figure 3. Performance Results 

 

Figure 4. System Accuracy 

6. Conclusions 

This paper proposes a fall classification method using wearable sensor data and a super-
vised learning approach based on a deep neural network. The proposed network has been 
devised by deriving a time series from wearable sensor data and feeding it to a deep CNN to 
learn multi-level features from wearable sensor time series data automatically. The results will 
demonstrate that the proposed fall classification method with accuracy, f-measure, precision, 
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and recall indicates the capacity to detect a fall better. According to the evaluation results, this 
proposed system achieves an accuracy of 96% with WMA+CNN and 76% with only CNN. 
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