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Abstract: This work explores the potential of PennyLane and variational quantum-classical 

algorithms (VQCA) to forecast lung cancer using a structured dataset. The VQCA model performs 

exceptionally well, with flawless training, validation, and test accuracies of 1.0, demonstrating its 

capacity to identify patterns in the dataset and provide reliable predictions successfully. Contrarily, 

the accuracy of the quantum neural network (QNN) and classical neural network (NN) models is 

lower, demonstrating the benefits of utilizing quantum computing methods for enhanced predictive 

modeling. We provide a complete examination of the data, stressing the better performance of the 

VQCA model and its promise in correctly predicting lung cancer. The results highlight the 

importance of quantum-classical algorithms and help us understand the benefits and drawbacks of 

various strategies for predicting lung cancer. The study highlights the potential applications of 

quantum computing techniques in advancing the field of healthcare analytics. It shows the capability 

of the VQCA model to predict lung cancer using a tabular dataset accurately. Further research in this 

area is needed to explore scalability and practical implementation aspects. In summary, this study 

showcases the potential of VQCA and PennyLane in predicting lung cancer and underscores the 

benefits of quantum computing techniques in healthcare analytics. 

Keywords: Classical algorithm; PennyLane; Quantum algorithm; Quantum computing; Quantum 

machine learning. 

 

1. Introduction 

Cancer has been a global health challenge; millions of cases are reported annually. 
Lung cancer, specifically, is the leading cause of cancer-related mortality worldwide, having 
reached approximately 18% of all cancer-related deaths[1]. Early detection of lung cancer 
can considerably increase survival rates, as timely interventions can slow down, if not 
completely eradicate, the progression of the disease. However, discovering the disease early 
on remains a formidable challenge due to the nonspecific symptoms and complexity. 

Machine Learning (ML), an aspect of artificial intelligence (AI), has revolutionized the 
healthcare industry by encouraging predictive models that can help diagnose diseases, 
optimize treatment plans, and improve patient outcomes[2]. Classical ML techniques, such 
as Support Vector Machines (SVM), Decision Trees, and Neural Networks (NN), have 
shown considerable promise in cancer detection and prediction. Despite these 
advancements, classical ML algorithms face monumental limitations in effectively handling 
complex datasets, particularly datasets with high-dimensional feature space. 

Quantum Computing (QC) is a novel field that leverages quantum mechanics 
principles, such as superposition, entanglement, and parallelism, to solve computationally 
hard problems more efficiently than conventional computers. Quantum Machine Learning 
(QML) combines QC with ML, offering the potential to outperform classical ML models in 
certain tasks, including healthcare prediction modeling[3]. Variational quantum-classical 
algorithms (VQCA) are hybrid frameworks that combine quantum circuits with classical 
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optimization techniques, making them viable for near-term quantum devices. These 
algorithms have shown promise in addressing problems in various domains, including 
healthcare. 

Recently, PennyLane, an open-source software platform, has enabled the integration of 
QML into practical applications by enabling the design, training, and optimization of 
quantum-classical models. Despite these advancements, research on applying VQCA for 
lung cancer prediction is sparse, with limited exploration of its potential to surpass classical 
methods in accuracy, capability, and scalability. 

This research intends to address this gap by utilizing VQCA, implemented with 
PennyLane, to predict lung cancer. By benchmarking the performance of VQCA against 
classical NNs and quantum NNs, this work seeks to evaluate its predictive capability and 
explore its potential as a transformative tool for early lung cancer detection. The findings 
could contribute to the growing knowledge of QML and its application in precision 
medicine, giving rise to enhanced diagnostic tools. 

1.1. Strides in Classical ML Approaches 

Machine learning (ML) is a subfield of artificial intelligence (AI) that focuses on 
developing algorithms and statistical models that enable computers to learn from and make 
predictions or decisions based on data without explicit programming. ML techniques are 
widely used across various fields because they can uncover patterns and insights from large 
datasets, leading to more accurate predictions and informed decision-making[4]. ML is 
crucial in natural language processing, computer vision, autonomous vehicles, and many 
other fields. ML also plays a crucial role in revolutionizing industries by automating tasks, 
optimizing processes, and extracting actionable insights from data, ultimately driving 
innovation and competitiveness. 

In healthcare, ML algorithms are used for disease diagnosis, prognosis prediction, drug 
discovery, and personalized treatment recommendation, improving patient outcomes and 
reducing healthcare costs [5]–[7]. In finance, ML algorithms are used for fraud detection, 
risk assessment, algorithmic trading, and customer relationship management [7], [8]. ML 
models are also used to analyze market trends, predict stock prices, detect fraud, and 
optimize trading strategies, helping financial institutions make data-driven decisions and 
manage risks more effectively[9].  

1.2. Current Challenges in Lung Cancer Prediction 

Lung cancer prediction faces numerous challenges, and existing methods have 
limitations that hinder their effectiveness. Some of the significant challenges and limitations 
include: 
1. Extensive, diversified, and high-quality datasets must be available to train precise 

prediction models. However, getting big, varied datasets for lung cancer prediction is 
still difficult, especially ones with enough clinical data and annotations. Models with 
little data may be biased or less generalized[10]. 

2. Extracting the most important information from complicated medical data might be 
difficult. High-dimensional and diverse data may be complex for conventional 
approaches, sometimes missing important patterns to make precise predictions. 
Furthermore, handly choosing features might be laborious and subjective [11]. 

3. It is difficult for doctors to comprehend the reasoning behind predictions in many ML 
models currently in use since they are not interpretable. In medical contexts, 
interpretable models are essential for fostering trust, validating findings, and providing 
context for the reasons behind generated predictions[12]. 

4. The disparity between positive and negative cases in lung cancer datasets may impact 
model performance. Predictions based on unbalanced data may be skewed, particularly 
in instances of uncommon diseases like lung cancer[13]. 

5. One major obstacle is the computational complexity of digesting large amounts of 
medical data and creating reliable prediction models. Current approaches may not be 
efficient enough to handle large-scale data in real-time clinical situations. 
Interdisciplinary research that combines improved data gathering and feature 

engineering approaches with cutting-edge ML techniques like deep learning and quantum-
enhanced algorithms is crucial to overcoming these obstacles. Collaboration among data 
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scientists, computer scientists, and physicians is also essential to addressing these issues and 
improving lung cancer prediction techniques. 

1.3. Reasons for Choosing VQCA 

VQCA are hybrid approaches that integrate QC with classical optimization techniques. 
The reason for adopting VQCA is its inherent ability to leverage the properties of quantum 
mechanics, such as superposition, entanglement, and interference, to solve complex ML 
problems while utilizing classical resources to mitigate the limitations of current noisy 
intermediate-scale quantum (NISQ) hardware. Specifically, VQCA provides feature 
representation and dimensionality reduction advantages for tasks like lung cancer 
prediction, allowing for efficient learning even with high-dimensional datasets. 

Additionally, related literature highlights that VQCA can outperform classical methods 
in accuracy when applied to specific problems due to its capacity to explore larger solution 
spaces and model complex correlations in data. For example, the work of[14] demonstrated 
the potential of variational circuits in QML applications. 

Table 1. Comparison of VQCA with Other Methods 

Models Advantages Disadvantages 

Classical NN 

• Well-established frameworks for ML 
tasks.  

• Perform well on large datasets with 
enough computational power. 

• Many libraries and tools (e.g., 
TensorFlow, PyTorch). 

• Limited scalability for high-
dimensional datasets. 

• Computational cost increases with 
data complexity 

Quantum NN 

• Fully quantum-based approach, 
capable of exploiting quantum 

mechanics to solve certain classes of 
problems 

• Potential to handle high-dimensional 
datasets more efficiently than classical 

NNs 

• Dependent on fault-tolerant quantum 
hardware, which is not yet fully 

developed. 

• Lower stability and capability on 
current NISQ devices compared to 

VQCA 

Support Vector 
Machines 
(SVMs) 

• Strong performance on small- to 
medium-sized datasets. 

• Works well for linearly separable data 
with clear class boundaries. 

• Struggles with scalability for large 
datasets. 

• Limited effectiveness on highly non-
linear problems without complex 

kernel tuning 

VQCA (Selected 
Method) 

• Utilizes quantum circuits for feature 
encoding and optimization, capable of 

representing complex patterns. 

• Effective for problems where classical 
models struggle. 

• Suitable for deployment on NISQ 
devices due to its hybrid quantum-

classical nature. 

• Still limited by current quantum 
hardware capabilities (e.g., number of 

qubits, noise). 

• Needs careful tuning of variational 
parameters to get optimal 

performance. 

1.4. Emerging VQCA Selection Hypothesis 

From the comparative analysis, VQCA emerges as a strong candidate for the lung 
cancer prediction task due to its hybrid design, which balances the strengths of both 
quantum and classical computing. Unlike classical NNs, it can exploit quantum-enhanced 
feature spaces, and unlike QNNs, it can operate efficiently on NISQ devices. While it shares 
some limitations with other methods, such as sensitivity to dataset quality and hardware 
constraints, its superior performance on high-dimensional, complex datasets and 
adaptability to noisy quantum environments make it the optimal choice for this application. 
The research questions addressed in this study include: 
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1. Based on the structured datasets used, what is the predictive power of the Variational 
Quantum-Classical Algorithm (VQCA) regarding lung cancer incidence, progression, 
or prognosis? 

2. Compared to traditional ML algorithms used in medical diagnostics, can the VQCA 
and PennyLane detect lung cancer with greater accuracy, sensitivity, and specificity? 

3. What are the drawbacks and difficulties in using quantum-inspired algorithms, such as 
VQCA, for predicting lung cancer, and how might these drawbacks be overcome to 
enhance model performance? 
 
The rest of the study is structured as follows: the literature part summarizes the 

important contributions and findings from relevant research publications to provide context 
on the advancements, problems, and potential future directions on VQCA and lung cancer 
prediction. The method section explains the approach utilized to achieve the task. The 
results were also clearly presented, followed by a discussion section, and a concise 
conclusion was offered. 

2. Literature Review 

Utilizing PennyLane alongside variational quantum-classical algorithms to detect lung 
cancer by integrating quantum computing with traditional ML techniques represents a 
rapidly evolving domain [15]. This section reviews key contributions and insights from 
notable research to highlight progress, challenges, and potential future opportunities within 
this fascinating area. 

QC has now been extended to practical applications like ML. Compared to 
conventional methods, QML approaches demonstrate enhanced performance, sparking 
interest in developing algorithms that leverage quantum principles for improved outcomes. 
While quantum computers are still nascent, with limitations arising from hardware 
constraints and other challenges, it is important to recognize that all advanced technologies 
start as proofs of concept. There is potential for quantum computers—and QML—to 
become mainstream [16]. 

As outlined by [17], the core objective of QML is to explore and evaluate the potential 
benefits of quantum computation over traditional ML approaches. Quantum algorithms, 
like classical ones, are instructions designed to solve specific problems but utilize quantum 
mechanics to achieve speedups and unique advantages. These algorithms are executed using 
quantum circuits. A VQCA exemplifies hybrid methods that merge quantum and classical 
algorithms to form Variational Quantum Classifier (VQC) circuits[18], [19]. The concept of 
Quantum Speedup is formally expressed in Equation (1). 

𝑇(𝑞)  <  𝑇(𝑐) (1) 

Where 𝑇(𝑞)  = execution time of a quantum algorithm and 𝑇(𝑐) = execution time of a 
classical algorithm for the same computational task. The inequality indicates that the 
quantum algorithm can solve the problem faster than its classical counterpart in principle. 

The concept of a VQC circuit can be expressed using the Equation (2) 

|𝛹(𝜃)⟩  > =  𝑈(𝜃)|𝜓0⟩ (1) 

Where |𝛹(𝜃)⟩ represents the state of the quantum circuit with parameters 𝜃, 𝑈(𝜃) denotes 
the unitary transformation determined by the parameters, and |𝜓0⟩ represents the initial 
state of the qubits. 

VQCAs can be applied in diverse scenarios to tackle complex ML challenges. These 
algorithms can be adapted to manage large datasets and multidimensional feature spaces 
effectively. For instance, [20] proposed a training strategy for VQCAs tailored to quantum-
classical hybrid learning, showcasing their ability to handle high-dimensional datasets with 
numerous features. Similarly,[21] introduced a VQCA-based method for learning graphical 
models with arbitrary pairwise connections, demonstrating its scalability for extensive, high-
dimensional datasets. Furthermore, reference [22] reviewed recent advancements in QML, 
highlighting the utility of VQCAs in managing large-scale datasets with intricate feature 
spaces. 

In a related study, [23] looked into using SVM with hyperparameter tuning to increase 
the efficacy of lung cancer classification performance. They found that non-linear problems 
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may be handled more effectively when Radial Basis Function (RBF) kernels are used in 
SVM. Research [24] examined a quantum support vector machine (QSVM) classification 
model, which promises an exponential speedup over its conventional counterparts. In this 
study, the classification problem of a diagnosis of malignant breast cancer is resolved using 
the quantum SVM model. To highlight the superiority of quantum SVM over its traditional 
variants, this paper examines several SVM algorithms' time complexity and performances 
on common evaluation metrics, such as accuracy, precision, recall, and F1-score, showing 
the superiority of quantum SVM over its conventional counterpart. 

Numerous deep-learning models have been developed for medical image analysis, 
particularly for classifying pulmonary nodules[25]. This study highlights the optimization of 
pulmonary nodule categorization using Convolutional Neural Networks (CNN) enhanced 
by an evolutionary approach. Genetic algorithms (GAs) are proposed for designing CNN 
architectures and fine-tuning their hyperparameters. The results indicate that GAs offer 
effective solutions to diagnostic challenges, with the potential for fully automated processes 
in the future to refine CNN architectures for diverse clinical applications.  

Careful consideration of feature selection is essential for creating robust prediction 
models [26]. For instance, [27] employed radiomic features extracted from the lung region 
containing the nodule. The study examined the association between image phenotypes and 
EGFR mutation status. Using various linear, non-linear, and ensemble classification models, 
the research demonstrated that an approach encompassing a region of interest (ROI) 
covering the lung and nodule could effectively capture relevant data and predict EGFR 
mutation status with improved accuracy. 

Despite the potential of VQCAs to enhance lung cancer prediction, challenges related 
to scalability and interpretability remain[28]. The authors introduced a hybrid approach that 
integrates genetic algorithm-driven automated generation and training of quantum-inspired 
classifiers for grayscale images. Principal component analysis (PCA) was embedded within 
the optimization process as one of the dimensionality reduction methods to minimize image 
size effectively, resulting in efficient solutions. 

To overcome issues with circuit depth,[29] proposed a novel variational quantum 
circuit designed for implementation on current NISQ platforms. This design incorporates 
iterative parameter optimization on classical systems. Unlike conventional neural networks, 
this study uses a quantum-based information encoding strategy to explore variational 
quantum circuits for deep reinforcement learning.  

In particular, quantum-inspired evolutionary algorithms (QIEAs) were studied by [30]. 
The authors suggested a novel technique to handle the neural architecture search (NAS) 
problem, including attempts to lower the high computing cost of such methods, motivated 
by the faster convergence encouraged by quantum-inspired evolutionary methods. With 
expert knowledge, the search space was minimized by focusing on cells rather than 
complete networks to increase productivity. The outcomes demonstrate that Q-NAS can 
automatically produce network designs outperforming hand-made models. In particular, Q-
NAS findings are encouraging regarding the balance between performance, runtime 
capability, and automation compared to other NAS approaches.  

To address the problem of interpretability in quantum-classical models, ref [31] 
suggested a quantum neural network (QNN) composed of fermion models, with the local 
density of states and conditional conductance acting as outputs. They also went on to 
construct an effective optimization akin to back-propagation. Along with competitive 
accuracy on difficult traditional machine-learning criteria, their fermion QNN efficiently 
and directly executes ML on quantum systems. The approach demonstrated increased 
interpretability without lowering prediction accuracy. 

According to [32], there are various architecture classes in ML from which to choose. 
Some of the most commonly used architectures are neural networks, CNN for image 
processing, and graph neural networks for graphically structured data. QML contributes to 
this list by introducing quantum models such as QNN. 

QC shares similarities with kernel methods in ML, as both enable efficient 
computations within exceptionally large Hilbert spaces[33]. While the binary digit (bit) 
represents the basic unit of classical information, the qubit serves as its counterpart in 
quantum information. The theoretical guarantees of VQCAs depend on the specific 
problem, assumptions about the data, and the chosen model. However, these guarantees are 
less developed than traditional ML algorithms, as VQCAs are still in the exploratory phase.  
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VQCAs, hybrid algorithms combining classical and quantum elements, were detailed in 
Quantum Circuit Learning (QCL) by [34]. Unlike classical processes that iteratively refine 
results to minimize errors, VQC behavior is guided by quantum circuits and parameter-
dependent output functions. Classical optimization techniques, such as gradient descent, are 
used to identify local minima in these systems. 

Developing quantum algorithms capable of delivering quantum speedup—solving 
problems faster than classical algorithms—is a critical area of VQCA research. Most efforts 
thus far have focused on specific problem types, including unstructured search, database 
queries, and factoring. Notable examples benefiting from quantum speedup include the 
Maximum Independent Set (MIS) and Quadratic Unconstrained Binary Optimization 
(QUBO) problems, supported by recent VQCA advancements [35], [36]. 

Despite the absence of firm theoretical guarantees, evidence suggests that VQCAs can 
occasionally outperform traditional ML techniques for prediction tasks. For instance, a 
study [37] introduced a framework for evaluating VQCA performance in supervised 
learning. It demonstrated that VQCAs can surpass classical methods in certain problem 
domains. However, this analysis relied on assumptions that are currently unrealistic, such as 
error-free quantum computers and perfect optimization. 

2.1. Comparative Analysis of QML and CML 

QML combines QC and ML to exploit the unique properties of quantum mechanics, 
such as superposition and entanglement, to enhance computational tasks. Classical Machine 
Learning (CML) relies on classical computational resources and traditional algorithms to 
analyze and interpret data. This comparative study will provide detailed explanations and 
theoretical analysis of QML and CML techniques, highlighting their differences, strengths, 
and potential applications[38]. 

2.1.1. Classical Machine Learning (CML) 

Lung cancer prediction faces numerous challenges, and existing methods have 
limitations that hinder their effectiveness. Some of the significant challenges and limitations 
include: CML involves the development of algorithms that allow computers to learn 
patterns from data. Common CML techniques include supervised, unsupervised, 
reinforcement, and deep learning[39]. According to [40], the Key Techniques in CML are: 
1. Supervised Learning: Algorithms include Linear Regression, Support Vector Machines 

(SVM), Decision Trees, Random Forests, and Neural Networks. Supervised learning 
finds applications in Image classification, speech recognition, and medical diagnosis. 

2. Unsupervised Learning: Algorithms in unsupervised learning include K-means 
clustering, Principal Component Analysis (PCA), and Autoencoders. Applications 
areas are customer segmentation, anomaly detection, and feature extraction. 

3. Reinforcement Learning: Q-learning, Deep Q-Networks (DQN), and Policy Gradients 
are popular algorithms in reinforcement learning. The areas of application are game 
playing, robotic control, and recommendation systems. 

4. Deep Learning: Techniques in deep learning are CNN, Recurrent Neural Networks 
(RNN), and Generative Adversarial Networks (GAN). Natural language processing, 
computer vision, and autonomous driving apply deep learning techniques [41]. 

2.1.2. Quantum Machine Learning (QML) 

QML leverages quantum computers to perform ML tasks more efficiently than 
classical computers by using quantum parallelism and entanglement[42]. Research [3] 
explained key techniques in QML: 
1. Quantum-enhanced Supervised Learning: Algorithms in quantum-enhanced supervised 

learning include QSVM and QNN. The application areas include quantum state 
classification and quantum chemistry[43]. 

2. Quantum Unsupervised Learning: The algorithms used are Quantum Clustering and 
Quantum Principal Component Analysis (QPCA), and their applications span the areas 
of data compression and quantum data analysis. 

3. Quantum Reinforcement Learning: Quantum Q-learning and Quantum Policy 
Gradients are algorithms used in quantum reinforcement learning. The areas of 
application are quantum control and quantum communication. 
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4. Hybrid Quantum-Classical Algorithms: Techniques include Variational Quantum 
Eigensolver (VQE), and Quantum Approximate Optimization Algorithm (QAOA). 
The application areas are optimization problems and material science. 

Table 2. Comparison of CML and QML 

Aspects CML QML 

Performance 

Due to more mature algorithms 
and infrastructure, CML 

outperforms QML in terms of 
practical applications and 

reliability. 

QML has the potential for 
significant speedup over CML 

for specific problems, especially 
in high-dimensional data spaces 
and complex optimization tasks. 

Scalability and Practicality 
Highly scalable with the 

availability of large datasets and 
powerful classical hardware. 

Limited by current quantum 
hardware constraints but holds 

promise for future advancements. 

Accuracy and Precision 
Can achieve high accuracy in 

prediction tasks 
Precision may be affected by 

quantum noise and decoherence. 

Computational Complexity 

Polynomial or exponential time 
complexity often limits classical 
algorithms, especially for high-

dimensional data or 
combinatorial problems. 

Quantum algorithms have the 
potential to offer exponential 

speedups for specific problems, 
such as factoring large integers 
(Shor, 1994) and unstructured 

search (Grover, 1996). 

Data Handling 
Efficiently handles large datasets 
but can be limited by the curse of 

dimensionality. 

The ability to encode large 
amounts of data into quantum 

states and perform parallel 
computations can potentially 

overcome some classical 
limitations. 

Future Directions 

Continued development of 
quantum hardware and error-

correction techniques is crucial 
for realizing the full potential of 

QML. 

Hybrid quantum-classical 
algorithms offer a practical 

approach to leverage quantum 
advantages while using classical 

resources for optimization. 

 

2.2.2. Variational Quantum-Classical Model Based on PQC 

A variational quantum-classical model leveraging a Parameterized Quantum Circuit 
(PQC) [44] is depicted in Figure 1. Within this framework, pre-processed data points are 
encoded into the parameters of an encoder circuit 𝑈𝜑(𝑥), while the variational circuit 𝑈𝜃 
carries out the model's primary operations. The process continues with the calculation of 

expectation values {(𝑀𝐾) 𝑥, 𝜃}𝑘=1
𝑘  derived from measurements, and a post-processing 

function 𝑓 is applied to these values to yield the final output. 

 

Figure 1. Schematic of a Variational Quantum-Classical Algorithm. 

Pre-processing 
PQC 

Post-Processing 
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Current efforts focus on building a robust theoretical basis for VQCAs in prediction 
tasks. Promising advancements have demonstrated quantum speedups in specific problem 
classes, though the theoretical assurances for VQCAs outperforming classical algorithms are 
still not as well-established as those for conventional ML techniques.. 

In summary, the research on variational quantum-classical algorithms employing 
PennyLane to forecast lung cancer shows the potential of quantum computing to improve 
cancer detection and treatment. It has been shown that the capability of model 
optimization, feature selection, and prediction accuracy may be increased by integrating 
quantum and classical processing techniques. Despite persisting challenges like scalability 
and interpretability, the research shows the growing promise of quantum computing in lung 
cancer prediction. PennyLane was chosen because of its smooth interface with ML 
frameworks, automated differentiation, and device-agnostic nature. These make it perfect 
for hybrid quantum-classical workflows and QML. PennyLane provides simplified support 
for hybrid ML applications, whereas Qiskit and Cirq are more appropriate for research on 
quantum algorithms and particular hardware environments. 

The model involves an iterative interaction between quantum and classical 
components, wherein the classical optimizer guides the quantum calculations to get the 
intended task optimization or prediction. The model's quantum component comprises 
circuits that simulate calculations performed on a quantum processor or simulator. These 
circuits utilize quantum gates to manipulate qubits and perform transformations or 
calculations. A classical computer or optimizer communicating with the quantum circuit 
often makes up the classical portion. It aims to maximize or minimize a specific objective 
function by optimizing the quantum circuit's parameters. 

The classical optimizer modifies the parameters of the quantum circuit iteratively. This 
iterative optimization is guided by the feedback from the classical computer, which 
evaluates the output of the quantum computations. The goal is to minimize the cost 
function, representing the model's performance or loss. The interaction between the 
quantum and classical components occurs through a feedback loop. Working together, the 
quantum and classical components exploit each other's strengths. The classical portion 
optimizes the quantum circuit's parameters based on the classical evaluation of quantum 
calculations. By utilizing a hybrid approach, our VQCA could leverage quantum computing 
capability and reap the benefits of traditional optimization techniques. 

3. Research Method 

This study used the VQCA implemented using PennyLane to predict lung cancer. The 
detailed steps of the methodology are outlined below to ensure reproducibility. 

3.1. Problem Formulation 

The core objective of this study was to design a model capable of classifying lung 
cancer patients based on certain features (clinical and behavioral). The problem was 
formulated as a supervised learning classification task using VQCA, to arrive at a precise 
prediction based on patient features. 

3.2. Data Preparation 

The dataset was sourced from Kaggle and contains patient records with various 
features relevant to lung cancer diagnosis. The steps involved in the data preparation are as 
follows: 
1. Data Cleaning: Any incomplete or inconsistent data points were removed or at best, 

corrected. For instance, missing values in critical features such as smoking years or 
family history are imputed using mean or mode. 

2. Feature Selection: Features deemed irrelevant to the classification task, such as 
“Name” and “Member ID,” were dropped. The features that were retained include 
Diagnosis (target variable: cancer diagnosis), Age, Smokes (binary: yes/no), Smoking 
years, Smoking packs/year, AreaQ (environmental factor index), Alcohol 
consumption, Family history of cancer, Result (binary: cancer/no cancer). 

3. Normalization: Continuous features (e.g., age, smoking years) were normalized to a 
range of [0, 1] using MinMax scaling to ensure compatibility with the quantum circuit's 
input. 
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4. Dataset Splitting: The dataset was split into three subsets: Training set (70%): Used to 
optimize the model parameters. Validation set (15%): Used to tune hyperparameters 
and prevent overfitting. Test set (15%): Used for final performance evaluation. 

3.3. Creation of the Parameterized Quantum Circuit (PQC) 

Design of a PQC using QNode interface in PennyLane. Below is the implementation: 
1. Quantum Circuit Design: the use of Hadamard gates to create superposition, 

parameterized rotation gates (e.g., RX, RY, RZ) for feature encoding. 
2. Number of Qubits: The number of qubits corresponds to the number of selected 

features. we have 8 features  
3. Variational Layers: Addition of trainable parameters using variational layers. These 

layers include parameterized gates (e.g., RX, RY, RZ) and entangling gates (e.g., 
CNOT). These parameters are optimized during the training process. 
A PQC was designed using the QNode interface in PennyLane, where features are 

encoded into qubits, and the expectation value of the Pauli-Z operator is measured (see 
Figure 2). The circuit was successfully executed and visualized: 

[tensor(-0.36584457, requires_grad=True), tensor(0.29773558, requires_grad=True), tensor(-0.19899281, 
requires_grad=True), tensor(0.11213936, requires_grad=True), tensor(-0.01742494, requires_grad=True), 
tensor(0.00270718, requires_grad=True), tensor(-0.00015715, requires_grad=True), tensor(0.00011973, 
requires_grad=True)] 

These values represent the Pauli-Z expectation for each qubit after executing the PQC, 
highlighting the feature encoding and variational layers (see Figure 3).  

 

Figure 2. PQC plot using PennyLane 

 

Figure 3. Expectation values for the Pauli-Z operator on each qubit 
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The circuit consists of multiple quantum gates (e.g., Hadamard gates for superposition 
and parameterized rotation gates for feature encoding). The number of qubits in the circuit 
corresponds to the number of selected features (in this case, eight features requiring eight 
qubits). Variational layers were added to introduce trainable parameters into the circuit. 
These parameters were optimized during the training process. 
• Input Encoding: Features were encoded into the quantum states of the circuit using 

amplitude encoding. 
• Measurement: The quantum circuit outputs were measured using the Pauli-Z basis, and 

the measurement results were interpreted as probability distributions over the classes. 

3.4. Cost Function Definition 

A cost function was defined to quantify the discrepancy between the predicted class 
probabilities and the true labels in the training data. For this task, we used the binary cross-
entropy loss function: 

3.5. Classical Optimization 

The Adam Optimizer (learning rate = 0.005), a gradient-based optimization algorithm, 
optimized the quantum circuit parameters. Gradients were computed using PennyLane’s 
automatic differentiation tools, which utilize the parameter-shift rule for quantum circuits. 

3.6. Training and Evaluation 

The VQCA model was trained as follows: 
• Training Phase: During each epoch, the quantum circuit was executed, predictions 

were generated, gradients were calculated, and the parameters were updated. This 
process was repeated until the cost function converged. 

• Evaluation Phase: The model's performance was evaluated on the validation and test 
sets using accuracy, precision, recall, and F1 score metrics. 

3.7. Model Evaluation 

The trained VQCA model was tested on unseen data from the test set. Performance 
metrics calculated included: 
• Accuracy: Fraction of correctly classified instances. 
• Precision: Proportion of true positives among predicted positives. 
• Recall (Sensitivity): Proportion of true positives among actual positives. 
• F1 Score: Harmonic mean of precision and recall. 

4. Results and Discussion 

This section summarizes the results of evaluating the VQCA against QNN and 
classical NN. Several stages are carried out, such as data handling, model training, and 
evaluation. The following are the details of each stage carried out in this section. 

4.1 Data Collection 

The dataset was culled from Kaggle with the URL 
https://www.kaggle.com/datasets/yusufdede/lung-cancer-dataset. It comprises both 
numerical and categorical types. It has 1298 instances and 11 features. The data was loaded 
using Pandas, which has some functions, including read_csv, a function that is used to load 
.csv files. Figure 4 shows the raw dataset. The dataset is relatively balanced, with 682 
instances of No Cancer (0) and 616 instances of Cancer (1). The bar plot in Figure 5 
illustrates this dataset distribution.  

4.2. Data Preparation 

Data preparation began by importing PennyLane, NumPy, and TensorFlow and setting 
some seeds for the packages to ensure our results were reproducible. The dataset is a 
classical input. The data is first encoded into a quantum state. Data cleaning and 
transformation were performed by dropping features that do not significantly contribute to 

https://www.kaggle.com/datasets/yusufdede/lung-cancer-dataset
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the model's training, including scaling the input data. The output is then fed into a feature 
map. Figure 6 shows the sample dataset after Preparation. 

 

Figure 4. Sample of collected dataset from Kaggle showing the features 

 

Figure 5. Distribution of dataset Lung Cancer. 

 

Figure 6. Sample dataset after Preparation 

4.3. Data processing 

The processing stage consists of applying circuit transformations that depend on 
optimizable parameters. The data is split into training, validation, and test datasets. The 
variables in the dataset are not normalized and are non-zero. We normalized the training 
data between 0 and 1 using MaxAbsScaler to use them with any of our feature maps. The 
dataset has 11 variables, which can be a large number for current quantum hardware. Since 
we do not have access to quantum computers with large qubits values. We used the 
dimensionality reduction technique to shrink the number of variables to 4 and then set up 
the algorithm with a feature map that took the resulting 4 input variables.  

4.4. Model Training and Validation 

The models were trained with early stopping on the validation loss according to some 
defined criteria. These are validation loss or error and validation accuracy to help prevent 
the model from overfitting and save computational resources by terminating the training 
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process when the model's generalization performance no longer improves. When this 
instruction was executed on an interactive shell, we got the output shown in Figure 7, when 
the training and validation losses were plotted in Figure 8. 

 

Figure 7. Training the model by running 50 epochs 

 

Figure 8. Evolution of the training and validation loss functions in the training 

4.5 Evaluation of Training, Validation, and Test 

The training, validation, and test accuracies of VQCA, QNN, and classical NN were 
computed and summarized in the result and discussion section below. The result of this 
work is outlined below. Table 3 shows the accuracies of the algorithms used. 

Table 3. Comparison results of the accuracies of the algorithms used. 

Model Train Validation Test 

VQCA 1.00 1.00 1.00 

Quantum NN 0.60 0.58 0.59 

Classical NN 0.53 0.45 0.52 

 
The Receiver Operating Characteristic (ROC) curve for VQCA, QNN, and classical 

NN is shown in Figures 9, 10, and 11, respectively. 
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Figure 9. ROC curve (solid line) for the trained VQCA. 

  

Figure 10. ROC curve (solid line) for the trained QNN. 

 

Figure 11. ROC curve (solid line) for the trained classical NN. 
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The performance evaluation results for the VQCA, QNN, and classical NN for lung 
cancer prediction models are presented in Table 4 below:  

Table 4. Summary of the evaluation metrics for both classes 0 and 1 

 Models Classes Precision Recall F1-Score 

VQCA 
Class 0 1.00 1.00 1.00 

Class 1 1.00 1.00 1.00 

QNN 
Class 0 0.61 0.80 0.69 

Class 1 0.55 0.32 0,40 

Classical NN 
Class 0 0.46 1.00 0.63 

Class 1 0.00 0.00 0.00 

4.6.  Discussion 

VQCA's performance evaluation for predicting lung cancer produced encouraging 
findings. The training, validation, and test accuracies of the VQCA model all met or 
exceeded expectations, demonstrating its excellent accuracy. Comparatively, the accuracy of 
the QNN and traditional NN models was lower. These results suggest that the VQCA 
model can efficiently learn the fundamental properties and patterns of the dataset, 
producing precise predictions. The value of utilizing quantum computing techniques for 
enhanced predictive modeling in the context of lung cancer is highlighted by the VQCA 
model's greater performance. 

The results explain how VQCA and NN predict lung cancer using a structured dataset. 
All evaluation metrics were remarkably accurate for the VQCA model, with training, 
validation, and test accuracies all hitting 1.0. This shows that the VQCA model efficiently 
learns the fundamental patterns and properties of the dataset, resulting in extremely accurate 
predictions. In contrast, the QNN displayed lower accuracies, with train, validation, and test 
accuracies of 0.60, 0.58, and 0.59, respectively. The train, validation, and test accuracies for 
the traditional NN were 0.53, 0.45, and 0.52, respectively. 

Variational quantum-classical algorithms have a lot of potential for predictive modeling 
jobs, as evidenced by the VQCA model's higher performance when compared to the QNN 
and NN models. The VQCA model uses a hybridization of classical and quantum 
computing elements, maximizing the potential of quantum computing to improve learning. 
The VQCA model's high accuracies show that it can accurately capture the intricate 
relationships found in the structured dataset and make predictions. These findings imply 
that the VQCA model has the potential to be an effective tool for predicting lung cancer 
using structured characteristics. 

On the other hand, several reasons exist for the lower accuracies in the QNN and NN 
models. The complexity of the dataset may make it difficult for traditional neural networks 
to accurately represent non-linear relationships between the input features and the target 
variable. Neural networks rely on learning these non-linear patterns by adjusting weights 
and biases, and they may struggle when faced with highly intricate datasets. Secondly, the 
QNN model, despite its quantum elements, may not have been able to leverage the 
quantum properties to improve the prediction performance effectively. The constraints of 
contemporary quantum technology and the unique design of the QNN model may have 
hampered its overall accuracy. 

These results underline how important it is for predictive modeling tasks to consider 
both the dataset's properties and the algorithmic strategy. While the VQCA model shows 
higher performance, it is crucial to highlight that the computing requirements for 
implementing variational quantum-classical algorithms might be demanding. The successful 
implementation of the VQCA model requires access to quantum hardware or simulators 
and knowledge of quantum computing principles. Therefore, practical considerations, such 
as the availability of quantum resources and the model's scalability, should be considered 
when considering the adoption of VQCA in real-world applications. 

The findings of this investigation have implications for lung cancer prognosis and add 
to the ongoing investigation of quantum computing in ML, artificial intelligence, and 
medicine. The VQCA model's excellent accuracy can potentially enhance lung cancer 
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patient prognosis prediction and early diagnosis. Using quantum computing methods for 
predictive modelling jobs offers new directions for analysis-related research and innovation. 

Future research in this area may introduce additional quantum-inspired algorithms for 
a more in-depth examination of lung cancer images, such as quantum-inspired neural 
networks or quantum-inspired clustering techniques. The development of quantum 
computing technology into useful applications might benefit from collaborations with 
healthcare practitioners to assess the efficacy of quantum-assisted techniques in clinical 
contexts. 

4.7 Summary of Research Findings 

The summary of the findings in this research is presented below: 
1. VQCA model achieves incredibly flawless accuracy, capable of capturing intricate 

patterns and correlations in the dataset 
2. The model produces a flawless ranking of the positive and negative samples, according 

to the AUC value of 1.0. The model's capacity to discriminate between the classes 
based on the probability estimates is constrained, given that the ROC AUC score is 
just 0.52. 

3. The results demonstrate the potential of quantum-classical algorithms for enhancing 
predictive modeling tasks. 

4. The QNN model exhibits a reasonable level of performance and accuracy. AUC value 
of 0.38 shows a comparatively poor ranking of the positive and negative samples, 
whereas a ROC AUC score of 0.52 reveals weak discriminative capability in 
differentiating between the classes. 

5. NN model performs the worst out of the three, with very low accuracy, demonstrating 
a substantially poorer predictive capability. 

6. AUC score of 0.5 reflects a random ranking of the positive and negative samples and 
ROC AUC score of 0.52 indicates weak discriminating capacity. 

5. Conclusions 

This work studied the application of VQCA using the PennyLane Simulator in the 
prediction of lung cancer. The findings indicate the ability of VQCA models to predict lung 
cancer successfully based on a structured dataset. The VQCA model performed admirably, 
obtaining 100% accuracy in every assessment parameter. This shows that the model can 
successfully pick up on the underlying patterns and properties of the dataset, producing 
exact predictions. 

The VQCA model used the power of quantum computing principles to enhance its 
predictive capabilities, highlighting the advantage of hybrid quantum-classical approaches in 
healthcare analytics and predictive modeling tasks. The comparison with QNN and classical 
NN models revealed the superiority of VQCA in predictive performance. The results 
underline the potential of variational quantum-classical algorithms and PennyLane in 
improving lung cancer prediction accuracy and add to the growing body of research on the 
intersection of quantum computing and healthcare. These models can potentially 
revolutionize disease prediction and diagnosis by leveraging the strengths of quantum 
computing and integrating them with classical ML techniques. 

However, it is important to consider the practical implementation challenges associated 
with VQCA models, including the availability and scalability of quantum resources. Further 
research is needed to address these challenges and explore the generalizability of VQCA 
models to larger and more diverse datasets. The findings of this study support the use of 
variational quantum-classical algorithms and PennyLane as promising approaches for 
accurate lung cancer prediction. By leveraging the power of quantum computing, these 
models offer new opportunities for improving healthcare analytics and advancing our 
understanding of complex diseases. Future research should examine the possibilities of 
quantum-classical algorithms using complex image datasets in real-world healthcare 
applications and study their scalability, robustness, and viability for incorporation into 
clinical practice. 

 
 
 



Journal of Computing Theories and Applications 2025 (February), vol. 2, no. 3, Adebayo, et al. 322 
 

 

Author Contributions 

Conceptualization: Philip Adebayo and Frederick Basaky; methodology: Edgar Osaghae; 
software: Philip Adebayo; validation: Philip Adebayo, Frederick Basaky and Edgar Osaghae; 
formal analysis: Edgar Osaghae; investigation: Frederick Basaky; resources: Edgar Osaghae; 
writing—original draft preparation: Philip Adebayo; writing—review and editing: Philip 
Adebayo; visualization: Frederick Basaky; supervision: Frederick Basaky and Edgar 
Osaghae; project administration: Frederick Basaky.  

Funding: This research received no external funding 

Acknowledgments: Our gratitude goes to the following people: Uche Nnamani for his 
financial assistance, Dr Victoria Yemi-Peters for her moral support and Folashade Auru for 
her ceaseless encouragement. 

Conflicts of Interest: The authors declare no conflict of interest 

References 

[1] H. Sung et al., “Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 
185 Countries,” CA. Cancer J. Clin., vol. 71, no. 3, pp. 209–249, May 2021, doi: 10.3322/caac.21660. 

[2] A. Esteva et al., “A guide to deep learning in healthcare,” Nat. Med., vol. 25, no. 1, pp. 24–29, Jan. 2019, doi: 10.1038/s41591-018-
0316-z. 

[3] J. Biamonte, P. Wittek, N. Pancotti, P. Rebentrost, N. Wiebe, and S. Lloyd, “Quantum machine learning,” Nature, vol. 549, no. 
7671, pp. 195–202, Sep. 2017, doi: 10.1038/nature23474. 

[4] A. Ara, M. A. A. Maraj, M. A. Rahman, and M. H. Bari, “The Impact of Machine Learning on Prescriptive Analytics for 
Optimized Business Decision-Making,” Glob. Mainstream J., vol. 1, no. 1, pp. 7–18, Apr. 2024, doi: 10.62304/ijmisds.v1i1.112. 

[5] Z. Obermeyer and E. J. Emanuel, “Predicting the Future — Big Data, Machine Learning, and Clinical Medicine,” N. Engl. J. Med., 
vol. 375, no. 13, pp. 1216–1219, Sep. 2016, doi: 10.1056/NEJMp1606181. 

[6] A. Esteva et al., “Dermatologist-level classification of skin cancer with deep neural networks,” Nature, vol. 542, no. 7639, pp. 115–
118, Feb. 2017, doi: 10.1038/nature21056. 

[7] A. Pumsirirat and L. Yan, “Credit Card Fraud Detection using Deep Learning based on Auto-Encoder and Restricted Boltzmann 
Machine,” Int. J. Adv. Comput. Sci. Appl., vol. 9, no. 1, 2018, doi: 10.14569/IJACSA.2018.090103. 

[8] D. R. I. M. Setiadi, A. R. Muslikh, S. W. Iriananda, W. Warto, J. Gondohanindijo, and A. A. Ojugo, “Outlier Detection Using 
Gaussian Mixture Model Clustering to Optimize XGBoost for Credit Approval Prediction,” J. Comput. Theor. Appl., vol. 2, no. 2, 
pp. 244–255, Nov. 2024, doi: 10.62411/jcta.11638. 

[9] W. Lakhchini, R. Wahabi, and M. El Kabbouri, “Artificial Intelligence & Machine Learning in Finance: A literature review,” Int. J. 
Accounting, Financ. Audit. Manag. Econ., vol. 3, no. 6–1, pp. 437–455, 2022, doi: 10.5281/zenodo.7454232. 

[10] M. A. Thanoon, M. A. Zulkifley, M. A. A. Mohd Zainuri, and S. R. Abdani, “A Review of Deep Learning Techniques for Lung 
Cancer Screening and Diagnosis Based on CT Images,” Diagnostics, vol. 13, no. 16, p. 2617, Aug. 2023, doi: 
10.3390/diagnostics13162617. 

[11] A. Hosny, C. Parmar, J. Quackenbush, L. H. Schwartz, and H. J. W. L. Aerts, “Artificial intelligence in radiology,” Nat. Rev. 
Cancer, vol. 18, no. 8, pp. 500–510, Aug. 2018, doi: 10.1038/s41568-018-0016-5. 

[12] D. Ardila et al., “End-to-end lung cancer screening with three-dimensional deep learning on low-dose chest computed 
tomography,” Nat. Med., vol. 25, no. 6, pp. 954–961, Jun. 2019, doi: 10.1038/s41591-019-0447-x. 

[13] M. T. Lu, V. K. Raghu, T. Mayrhofer, H. J. W. L. Aerts, and U. Hoffmann, “Deep Learning Using Chest Radiographs to Identify 
High-Risk Smokers for Lung Cancer Screening Computed Tomography: Development and Validation of a Prediction Model,” 
Ann. Intern. Med., vol. 173, no. 9, pp. 704–713, Nov. 2020, doi: 10.7326/M20-1868. 

[14] M. Benedetti, E. Lloyd, S. Sack, and M. Fiorentini, “Parameterized quantum circuits as machine learning models,” Quantum Sci. 
Technol., vol. 4, no. 4, p. 043001, Nov. 2019, doi: 10.1088/2058-9565/ab4eb5. 

[15] V. Bergholm et al., “PennyLane: Automatic differentiation of hybrid quantum-classical computations,” arXiv. Nov. 12, 2018. doi: 
10.48550/arXiv.1811.04968. 

[16] R. Stephens, Essential Algorithms, A Practical Approach to Computer Algorithms using Python and C#. Indianapolis: Wiley, 2019. doi: 
10.1002/9781119575955. 

[17] M. Kashif and S. Al-Kuwari, “Design Space Exploration of Hybrid Quantum–Classical Neural Networks,” Electronics, vol. 10, no. 
23, p. 2980, Nov. 2021, doi: 10.3390/electronics10232980. 

[18] V. Havlíček et al., “Supervised learning with quantum-enhanced feature spaces,” Nature, vol. 567, no. 7747, pp. 209–212, Mar. 
2019, doi: 10.1038/s41586-019-0980-2. 

[19] M. Schuld and F. Petruccione, “Quantum Machine Learning,” in Encyclopedia of Machine Learning and Data Mining, Boston, MA: 
Springer US, 2016, pp. 1–10. doi: 10.1007/978-1-4899-7502-7_913-1. 

[20] M. Schuld, M. Fingerhuth, and F. Petruccione, “Implementing a distance-based classifier with a quantum interference circuit,” 
EPL (Europhysics Lett., vol. 119, no. 6, p. 60002, Sep. 2017, doi: 10.1209/0295-5075/119/60002. 

[21] M. Benedetti, E. Lloyd, S. Sack, and M. Fiorentini, “Erratum: Parameterized quantum circuits as machine learning models (2019  
Quant. Sci. Tech. 4 043001),” Quantum Sci. Technol., vol. 5, no. 1, p. 019601, Dec. 2019, doi: 10.1088/2058-9565/ab5944. 



Journal of Computing Theories and Applications 2025 (February), vol. 2, no. 3, Adebayo, et al. 323 
 

 

[22] V. Dunjko and H. J. Briegel, “Machine learning &amp; artificial intelligence in the quantum domain: a review of recent progress,” 
Reports Prog. Phys., vol. 81, no. 7, p. 074001, Jul. 2018, doi: 10.1088/1361-6633/aab406. 

[23] F. S. Gomiasti, W. Warto, E. Kartikadarma, J. Gondohanindijo, and D. R. I. M. Setiadi, “Enhancing Lung Cancer Classification 
Effectiveness Through Hyperparameter-Tuned Support Vector Machine,” J. Comput. Theor. Appl., vol. 1, no. 4, pp. 396–406, Mar. 
2024, doi: 10.62411/jcta.10106. 

[24] S. Vashisth, I. Dhall, and G. Aggarwal, “Design and analysis of quantum powered support vector machines for malignant breast 
cancer diagnosis,” J. Intell. Syst., vol. 30, no. 1, pp. 998–1013, Sep. 2021, doi: 10.1515/jisys-2020-0089. 

[25] M. A. Pfeffer and S. H. Ling, “Evolving Optimised Convolutional Neural Networks for Lung Cancer Classification,” Signals, vol. 
3, no. 2, pp. 284–295, May 2022, doi: 10.3390/signals3020018. 

[26] A. N. Safriandono, D. R. I. M. Setiadi, A. Dahlan, F. Z. Rahmanti, I. S. Wibisono, and A. A. Ojugo, “Analyzing Quantum Feature 
Engineering and Balancing Strategies Effect on Liver Disease Classification,” J. Futur. Artif. Intell. Technol., vol. 1, no. 1, pp. 51–63, 
Jun. 2024, doi: 10.62411/faith.2024-12. 

[27] J. Morgado et al., “Machine Learning and Feature Selection Methods for EGFR Mutation Status Prediction in Lung Cancer,” 
Appl. Sci., vol. 11, no. 7, p. 3273, Apr. 2021, doi: 10.3390/app11073273. 

[28] S. Altares-López, J. J. García-Ripoll, and A. Ribeiro, “AutoQML: Automatic Generation and Training of Robust Quantum-
Inspired Classifiers by Using Genetic Algorithms on Grayscale Images,” Aug. 2022, doi: 10.1016/j.eswa.2023.122984. 

[29] S. Y.-C. Chen, C.-H. H. Yang, J. Qi, P.-Y. Chen, X. Ma, and H.-S. Goan, “Variational Quantum Circuits for Deep Reinforcement 
Learning,” IEEE Access, vol. 8, pp. 141007–141024, 2020, doi: 10.1109/ACCESS.2020.3010470. 

[30] D. Szwarcman, D. Civitarese, and M. Vellasco, “Quantum-inspired evolutionary algorithm applied to neural architecture search,” 
Appl. Soft Comput., vol. 120, p. 108674, May 2022, doi: 10.1016/j.asoc.2022.108674. 

[31] P.-L. Zheng, J.-B. Wang, and Y. Zhang, “Efficient and quantum-adaptive machine learning with fermion neural networks,” Nov. 
2022, doi: 10.1103/PhysRevApplied.20.044002. 

[32] A. Melnikov, M. Kordzanganeh, A. Alodjants, and R.-K. Lee, “Quantum machine learning: from physics to software 
engineering,” Adv. Phys. X, vol. 8, no. 1, Dec. 2023, doi: 10.1080/23746149.2023.2165452. 

[33] M. Schuld and N. Killoran, “Quantum Machine Learning in Feature Hilbert Spaces,” Phys. Rev. Lett., vol. 122, no. 4, p. 040504, 
Feb. 2019, doi: 10.1103/PhysRevLett.122.040504. 

[34] Dhruv Saldanha, Amogh Agastya, Pratyanush G, and Madhavi R P, “A Review of Supervised Variational Quantum Classifiers,” 
Int. J. Eng. Res., vol. V9, no. 04, Apr. 2020, doi: 10.17577/IJERTV9IS040485. 

[35] S. Bravyi, D. Gosset, and R. König, “Quantum advantage with shallow circuits,” Science (80-. )., vol. 362, no. 6412, pp. 308–311, 
Oct. 2018, doi: 10.1126/science.aar3106. 

[36] M. P. Harrigan et al., “Quantum approximate optimization of non-planar graph problems on a planar superconducting 
processor,” Nat. Phys., vol. 17, no. 3, pp. 332–336, Mar. 2021, doi: 10.1038/s41567-020-01105-y. 

[37] M. V. Davidovich, “Casimir-Lifshitz forces and plasmons in a structure of two dielectric rods: Green’s function method of 
electrodynamics,” arXiv. Feb. 10, 2021. [Online]. Available: http://arxiv.org/abs/2102.07618 

[38] K. A. Tychola, T. Kalampokas, and G. A. Papakostas, “Quantum Machine Learning—An Overview,” Electronics, vol. 12, no. 11, 
p. 2379, May 2023, doi: 10.3390/electronics12112379. 

[39] S. K. Punia, M. Kumar, and A. Sharma, “Intelligent Data Analysis with Classical Machine Learning,” in Intelligent Computing and 
Applications, 2021, pp. 793–799. doi: 10.1007/978-981-15-5566-4_71. 

[40] K. P. Murphy, Machine Learning. London, England: MIT Press, 2012. 
[41] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. London, England: MIT Press, 2016. 
[42] M. Akrom et al., “Quantum machine learning for corrosion resistance in stainless steel,” Mater. Today Quantum, vol. 3, no. August, 

p. 100013, Sep. 2024, doi: 10.1016/j.mtquan.2024.100013. 
[43] M. Akrom, S. Rustad, and H. K. Dipojono, “Development of quantum machine learning to evaluate the corrosion inhibition 

capability of pyrimidine compounds,” Mater. Today Commun., vol. 39, p. 108758, Jun. 2024, doi: 10.1016/j.mtcomm.2024.108758. 
[44] P. Adebayo, F. Basaky, and E. Osaghae, “Developing a Model for Predicting Lung Cancer Using Variational Quantum-Classical 

Algorithm: A Survey,” J. Appl. Artif. Intell., vol. 3, no. 1, pp. 47–60, Jun. 2022, doi: 10.48185/jaai.v3i1.446. 
 


