

Journal of Computing Theories and Applications ISSN:3024-9104

DOI : 10.62411/jcta.10387 publikasi.dinus.ac.id/index.php/jcta/

Research Article

NURBs Based Multi-robots Path Planning with Obstacle
Avoidance

Hadjira Belaidi1,* and Fethi Demim2

1 Signals and Systems Laboratory, Institute of Electrical and Electronic Engineering, University M’Hamed
BOUGARA of Boumerdes, Boumerdès, Algeria;
e-mail : hadjira983@yahoo.fr, ha.belaidi@univ-boumerdes.dz

2 Guidance and Navigation Laboratory, Ecole Militaire Polytechnique, Bordj El Bahri, Algiers, Algeria;
email: demifethi@gmail.com

* Corresponding Author : Hadjira Belaidi

Abstract: The primary problem for multi-robot displacement and motion phase solving requires that

the robots prevent themselves from colliding with each other as well as stationary obstacles. In certain

situations, robot conflict is unavoidable if one robot views its neighbors as immovable obstacles.

Hence, this paper proposes a new NURBs (Non-Uniform Rational B-spline) based algorithm for multi-

robot path planning in a crowded environment. First, the proposed technique finds each robot's free,

smooth, optimal path while avoiding collision with the existing obstacles. Secondly, the prospect of

possible collision between the preplanned trajectories will be computed to allow the robots to navigate

in the same workspace and coordinate between them. Then, each robot's time to arrive at potential

collision sites is computed based on its speed. As a result, the robots involved in the collision must

choose whether to use the robot priority technique to prevent the collision. Simulation results under

different scenarios and comparisons with previous works are provided to validate the work. The ob-

tained results prove that the proposed approach is accurate (as the robot's instantaneous speed is taken

into consideration), fast (as there is no need to broadcast the robots’ positions), the robots’ paths are

optimal and smooth (to avoid jerk movements), and the approach ensures that the robots will not be

trapped by local minima problem.

Keywords: Multi-robots; NURBs; Obstacle avoidance; Path planning; Robot velocity.

1. Introduction

There are several benefits that a group of parallel-operating mobile robots has over in-
dividual robot systems. When working together, several robots can complete jobs faster than
a single robot and can complete tasks that one robot system cannot handle. With a wide range
of applications, including autonomous warehouses[1], [2], the military, aircraft, locating things
or people, exploring surroundings, and rescue, it provides the qualities of parallelism, resili-
ence, and flexibility. The main topic of current research is the distribution of tasks and re-
sources, sensing, resolving conflicts, formation, coordinated planning, and other issues [3],
[4]. One of the main challenges in resolving conflicts at the motion stage is that the robots
must prevent collisions with other robots and with stationary obstacles. In certain situations,
robot conflict is unavoidable if one robot views its neighbors as immovable obstacles. In
crowded multi-robot scenarios, it gets worse. Hence, in the fields of robotics, video games,
and automation, path planning is an essential activity in the automation process of a system
that navigates the environment while avoiding obstacles and respecting various constraints.
In the case of a mobile robot’s team navigating in a crowded environment, each robot has to
find its free optimal path from a given starting position to a given target while avoiding the
static and dynamic obstacles existing in the surroundings and avoiding collision with the other
robots.

Several works have proposed different collision avoidance methods based on the infor-
mation afforded by onboard sensors. The paper [5] presented a collision-free path planning

Received: March, 17th 2024

Revised: April, 25th 2024

Accepted: April, 27th 2024

Published: May, 5th 2024

Copyright: © 2024 by the authors.

Submitted for possible open access

publication under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/licen

ses/by/4.0/).

https://publikasi.dinus.ac.id/index.php/jcta/index
http://dx.doi.org/10.62411/jcta.10387
https://publikasi.dinus.ac.id/index.php/jcta/index
mailto:hadjira983@yahoo.fr
mailto:ha.belaidi@univ-boumerdes.dz
https://www.scitepress.org/AffiliationsProfile.aspx?Org=GLJyMWGposf1Mvmbc+gblQay8YJ5c0jwIVWcHASGvz7tw98Bv0ahMEONhUf9tiQ2XPP/kBTM/Pu8HH/fI/BwdxaA1YIIqZUUPYSb9UXqi2RGx7UmV0OxoYlWAeKCbinSjEpOarGERao=&t=1

Journal of Computing Theories and Applications 2024 (May), vol. 1, no. 4, Belaidi and Demim. 479

algorithm based on Bluetooth-received signal strength indication for multi-robot interior en-
vironments. However, low measurement precision results from attenuating the Bluetooth
signal during propagation. The article [4] proposed a laser-based approach to help prevent
collisions in intricate situations with multiple robots. The suggested method takes into ac-
count the influences of the robot itself, the stationary obstacles, and other adjacent robots.
However, the collision-free paths are not guaranteed as the velocities of the robots are not
considered. Hence, the speed factor is introduced in [6], where a collision prevention ap-
proach is suggested for a remote operation system with several humans in charge. Conversely,
optimization is not carried out. In order to deal with dynamic impediments, the Velocity Ob-
stacle (VO) evolved in [7]. As long as the dynamic obstruction keeps the measured velocity
constant, the velocity at which a collision will finally occur is represented geometrically by the
VO. However, the approach did not have the ability of robot–robot detection, and the robots
needed to broadcast their locations; thus, results from speeding up the simulation would be
erroneous.

In the same context of multi-robot trajectory planning, algorithms based on Artificial
Potential Field (APF) reinforced by other techniques are proposed by several authors, such
as Bacterial Potential Field [8] and APF method combined with the Virtual Obstacles ap-
proaches [9] to address the issue of multiple robots cooperating in within a single workspace
and tried to avoid local minima problem [10]–[14]. However, the problem of these approaches
is associated with scalability. Given current results, more research is necessary to address mul-
tiple robot collision avoidance, particularly in crowded areas [4], [15]. Moreover, the discussed
approaches do not provide smoother trajectories, which reflect the existence of jerk move-
ment.

Hence, this paper proposes a new NURBs (Non-Uniform Rational B-spline) based ap-
proach for multi-robots path planning in a crowded environment. The employment of
NURBs is justified by several benefits, including (i) producing a smooth curve between con-
trol points; (ii) Coordinate points, which are the starting point, control point, and target point,
are specified to generate the NURBS curve; (iii) The robot can turn without stopping as it
guarantees the C² continuance; (iv) The tolerance for the NURBs curve’s fitting can be ad-
justed; (v), a fit point (or other control points) and refit the NURBs through the new set of
points can be inserted without altering the entire path; (vi) The robot's initial and ending
rotations can be used to determine the start and end tangents. First, the proposed technique
finds each robot's free, smooth, optimal path while avoiding collision with the existing obsta-
cles. Our mobile robot path planning strategy based on NURBS, previously published in [15],
[16], is used to plan a free optimal path for multi-robots. However, this work will generalize
the approach for multi-robots while avoiding collisions with obstacles and between the robots
themselves.

Our contribution is: (i) To consider the robot’s instantaneous speed to enhance the ac-
curacy of the approach. (ii) By calculating the robots’ possible collision time, there will be no
need to broadcast the robots’ positions, thus, increasing the approach convergence time. (iii)
The obtained robots’ paths must be optimal and smooth to avoid the jerk robots’ movements
(iv) Moreover, the proposed approach must ensure that the local minimum problem will not
trap the robots. Furthermore, the robots involved in the collision must decide whether to use
the robot priority strategy to prevent the collision [17].

2. Related works

Different collision avoidance techniques have been developed by several authors, de-
pending on the data provided by onboard sensors and the implemented approaches. Each
technique has its advantages and drawbacks. In this section, some solved issues are summa-
rized, and the way our approach solves the cited problems is explained in the next sections.

Compared to the existing works discussed in the introduction, more study is required to
solve multiple robot collision avoidance, especially in crowded environments[4], [16]. In ad-
dition, the current studies' optimality still needs to be improved [5]–[8]. Furthermore, the
techniques that have been discussed do not offer smoother trajectories that account for jerk
movement[18].

The most common hard issue the previously proposed approaches face is the lo-cal-
minima problem [10]–[14]. The works used the "non-minimum speed algorithm" to solve this
problem. Actually, though, the robot can stop at any moment to prevent running into an

https://publikasi.dinus.ac.id/index.php/jcta/issue/view/380

Journal of Computing Theories and Applications 2024 (May), vol. 1, no. 4, Belaidi and Demim. 480

undesired obstacle or other robots or moving things. On the other hand, each robot's colli-
sion-free mobility plans are determined in [19] using a convex optimization. Convexity of the
environment constraints is achieved by pre-calculating the potential field forces for a horizon,
which are then used as external force inputs in optimization criteria. As a result, the concepts
put forward by [20] and [19] as well as the other earlier approaches, appear to be restricted.
As will be explained later, the local-minima problem is satisfactorily resolved in our work and
doesn't need to be calculated again, even for the U-shaped static obstacle, which was a com-
mon drawback for the earlier methods such as [19] and [21]

Additionally, while robots are traveling in separate directions on the same side of a road
with two lanes, they will not block each other's paths, as demonstrated by previous research
in the literature [22], [23]; however, no work has been done on robot direction movement in
a given environment at random. Our proposed approach, as it will be discussed in the coming
section, the robots will not have any conflicts whatever are their heading directions.

3. Optimal path planning

The strategy of constructing the free paths for each robot is summarized in the flowchart
given in Fig. 1. According to this flowchart, the user has to define the robots’ quantity 𝑁 ex-

isting in the workspace. After that, 𝑆𝑖 and 𝑇𝑖 must be defined such that 𝑆𝑖 is the initial lo-

cation of the robot 𝑖 and 𝑇𝑖 is the target of the robot 𝑖 depicted by the user.
The proposed path planning strategy for multi-robot is based on parametric curves de-

fined by Equation (1), which has an inherent directional property that enormously reduces
calculations in mobile robot path planning [24]. In such an application, great attention was
paid to computational complexity compared with other path-planning candidates.

𝑟(𝑠) = (𝑇𝑖 − 𝑆𝑖) × 𝑠 + 𝑆𝑖 (1)

Where 𝑆𝑖 and 𝑇𝑖 (0 < i < N) are presented by their coordinates; 𝑠 represents the

curve parameter and 0 ≤ s ≤ 1. To determine if the line 𝑆𝑖𝑇𝑖 collides with an object, we
must carry out an intersection checking of this line with the polygonal contours of the obsta-
cles as explained in [24]; where the segment 𝑆𝑖𝑇𝑖 and the obstacle contour 𝑃𝑘𝑃𝑙 do not in-

tersect unless 0 ≤ s ≤ 1 and 0 ≤ t ≤ 1.

3.1. Cost function

The initial point Si must be updated and replaced by the first optimal point 𝑄1 and

linked to 𝑇𝑖. Then, the previous procedure will be repeated to find the new local optimal
control point, and so on, until all there will be no collision.

Therefore, the path segment that separates two control points is divided by the maxi-
mum velocity to define the cost function. This cost function may be calculated for each path

segment for any possible path containing time units. The 𝑑𝑖𝑗 's, or the distances between each

pair of control points, are calculated from 𝑆𝑖 to 𝑇𝑖 Therefore, using Equation (2) (where 𝑛
is the control points’ number), the total distance is determined:

𝐷𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒 = ∑ 𝑑𝑖𝑗

𝑛−1

𝑗=1

 (2)

For every feasible path, the cost function 𝑯𝒊𝒋 is thus defined in a way that:

𝐻𝑖𝑗 = ∑
𝑑𝑖𝑗

𝑉𝑖𝑗

𝑛−1

𝑗=1

 (3)

Since at least two possible paths can be found, the best one can be determined by as-

suming that the robot 𝑅𝑖 moves at its fastest safe speed and takes the shortest route, the
optimal path can be found by:

𝐻𝑖 optimal = min{𝐻𝑖𝑗} (4)

A table (𝑡𝑟𝑎𝑗 𝑖) will be constructed to store all the optimal control points (𝑄𝑗) constitut-

ing the trajectory, with 𝑗 is the index of the control point; 𝑡𝑟𝑎𝑗 𝑖 will be filled according to

https://publikasi.dinus.ac.id/index.php/jcta/issue/view/380

Journal of Computing Theories and Applications 2024 (May), vol. 1, no. 4, Belaidi and Demim. 481

the flowchart given in Figure 1. Initially, 𝑆𝑖 and 𝑇𝑖 are stored inside as the trajectory's begin-
ning and end positions, respectively. Then, each time a new control point is found it will be

inserted before 𝑇𝑖 so that 𝑇𝑖 always remains the last point until 𝑄𝑗 converges to 𝑇𝑖.
The effectiveness of this method is demonstrated by its capacity to choose the shortest

and which can be traversed at high speed without requiring a costly state-space search.
Once all the optimal control points constituting the free trajectory are extracted, these

points will be linked by a NURBS (Spline 𝑖) to construct the free optimal path for the robot

𝑖. Therefore, i is incremented so that this algorithm will be executed by all the robots in the

team from 𝑖 = 1 to 𝑁. Figure 1 illustrates the approach of free optimal path construction
for a multi-robots team.

Figure. 1. Flowchart illustrating the free optimal paths construction for the multi-robots team.

4. Robot-robot Collision

Formally, the free optimal paths allow the robots to move from initial positions 𝑆𝑖 to
final destinations 𝑇𝑖 are extracted. These paths may intersect; however, their intersection
must not lead to any collision between robots. Hence, in this section, the path intersection
points will be established. Then, the time required by each robot to reach these points must
be calculated and compared to predict the possibility that the robots will arrive at the inter-
section points simultaneously, which leads to collisions.

https://publikasi.dinus.ac.id/index.php/jcta/issue/view/380

Journal of Computing Theories and Applications 2024 (May), vol. 1, no. 4, Belaidi and Demim. 482

Assuming that the robots start moving at the time 𝑡0. The algorithm begins by checking

for the intersection between the trajectory of the robot 𝑅𝑖, presented by Splinei, and the

trajectory of a robot 𝑅𝑝, presented by Spline𝑝. The intersections between the robots trajec-
tories are calculated as explained in the following section.

4.1. Trajectories intersection

In [17], by using the control polygon’s first zero to estimate the spline’s first zero, one
can use the close rapport between the control polygon and the spline to identify a spline
function’s first zero. The novel control polygon’s first zero is then utilized as an enhanced
estimation, and then this zero is entered into the knot vector of the spline. Iterating over this
yields an iterative technique that converges quadratically to simple zeros. The technique was
naturally extended to calculate two parametric spline curves’ intersections in [25]. An approx-
imation of the intersection of the two curves was made using the initial intersection of the
two control polygons. Here, "first" refers to the sequence in which things happen. Two pa-
rameter values, one for each curve, are obtained from this intersection and added as new
knots to the knot vectors of the associated curves. The outcome is a straightforward iterative
approach that may be repeated using the novel control polygon.

Because two curves can cross even in cases when the control polygons do not, this al-
gorithm for calculating intersections is not infallible in and of itself. The algorithm won't
function in this scenario until certain preprocessing is completed. The local convex hull at-
tribute was used for this. More precisely, there has to be at least one pair of overlapping local
convex hulls if the curves intersect. Insert the midpoints of the respective parameter intervals
as new knots in the curves, concentrating on the first pair of such pairs. Theorem 11 [25]
states that the algorithm will eventually result in intersecting control polygons, at least in the
case of a transversal intersection, if this process is repeated. The control polygons of the two

NURBS curves Spline𝑖 and Spline𝑝 are defined as follow:

Spline𝑖(𝑑) = ∑ 𝑅(𝑑)𝑞𝑗

𝑛−1

𝑗=0

 (5)

Spline𝑝(𝑔) = ∑ 𝑅(𝑔)𝑞𝑗

𝑚−1

𝑗=0

 (6)

where 𝑅(𝑑) and 𝑅(𝑔) are the rational basis function defined as follows,

𝑅(𝑑) =
𝐵𝑗,𝑘(𝑑) ⋅ 𝑤𝑗

∑ 𝐵𝑗,𝑘(𝑑) ⋅ 𝑤𝑗
𝑛−1
𝑗=0

 (7)

𝑅(𝑔) =
𝐵𝑗,𝑘(𝑔) ⋅ 𝑤𝑗

∑ 𝐵𝑗,𝑘(𝑔) ⋅ 𝑤𝑗
𝑚−1
𝑗=0

 (8)

Where 𝑛 and 𝑚 are the number of control points present in the curves Spline𝑖 and

Spline𝑝, respectively; 𝑘 represents the NURBS degree, and 𝑞𝑗 are the control points where

each one is associated with a weight 𝑤𝑗 ⋅ 𝐵𝑗,𝑘(𝑑)and 𝐵𝑗,𝑘(𝑔) are the B-spline blending func-
tions. The computation of the two control polygons’ intersection is simple and is well ex-
plained in [21]. The intersection Algorithm 1 is shown below.

Algorithm 1. Spline Curves Intersection Computation According to [25]

Repeat: INPUT Spline𝑖(𝑑), Spline𝑝(𝑔)

 OUTPUT intersections points 𝑅𝑖𝑝

1: If Spline𝑖(𝑑) intersect Spline𝑝(𝑔)Then
2: Insert first intersection of control polygons
3: Follow: If intersection is found Then

4: Return (the intersection coordinates 𝑅𝑖𝑝)
5: Stop
6: Else

https://publikasi.dinus.ac.id/index.php/jcta/issue/view/380

Journal of Computing Theories and Applications 2024 (May), vol. 1, no. 4, Belaidi and Demim. 483

7: Go to repeat
8: End
9: Else
10: If (two local convex hulls intersect) Then
11: Insert first midpoint pair
12: Go to follow
13: Else
14: Return (Curves do not intersect)
15: Stop
16: End
17: End

The flowchart given in Figure 2 explains this algorithm (Algorithm 1), and summarizes

the strategy to calculate the points 𝑅𝑖𝑝 where the trajectories of the robots intersect and the
time corresponding to each robot to reach those points. Such that ti and tp represent the time

when robots 𝑅𝑖 and 𝑅𝑝 reach the collision point 𝑅𝑖𝑝 respectively. In case of collision, ro-

bot 𝑅𝑖 has to stop for period 𝑇 before following its path.

Figure. 2. Flowchart summarizing the technique of trajectories collision calculation.

https://publikasi.dinus.ac.id/index.php/jcta/issue/view/380

Journal of Computing Theories and Applications 2024 (May), vol. 1, no. 4, Belaidi and Demim. 484

4.2 Time to reach Rip by each robot

To find the time to attend the intersection points 𝑅𝑖𝑝 by each robot, the velocities along
the path from the starting point until those points must be known. The speeds are denoted

by 𝑉𝑖𝑗, where 𝑖 is the index of the robot, and 𝑗 is the index of the control point, i.e., 𝑄12 is

the second control point for the first robot (𝑅1) and 𝑉12 corresponds to the speed of the

first robot at the second control point. Spline1 is the NURBS curve representing the trajec-

tory of the first robot (𝑅1) and Spline2 denotes the NURBS curve characterizing the trajectory

of the second robot (𝑅2). Whereas at the intersection point (𝑅12), the speed of the robot 𝑅1

is 𝑉𝑅12 and the speed of robot 𝑅2 is 𝑉𝑅21. Thus, the velocities at each control point previ-

ous and at 𝑅𝑖𝑝 must be calculated.

To find the velocities 𝑉𝑖𝑝, the first derivative of Spline𝑖 and Spline𝑝 at specific con-

trol points must be calculated. Spline𝑖 and Spline𝑝, given by Equation (5) and (6), are writ-

ten as function of the basis functions 𝑅(𝑑) and 𝑅(𝑔). These basis functions, defined by
Equation (7) and Equation (8), can then be used to calculate the derivative of the curves

Spline𝑖 and Spline𝑝 at a given point by estimating the form:

𝑅(𝑑) =
𝑤(𝑑)𝑅(𝑑)

𝑤(𝑑)
=

𝐴(𝑑)

𝑤(𝑑)
 (9)

𝑅(𝑔) =
𝑤(𝑔). 𝑅(𝑔)

𝑤(𝑔)
=

𝐴(𝑔)

𝑤(𝑔)
 (10)

Their derivatives can be written as:

𝑅′(𝑑) =
𝐴′(𝑑) − 𝑤′(𝑑). 𝑅(𝑑)

𝑤(𝑑)
=

𝑤𝑗 . 𝐵𝑗,𝑘 ′(𝑑) − 𝑤′(𝑑). 𝑅(𝑑)

𝑤(𝑑)
 (11)

𝑅′(𝑔) =
𝐴′(𝑔) − 𝑤′(𝑔). 𝑅(𝑔)

𝑤(𝑔)
=

𝑤𝑗 . 𝐵𝑗,𝑘′(𝑔) − 𝑤′(𝑔). 𝑅(𝑔)

𝑤(𝑔)
 (12)

The derivative of a nonrational spline of degree 𝑘 in relevance with a knot is another

nonrational spline of degree 2𝑘 denoted over a knot vector calculated by the repetitive prod-

uct, as the multiplication of two NURBS objects of degree 𝑘 is generally an alternative

NURBS object of degree 2𝑘 [22].

Thus, the velocities of the robot 𝑅𝑖 at the control points, 𝑗 can be found by applying
Equation (13):

𝑉𝑖𝑗 = Spline𝑖 ′(𝑑) = 𝑅′(𝑑)𝑞𝑗 (13)

The same thing for a robot 𝑅𝑝 at the control points 𝑗:

𝑉𝑖𝑗 = Spline𝑖 ′(𝑑) = 𝑅′(𝑑)𝑞𝑗 (14)

Therefore, the time 𝑡𝑖𝑗spanned by the robot 𝑅𝑖 to move from the control point 𝑄𝑖(𝑗−1)
to the next control point 𝑄𝑖𝑗 can be calculated using Equation (15):

𝑡𝑖𝑗 =
𝑑𝑖𝑗

𝑉𝑖𝑗

 (15)

With 𝑑𝑖𝑗 is the distance separating two adjacent control points 𝑄𝑖(𝑗−1), 𝑄𝑖𝑗(the distance
along a path segment). In 2D space, it can be calculated using Equation (16):

𝑑𝑖𝑗 = √(𝑞𝑖𝑗 𝑥
− 𝑞(𝑖(𝑗−1))𝑥

)² + (𝑞𝑖𝑗 𝑦
− 𝑞(𝑖(𝑗−1))𝑦)² (16)

By knowing the time spanned by the robot to reach each control point; thus, the total

time to reach the intersection point by the robot 𝑅𝑖 is given by Equation (17):

https://publikasi.dinus.ac.id/index.php/jcta/issue/view/380

Journal of Computing Theories and Applications 2024 (May), vol. 1, no. 4, Belaidi and Demim. 485

𝑡𝑖 = ∑ 𝑡𝑖𝑗

𝑗=𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛 𝑝𝑜𝑖𝑛𝑡

𝑗=1

 (17)

Similarly:

𝑡𝑝 = ∑ 𝑡𝑝𝑗

𝑗=𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛 𝑝𝑜𝑖𝑛𝑡

𝑗=1

 (18)

The time to reach the intersection point by each robot ti and tp must be corrected ac-
cording to the previous robot stops and then compared to see if the robots may collide; so
the following algorithm (Algorithm 2) will be executed. Moreover, priority between the robots
must be considered. Generally, robots with emergency tasks move at their maximum allowed
speed; furthermore, the low-speed robot brakes more easily than the high-speed one. Hence,
the robot with high speed has the priority of moving before the other robots. So, the speed

of the two robots 𝑅𝑖 and 𝑅𝑝 , 𝑉𝑖 = ∑ 𝑉𝑖𝑗
𝑗=𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛 𝑝𝑜𝑖𝑛𝑡
𝑗=1 and 𝑉𝑝 =

∑ 𝑉𝑝𝑗
𝑗=𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛 𝑝𝑜𝑖𝑛𝑡
𝑗=1 respectively, are compared to indicate the one that has the priority

to move and the other one has to stop (see Algorithm 2).

Algorithm 2. The Previous Robot Stops Consideration

INPUT: 𝑁𝑖 , 𝑁𝑝, Ƭ

OUTPUT: 𝑡𝑖, 𝑡𝑝
1: Repeat: calculate ti and tp

2: 𝑁𝑖 : how many times the robot 𝑅𝑖 has stopped

3: 𝑁𝑝: how many times the robot 𝑅𝑝 has stopped

4: Ƭ: necessary time to escape the collision point 𝑅𝑖𝑝

5: If (𝑅𝑖 has stopped before) Then

6: 𝑡𝑖 = 𝑡𝑖 + Ƭ ∗ 𝑁𝑖
7: Goto compare
8: Else
9: Go to compare
10: End if

11: If (𝑅𝑝 has stopped before) Then

12: 𝑡𝑝 = 𝑡𝑝 + Ƭ ∗ 𝑁𝑝
13: Goto compare
14: Else
15: Go to compare
16: End if

17: compare: If 𝑡𝑖 ≈ 𝑡𝑝 ± 𝜏 Then

18: If 𝑉𝑝 >= 𝑉𝑖

19: 𝑅𝑖 stops at position (𝑅𝑖𝑝−𝑏) for Ƭ time

20: 𝑅𝑝 follows its movement
21: Else

22: 𝑅𝑝 stops at position (𝑅𝑖𝑝−𝑏) for Ƭ time

23: 𝑅𝑖 follows its movement
24: Else

25: 𝑅𝑖 and 𝑅𝑝 follow their movements
26: End

According to Algorithm 2, the robots 𝑅𝑖 and 𝑅𝑝 have to consider the time of their
previous rest to avoid collision with the other robots in order to be exact in the calculation

of ti and tp. Thus, Ƭ (a fixed time enough to avoid collision between the robots; it can be
calculated by dividing the length of the robot supposed to be in a collision over its speed (for
our case, it was fixed to 2s)), multiplied by the number of times the robot has stopped before

https://publikasi.dinus.ac.id/index.php/jcta/issue/view/380

Journal of Computing Theories and Applications 2024 (May), vol. 1, no. 4, Belaidi and Demim. 486

(𝑁𝑖 or 𝑁𝑝), which must be added to the time each robot must reach the intersection point

(𝑡𝑖 or 𝑡𝑝). Therefore, the algorithm checks if 𝑡𝑖 belongs to the interval [𝑡𝑝 − 𝜏, 𝑡𝑝 + 𝜏],

which means that the robot 𝑅𝑖 arrives at the point 𝑅𝑖𝑝 approximately at the same time as the

robot 𝑅𝑝; so the two robots collide with each other. Hence, one of them has to stop at point.

𝑅𝑖𝑝−𝑏 ((−𝑏) ensures that the robot stops before entering the collision zone) and leave the

other one to pass. Otherwise, the two robots pass the point 𝑅𝑖𝑝 at different times and do
not collide with each other.

5. Results and Discussion

The proposed approach is tested in simulations run on an Intel Core i3 computer at 2.20
GHz with 6 GB of RAM. AutoCAD is used to build the environment scripts for the approach
coding, whereas Matlab is used for speed, distance, and time calculations. In the following,
some validation scenarios are proposed and discussed.

5.1 Validation Example

In this simulation example, a multi-robot team containing five robots navigates in an
environment of 10x10 m². The obstacles can have any shape in C-space. The path planning
approach takes into account the width of the robot. The starting locations of the robots are

denoted by 𝑆𝑖 and the targets by 𝑇𝑖 in Figure 3. In this case, the linear robots' velocities (𝑉𝑖

and 𝑉𝑝) are supposed to be constant between each two consecutive control points, and they

are 0.5m/s, 0.3 m/s, 0.6m/s, 0.4 m/s, and 0.7 m/s for robots: 𝑅1, 𝑅2, 𝑅3, 𝑅4 and 𝑅5, re-
spectively. The coordinates of the trajectories' intersection points and the intersection times
are given in Table 1.

Figure. 3. Simulation illustration for path planning of five robots.

The robots’ velocities are small enough to maintain the robots’ stabilities during obstacle
avoidance. The time to reach the intersection points is calculated for the robots where their

trajectories intersect. From Table 1, the time 𝑡1 required from robot 𝑅1 to reach the colli-

sion point 𝑅12 is belongs to the interval [𝑡2, 𝑡2 + 0.5s], which means that the robot 𝑅1
moving with the speed 𝑉1 will collide with the robot 𝑅2 moving by the speed 𝑉2 at point

𝑅12. Thus, by executing the algorithm summarized by the flowchart given in Figure 2, the

robot 𝑅1 has to stop for a short time Ƭ = 2s allowing 𝑅2to cross the intersection point

without collision. Therefore, for the next computation, Ƭ must be taken into consideration in

the estimation of 𝑡1 (𝑡1 = 𝑡1 + 2s). The same thing to the path execution of robots 𝑅1 and

𝑅4; as 𝑡1 𝜖 [𝑡4 − 0.5s, 𝑡4], robot 𝑅1 has to stop for 2s, allowing the robot 𝑅4 to pass and

𝑡1 will be equal to 𝑡1 + 2 ∗ Ƭ (because it has stopped two times).

R12

R25

R13

R35

R14

R45

R34

https://publikasi.dinus.ac.id/index.php/jcta/issue/view/380

Journal of Computing Theories and Applications 2024 (May), vol. 1, no. 4, Belaidi and Demim. 487

The proposed algorithm requires 𝑁(𝑁 − 1)/2 computation times to detect the inter-

sections, with 𝑁 as the robots’ number, and it increases as the robots’ number increases. For
our example, the algorithm needs to run ten times with five robots to find the corresponding
collision points, as explained in Table 1.

5.2 Local minima problem

There are certain restrictions when using the APF approach for path planning, according
to [20]. The main issue arises when the robot becomes stuck in nearby minima. The robot is
stuck in this posture because there is zero potential field force acting on it. Similarly, repeat-
edly pushing the robot in the exact opposite way can result in a control deadlock [19]. Situa-
tions such as control deadlock and local minima are undesirable.

Thus, a technique based on the non-minimum speed algorithm was put forth in [20].
The idea was to regulate each robot's speed at any given moment to address the issue of local
minima as they arise. The concept was to regulate the robot's force when it is still distant from
the objective point, beyond a positive and non-null threshold 𝐹𝑚𝑖𝑛. Consequently, when the
robot is far away from the destination, its speed is never equal to zero.

Table 1. The coordinates of the trajectories intersection points and the intersection times.

Intersection

points 𝑹𝒊𝒑

(𝑹𝒊 with 𝑹𝒑)

𝒙𝒊𝒑 𝒚𝒊𝒑
𝒅𝑺𝒊𝑹𝒊𝒑

(*10m)

𝒅𝑺𝒑𝑹𝒊𝒑

(*10m)
𝑽𝒊 (m/s) 𝑽𝒑 (m/s) 𝒕𝒊 (s) 𝒕𝒑 (s) Observation

𝑅12 13,56 84,23 12.78 6.41 0.5 0.3 2.56 2.14 Collision => 𝑅1 stops for 2s

and 𝑅2 follows (𝑡1 = 𝑡1 + 2).

𝑅13 78,20 58,96 84.13 76.81 0.5 0.6 19.32 12.80 No collision (𝑡1 = 𝑡1 + 2).

𝑅14 90,95 51,39 99.03 79.49 0.5 0.4 22.31 21.87 Collision => 𝑅1 stops for 0.5s

and 𝑅4 follows (𝑡1 = 𝑡1 + 2 ∗

2)

𝑅15 81,44 57,87 87.55 53.51 0.5 0.7 20.51 7.64 No collision

𝑅23 No possible intersection of the robots’ trajectories

𝑅24 No possible intersection of the robots’ trajectories

𝑅25 40,79 92,46 34.85 105.51 0.3 0.7 11.61 15.07 No collision

𝑅34 93,33 57,87 90.14 86.39 0.6 0.4 15.02 21.6 No collision

𝑅35 81,00 58,74 75.85 54.44 0.6 0.7 12.64 7.78 No collision

𝑅45 84,68 39,50 66.16 34.86 0.4 0.7 16.54 4.98 No collision

The local minima problem is resolved by the "non-minimum speed algorithm". How-
ever, the robot can stop anytime to avoid an unwanted obstacle or collision with other robots
or moving objects. Whereas, in [17] a convex optimization is used to determine each robot's
collision-free motion plans. A pre-computation of the potential field forces for a horizon are
proposed to convexity the environment constraints and then use them as external force inputs
in optimization criteria. Therefore, the ideas presented by [17] and [25], like the other previous
methods, seem limited. In our work, the problem of local minima is solved successfully and
does not require any more calculation, as explained below.

Hence, Figure 4 shows a comparison between the trajectories of the robots obtained by
running the method proposed in [4] (Fig. 4(a and c)) and those obtained by our approach
(Fig. 4(b and d)). The built scenario assumes that 17 robots navigate in a space featuring a
few cargo shelves and three sorting tables. The same experience explained in [4] is re-intro-

duced here. The initial location and the target for the robot 𝑅𝑞 are 𝑆𝑞 and 𝐺𝑞, respectively.
Form the results obtained in [4], each cargo robot accomplishes collision-free navigation;
however, it is clearly observed that the obtained trajectories are not optimal, and the robots’
movements are not smooth, which causes them to jerk. Thus, the robot's movement is not
stable. However, our approach produced an optimal path, smooth robot movements, and no
oscillation in the robot's speeds. Moreover, the obtained paths are more secure even if the
robots move at optimal speed.

https://publikasi.dinus.ac.id/index.php/jcta/issue/view/380

Journal of Computing Theories and Applications 2024 (May), vol. 1, no. 4, Belaidi and Demim. 488

Moreover, in our proposed approach, the robots move in a straight path when there is
no obstacle, which is not the case in [4]. The same improvement is proved when we compared
our results with the ones obtained by the GLAS end-to-end policy approach proposed by
[22], where the objective is to move robots from the initial location (circles) to the desired
location (squares) as illustrated in Fig. 4(e) and Fig. 4(f). Our method achieved more optimal
path highly smoothed trajectories.

(a)

(b)

(c)

https://publikasi.dinus.ac.id/index.php/jcta/issue/view/380

Journal of Computing Theories and Applications 2024 (May), vol. 1, no. 4, Belaidi and Demim. 489

(d)

(e)

(f)

Figure 4. Comparison of our results with those obtained in [4] and [26] (a) and (c) Trajectories of
the robots obtained by the approach proposed by [4]; (b), (d) and (f) Trajectories of the robots ob-

tained by our approach; (e) Results obtained from [26].

Generally, while applying approaches such as DQMPC (Decentralized Quadratic Model
Predictive Control), approach Angle Towards Target Method, and Swiveling Robot Destna-
tion Method, etc [17], [21]. When faced with a U-shaped static obstacle, the robots become
stuck due to a control deadlock. Figure 5 illustrates local minima escaping while the robots
face a U-shaped obstacle using our approach. In this scenario, three robots move in a complex
environment, and their targets are reached effectively.

Figure 5. Escaping local minima problem caused by U-shaped obstacle.

T3

S1

S3

T2

T1

S2

https://publikasi.dinus.ac.id/index.php/jcta/issue/view/380

Journal of Computing Theories and Applications 2024 (May), vol. 1, no. 4, Belaidi and Demim. 490

5.3 Conflict-free paths and obstacle avoidance

The existing works in the literature proved that robots running on the same side of a
two-way street would not obstruct each other's paths while they are headed in separate direc-
tions [22], [23]; however, no work has been planned for random robot movement direction
in a given environment. In our work, and according to what has been proven in the previous
sections (see section 2 and section 3), the planned path will not conflict with the other robots
wherever it is heading. Moreover, this approach can also be applied to several target execu-
tions, where each target can be inserted as a new control point and adjust the pre-planned
path according to its position.

One limitation of the proposed algorithm is that one of the robots is going out of service
when it reaches one of the intersection points. This may cause an infinite increase in the
robot’s time stop. This situation can be solved by adding another constraint to the initial
algorithm by considering the target reachability and limiting the maximum time for the task
execution. So, the robot that didn’t respect the maximum time for its task execution is con-
sidered out of service, and the algorithm will be reinitialized, and the number of the robots
will decrease by one, considering the robot out of service as an obstacle.

Moreover, the proposed algorithm requires 𝑁(𝑁 − 1)/2 computation times to detect
the intersections, with N is the robot’s number. To consider the algorithm limitation, the
assumption is that 𝑁(𝑁 − 1)/2 must be less than the requested task execution time

(𝑁(𝑁 − 1)/2 < task execution time).

6. Conclusions

This paper proposed a new algorithm for multi-robots path planning in a crowded en-
vironment. A free smooth optimal path for each robot from its initial to its final position
while avoiding collision with the existing obstacles is planned; then, the likelihood of a colli-
sion between the pre-planned paths is determined, and the amount of time it takes for each
robot to arrive at a potential collision location based on its speed is discussed to investigate
the likelihood of a collision. Because of this, the robots involved in the collision must decide
how to prevent it by using the robot priority technique. Several simulation scenarios were
tested to validate the effectiveness of our proposed approach. The results obtained, and com-
parisons with the existing approaches have proved the effectiveness of the proposed ap-
proach. It offers smoother trajectories that account for jerk movement, it satisfactorily re-
solves the local-minima problem without the need for further calculation, it avoids any kind
of obstacle, even the U-shaped static obstacle, and it isn’t safer from any conflicts between

the robots, whatever their heading directions. The number of algorithm steps depends on
the number of control points.

In future work, and in order to confirm the suggested method's efficacy, further study
will entail physically validating it on several robot platforms with multiple real robots. Our
perspective is to implement the proposed NURBs approach on microprocessor-embedded
boards to enable real robots to navigate in 3D environments. Moreover, the method can be
generalized to any crowded dynamic environment.

Author Contributions: Conceptualization: H. B. and F. D..; methodology: H.B.; software:
H.B.; validation: H.B.; formal analysis: H.B.; investigation: H.B.; resources: H.B.; data cura-
tion: F.D.; writing—original draft preparation: H.B.; writing—review and editing: H.B. and
F.D.; visualization: H.B.; supervision: F.D.; project administration: H.B.

Funding: This research received no external funding.

Data Availability Statement: Not applicable

Acknowledgments: The authors would like to thank the “la Direction Générale de la Re-
cherche Scientifique et du Développement Technologique (DGRSDT)”, for its financial sup-
port.

Conflicts of Interest: The authors declare no conflict of interest.

References

[1] H. Zheng, R. R. Negenborn, and G. Lodewijks, “Fast ADMM for Distributed Model Predictive Control of Cooperative Waterborne
AGVs,” IEEE Trans. Control Syst. Technol., vol. 25, no. 4, pp. 1406–1413, Jul. 2017, doi: 10.1109/TCST.2016.2599485.

https://publikasi.dinus.ac.id/index.php/jcta/issue/view/380

Journal of Computing Theories and Applications 2024 (May), vol. 1, no. 4, Belaidi and Demim. 491

[2] V. Digani, L. Sabattini, and C. Secchi, “A Probabilistic Eulerian Traffic Model for the Coordination of Multiple AGVs in Automatic
Warehouses,” IEEE Robot. Autom. Lett., vol. 1, no. 1, pp. 26–32, Jan. 2016, doi: 10.1109/LRA.2015.2505646.

[3] D. Jang, J. Yoo, C. Y. Son, D. Kim, and H. J. Kim, “Multi-Robot Active Sensing and Environmental Model Learning With Distrib-
uted Gaussian Process,” IEEE Robot. Autom. Lett., vol. 5, no. 4, pp. 5905–5912, Oct. 2020, doi: 10.1109/LRA.2020.3010456.

[4] Y. Yu, Z. Wu, Z. Cao, L. Pang, L. Ren, and C. Zhou, “A laser-based multi-robot collision avoidance approach in unknown envi-
ronments,” Int. J. Adv. Robot. Syst., vol. 15, no. 1, p. 172988141875910, Jan. 2018, doi: 10.1177/1729881418759107.

[5] P. Lijina and K. A. Nippun, “Bluetooth RSSI based collision avoidance in multirobot environment,” in 2016 International Conference
on Advances in Computing, Communications and Informatics (ICACCI), Sep. 2016, pp. 2168–2174. doi: 10.1109/ICACCI.2016.7732373.

[6] S. E. García, E. Slawiñski, V. Mut, and F. Penizzotto, “Collision avoidance method for multi-operator multi-robot teleoperation
system,” Robotica, vol. 36, no. 1, pp. 78–95, Jan. 2018, doi: 10.1017/S0263574717000169.

[7] D. Claes and K. Tuyls, “Multi robot collision avoidance in a shared workspace,” Auton. Robots, vol. 42, no. 8, pp. 1749–1770, Dec.
2018, doi: 10.1007/s10514-018-9726-5.

[8] O. Montiel, U. Orozco-Rosas, and R. Sepúlveda, “Path planning for mobile robots using Bacterial Potential Field for avoiding static
and dynamic obstacles,” Expert Syst. Appl., vol. 42, no. 12, pp. 5177–5191, Jul. 2015, doi: 10.1016/j.eswa.2015.02.033.

[9] A. M. Hassan, C. M. Elias, O. M. Shehata, and E. I. Morgan, “A global integrated artificial potential field/virtual obstacles path
planning algorithm for multi-robot system applications,” Int. Res. J. Eng. Technol., vol. 4, no. 9, pp. 1198–1204, 2017.

[10] F. Matoui, B. Boussaid, and M. N. Abdelkrim, “Distributed path planning of a multi-robot system based on the neighborhood
artificial potential field approach,” Simulation, vol. 95, no. 7, pp. 637–657, Jul. 2019, doi: 10.1177/0037549718785440.

[11] Z. Wu, W. Su, and J. Li, “Multi-robot path planning based on improved artificial potential field and B-spline curve optimization,”
in 2019 Chinese Control Conference (CCC), Jul. 2019, pp. 4691–4696. doi: 10.23919/ChiCC.2019.8865232.

[12] S. Moon, E. Oh, and D. H. Shim, “An Integral Framework of Task Assignment and Path Planning for Multiple Unmanned Aerial
Vehicles in Dynamic Environments,” J. Intell. Robot. Syst., vol. 70, no. 1–4, pp. 303–313, Apr. 2013, doi: 10.1007/s10846-012-9740-
3.

[13] D. Liang, Z. Liu, and R. Bhamra, “Collaborative Multi-Robot Formation Control and Global Path Optimization,” Appl. Sci., vol.
12, no. 14, p. 7046, Jul. 2022, doi: 10.3390/app12147046.

[14] F. Metoui, B. Boussaid, and M. N. Abdelkrim, “Path Planning for a Multi-robot System with Decentralized Control Architecture,”
in Studies in Systems, Decision and Control, 2020, pp. 229–259. doi: 10.1007/978-981-15-1819-5_12.

[15] S.-K. Huang, W.-J. Wang, and C.-H. Sun, “A Path Planning Strategy for Multi-Robot Moving with Path-Priority Order Based on a
Generalized Voronoi Diagram,” Appl. Sci., vol. 11, no. 20, p. 9650, Oct. 2021, doi: 10.3390/app11209650.

[16] H. Belaidi, H. Bentarzi, A. Belaidi, and A. Hentout, “Terrain Traversability and Optimal Path Planning in 3D Uneven Environment
for an Autonomous Mobile Robot,” Arab. J. Sci. Eng., vol. 39, no. 11, pp. 8371–8381, Nov. 2014, doi: 10.1007/s13369-014-1352-
8.

[17] K. Mørken and M. Reimers, “An unconditionally convergent method for computing zeros of splines and polynomials,” Math.
Comput., vol. 76, no. 258, pp. 845–865, Jan. 2007, doi: 10.1090/S0025-5718-07-01923-0.

[18] F. Demim et al., “Smooth Sliding Mode Control Based Technique of an Autonomous Underwater Vehicle Based Localization Using
Obstacle Avoidance Strategy,” in Proceedings of the 20th International Conference on Informatics in Control, Automation and Robotics, 2023, pp.
529–537. doi: 10.5220/0012118200003543.

[19] R. Tallamraju, S. Rajappa, M. J. Black, K. Karlapalem, and A. Ahmad, “Decentralized MPC based Obstacle Avoidance for Multi-
Robot Target Tracking Scenarios,” in 2018 IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR), Aug. 2018, pp.
1–8. doi: 10.1109/SSRR.2018.8468655.

[20] F. Matoui, B. Boussaid, and M. N. Abdelkrim, “Local minimum solution for the potential field method in multiple robot motion
planning task,” in 2015 16th International Conference on Sciences and Techniques of Automatic Control and Computer Engineering (STA) , Dec.
2015, pp. 452–457. doi: 10.1109/STA.2015.7505223.

[21] H. Belaidi, M. Abad, and A. E. Bouhamidi, “Hybrid Decentralized Multi-Robots Navigation Strategy,” J. Manuf. Technol. Res., vol.
13, no. 1/2, pp. 13–27, 2021.

[22] J. Gregoire, M. Čáp, and E. Frazzoli, “Locally-optimal multi-robot navigation under delaying disturbances using homotopy con-
straints,” Auton. Robots, vol. 42, no. 4, pp. 895–907, Apr. 2018, doi: 10.1007/s10514-017-9673-6.

[23] J. Wang, R. Tai, and J. Xu, “A Bi-Level Probabilistic Path Planning Algorithm for Multiple Robots with Motion Uncertainty,”
Complexity, vol. 2020, pp. 1–16, Jun. 2020, doi: 10.1155/2020/9207324.

[24] H. Belaidi, A. Hentout, B. Bouzouia, H. Bentarzi, and A. Belaidi, “NURBs trajectory generation and following by an autonomous
mobile robot navigating in 3D environment,” in The 4th Annual IEEE International Conference on Cyber Technology in Automation, Control
and Intelligent, Jun. 2014, pp. 168–173. doi: 10.1109/CYBER.2014.6917455.

[25] K. Mørken, M. Reimers, and C. Schulz, “Computing intersections of planar spline curves using knot insertion,” Comput. Aided Geom.
Des., vol. 26, no. 3, pp. 351–366, Mar. 2009, doi: 10.1016/j.cagd.2008.07.005.

[26] B. Riviere, W. Honig, Y. Yue, and S.-J. Chung, “GLAS: Global-to-Local Safe Autonomy Synthesis for Multi-Robot Motion Planning
With End-to-End Learning,” IEEE Robot. Autom. Lett., vol. 5, no. 3, pp. 4249–4256, Jul. 2020, doi: 10.1109/LRA.2020.2994035.

https://publikasi.dinus.ac.id/index.php/jcta/issue/view/380

