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Abstract: The primary problem for multi-robot displacement and motion phase solving requires that 

the robots prevent themselves from colliding with each other as well as stationary obstacles. In certain 

situations, robot conflict is unavoidable if one robot views its neighbors as immovable obstacles. 

Hence, this paper proposes a new NURBs (Non-Uniform Rational B-spline) based algorithm for multi-

robot path planning in a crowded environment. First, the proposed technique finds each robot's free, 

smooth, optimal path while avoiding collision with the existing obstacles. Secondly, the prospect of 

possible collision between the preplanned trajectories will be computed to allow the robots to navigate 

in the same workspace and coordinate between them. Then, each robot's time to arrive at potential 

collision sites is computed based on its speed. As a result, the robots involved in the collision must 

choose whether to use the robot priority technique to prevent the collision. Simulation results under 

different scenarios and comparisons with previous works are provided to validate the work. The ob-

tained results prove that the proposed approach is accurate (as the robot's instantaneous speed is taken 

into consideration), fast (as there is no need to broadcast the robots’ positions), the robots’ paths are 

optimal and smooth (to avoid jerk movements), and the approach ensures that the robots will not be 

trapped by local minima problem. 
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1. Introduction 

There are several benefits that a group of parallel-operating mobile robots has over in-
dividual robot systems. When working together, several robots can complete jobs faster than 
a single robot and can complete tasks that one robot system cannot handle. With a wide range 
of applications, including autonomous warehouses[1], [2], the military, aircraft, locating things 
or people, exploring surroundings, and rescue, it provides the qualities of parallelism, resili-
ence, and flexibility. The main topic of current research is the distribution of tasks and re-
sources, sensing, resolving conflicts, formation, coordinated planning, and other issues [3], 
[4]. One of the main challenges in resolving conflicts at the motion stage is that the robots 
must prevent collisions with other robots and with stationary obstacles. In certain situations, 
robot conflict is unavoidable if one robot views its neighbors as immovable obstacles. In 
crowded multi-robot scenarios, it gets worse. Hence, in the fields of robotics, video games, 
and automation, path planning is an essential activity in the automation process of a system 
that navigates the environment while avoiding obstacles and respecting various constraints. 
In the case of a mobile robot’s team navigating in a crowded environment, each robot has to 
find its free optimal path from a given starting position to a given target while avoiding the 
static and dynamic obstacles existing in the surroundings and avoiding collision with the other 
robots.  

Several works have proposed different collision avoidance methods based on the infor-
mation afforded by onboard sensors. The paper [5] presented a collision-free path planning 
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algorithm based on Bluetooth-received signal strength indication for multi-robot interior en-
vironments. However, low measurement precision results from attenuating the Bluetooth 
signal during propagation. The article [4] proposed a laser-based approach to help prevent 
collisions in intricate situations with multiple robots. The suggested method takes into ac-
count the influences of the robot itself, the stationary obstacles, and other adjacent robots. 
However, the collision-free paths are not guaranteed as the velocities of the robots are not 
considered. Hence, the speed factor is introduced in [6], where a collision prevention ap-
proach is suggested for a remote operation system with several humans in charge. Conversely, 
optimization is not carried out. In order to deal with dynamic impediments, the Velocity Ob-
stacle (VO) evolved in [7]. As long as the dynamic obstruction keeps the measured velocity 
constant, the velocity at which a collision will finally occur is represented geometrically by the 
VO. However, the approach did not have the ability of robot–robot detection, and the robots 
needed to broadcast their locations; thus, results from speeding up the simulation would be 
erroneous.  

In the same context of multi-robot trajectory planning, algorithms based on Artificial 
Potential Field (APF) reinforced by other techniques are proposed by several authors, such 
as Bacterial Potential Field [8] and APF method combined with the Virtual Obstacles ap-
proaches [9] to address the issue of multiple robots cooperating in within a single workspace 
and tried to avoid local minima problem [10]–[14]. However, the problem of these approaches 
is associated with scalability. Given current results, more research is necessary to address mul-
tiple robot collision avoidance, particularly in crowded areas [4], [15]. Moreover, the discussed 
approaches do not provide smoother trajectories, which reflect the existence of jerk move-
ment.  

Hence, this paper proposes a new NURBs (Non-Uniform Rational B-spline) based ap-
proach for multi-robots path planning in a crowded environment. The employment of 
NURBs is justified by several benefits, including (i) producing a smooth curve between con-
trol points; (ii) Coordinate points, which are the starting point, control point, and target point, 
are specified to generate the NURBS curve; (iii) The robot can turn without stopping as it 
guarantees the C² continuance; (iv) The tolerance for the NURBs curve’s fitting can be ad-
justed; (v), a fit point (or other control points) and refit the NURBs through the new set of 
points can be inserted without altering the entire path; (vi) The robot's initial and ending 
rotations can be used to determine the start and end tangents. First, the proposed technique 
finds each robot's free, smooth, optimal path while avoiding collision with the existing obsta-
cles. Our mobile robot path planning strategy based on NURBS, previously published in [15], 
[16], is used to plan a free optimal path for multi-robots. However, this work will generalize 
the approach for multi-robots while avoiding collisions with obstacles and between the robots 
themselves.    

Our contribution is: (i) To consider the robot’s instantaneous speed to enhance the ac-
curacy of the approach. (ii) By calculating the robots’ possible collision time, there will be no 
need to broadcast the robots’ positions, thus, increasing the approach convergence time. (iii) 
The obtained robots’ paths must be optimal and smooth to avoid the jerk robots’ movements 
(iv) Moreover, the proposed approach must ensure that the local minimum problem will not 
trap the robots. Furthermore, the robots involved in the collision must decide whether to use 
the robot priority strategy to prevent the collision [17]. 

2. Related works 

Different collision avoidance techniques have been developed by several authors, de-
pending on the data provided by onboard sensors and the implemented approaches. Each 
technique has its advantages and drawbacks. In this section, some solved issues are summa-
rized, and the way our approach solves the cited problems is explained in the next sections. 

Compared to the existing works discussed in the introduction, more study is required to 
solve multiple robot collision avoidance, especially in crowded environments[4], [16]. In ad-
dition, the current studies' optimality still needs to be improved [5]–[8]. Furthermore, the 
techniques that have been discussed do not offer smoother trajectories that account for jerk 
movement[18].  

The most common hard issue the previously proposed approaches face is the lo-cal-
minima problem [10]–[14]. The works used the "non-minimum speed algorithm" to solve this 
problem. Actually, though, the robot can stop at any moment to prevent running into an 
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undesired obstacle or other robots or moving things. On the other hand, each robot's colli-
sion-free mobility plans are determined in [19] using a convex optimization. Convexity of the 
environment constraints is achieved by pre-calculating the potential field forces for a horizon, 
which are then used as external force inputs in optimization criteria. As a result, the concepts 
put forward by [20] and [19] as well as the other earlier approaches, appear to be restricted. 
As will be explained later, the local-minima problem is satisfactorily resolved in our work and 
doesn't need to be calculated again, even for the U-shaped static obstacle, which was a com-
mon drawback for the earlier methods such as [19] and [21] 

Additionally, while robots are traveling in separate directions on the same side of a road 
with two lanes, they will not block each other's paths, as demonstrated by previous research 
in the literature [22], [23]; however, no work has been done on robot direction movement in 
a given environment at random. Our proposed approach, as it will be discussed in the coming 
section, the robots will not have any conflicts whatever are their heading directions.   

3. Optimal path planning 

The strategy of constructing the free paths for each robot is summarized in the flowchart 
given in Fig. 1. According to this flowchart, the user has to define the robots’ quantity 𝑁 ex-

isting in the workspace. After that, 𝑆𝑖 and 𝑇𝑖 must be defined such that 𝑆𝑖 is the initial lo-

cation of the robot 𝑖 and 𝑇𝑖 is the target of the robot 𝑖 depicted by the user. 
The proposed path planning strategy for multi-robot is based on parametric curves de-

fined by Equation (1), which has an inherent directional property that enormously reduces 
calculations in mobile robot path planning [24]. In such an application, great attention was 
paid to computational complexity compared with other path-planning candidates.  

𝑟(𝑠)  = ( 𝑇𝑖 − 𝑆𝑖) × 𝑠 + 𝑆𝑖  (1) 

Where 𝑆𝑖  and 𝑇𝑖 (0 < i < N)  are presented by their coordinates; 𝑠 represents the 

curve parameter and 0 ≤ s ≤ 1.  To determine if the line 𝑆𝑖𝑇𝑖 collides with an object, we 
must carry out an intersection checking of this line with the polygonal contours of the obsta-
cles as explained in [24]; where the segment 𝑆𝑖𝑇𝑖 and the obstacle contour 𝑃𝑘𝑃𝑙 do not in-

tersect unless 0 ≤ s ≤ 1 and 0 ≤ t ≤ 1.  

3.1. Cost function 

The initial point Si must be updated and replaced by the first optimal point 𝑄1 and 

linked to 𝑇𝑖. Then, the previous procedure will be repeated to find the new local optimal 
control point, and so on, until all there will be no collision.  

Therefore, the path segment that separates two control points is divided by the maxi-
mum velocity to define the cost function. This cost function may be calculated for each path 

segment for any possible path containing time units. The 𝑑𝑖𝑗 's, or the distances between each 

pair of control points, are calculated from 𝑆𝑖 to 𝑇𝑖 Therefore, using Equation (2) (where 𝑛 
is the control points’ number), the total distance is determined: 

𝐷𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒 = ∑ 𝑑𝑖𝑗

𝑛−1

𝑗=1

 (2) 

For every feasible path, the cost function 𝑯𝒊𝒋 is thus defined in a way that:  

𝐻𝑖𝑗 = ∑
𝑑𝑖𝑗

𝑉𝑖𝑗

𝑛−1

𝑗=1

 (3) 

Since at least two possible paths can be found, the best one can be determined by as-

suming that the robot 𝑅𝑖 moves at its fastest safe speed and takes the shortest route, the 
optimal path can be found by: 

𝐻𝑖 optimal = min{𝐻𝑖𝑗}  (4) 

A table (𝑡𝑟𝑎𝑗 𝑖) will be constructed to store all the optimal control points (𝑄𝑗) constitut-

ing the trajectory, with 𝑗 is the index of the control point; 𝑡𝑟𝑎𝑗 𝑖 will be filled according to 
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the flowchart given in Figure 1. Initially, 𝑆𝑖 and 𝑇𝑖 are stored inside as the trajectory's begin-
ning and end positions, respectively. Then, each time a new control point is found it will be 

inserted before 𝑇𝑖  so that 𝑇𝑖  always remains the last point until 𝑄𝑗 converges to 𝑇𝑖. 
The effectiveness of this method is demonstrated by its capacity to choose the shortest 

and which can be traversed at high speed without requiring a costly state-space search.  
Once all the optimal control points constituting the free trajectory are extracted, these 

points will be linked by a NURBS (Spline 𝑖) to construct the free optimal path for the robot 

𝑖. Therefore, i is incremented so that this algorithm will be executed by all the robots in the 

team from 𝑖 = 1 to 𝑁. Figure 1 illustrates the approach of free optimal path construction 
for a multi-robots team. 

 

Figure. 1. Flowchart illustrating the free optimal paths construction for the multi-robots team. 

4. Robot-robot Collision 

Formally, the free optimal paths allow the robots to move from initial positions 𝑆𝑖 to 
final destinations 𝑇𝑖  are extracted. These paths may intersect; however, their intersection 
must not lead to any collision between robots. Hence, in this section, the path intersection 
points will be established. Then, the time required by each robot to reach these points must 
be calculated and compared to predict the possibility that the robots will arrive at the inter-
section points simultaneously, which leads to collisions. 
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Assuming that the robots start moving at the time 𝑡0. The algorithm begins by checking 

for the intersection between the trajectory of the robot 𝑅𝑖, presented by Splinei, and the 

trajectory of a robot 𝑅𝑝, presented by Spline𝑝. The intersections between the robots trajec-
tories are calculated as explained in the following section. 

4.1. Trajectories intersection  

In [17], by using the control polygon’s first zero to estimate the spline’s first zero, one 
can use the close rapport between the control polygon and the spline to identify a spline 
function’s first zero. The novel control polygon’s first zero is then utilized as an enhanced 
estimation, and then this zero is entered into the knot vector of the spline. Iterating over this 
yields an iterative technique that converges quadratically to simple zeros. The technique was 
naturally extended to calculate two parametric spline curves’ intersections in [25]. An approx-
imation of the intersection of the two curves was made using the initial intersection of the 
two control polygons. Here, "first" refers to the sequence in which things happen. Two pa-
rameter values, one for each curve, are obtained from this intersection and added as new 
knots to the knot vectors of the associated curves. The outcome is a straightforward iterative 
approach that may be repeated using the novel control polygon. 

Because two curves can cross even in cases when the control polygons do not, this al-
gorithm for calculating intersections is not infallible in and of itself. The algorithm won't 
function in this scenario until certain preprocessing is completed. The local convex hull at-
tribute was used for this. More precisely, there has to be at least one pair of overlapping local 
convex hulls if the curves intersect. Insert the midpoints of the respective parameter intervals 
as new knots in the curves, concentrating on the first pair of such pairs. Theorem 11 [25] 
states that the algorithm will eventually result in intersecting control polygons, at least in the 
case of a transversal intersection, if this process is repeated. The control polygons of the two 

NURBS curves Spline𝑖 and Spline𝑝 are defined as follow: 

Spline𝑖(𝑑) = ∑ 𝑅(𝑑)𝑞𝑗

𝑛−1

𝑗=0

 (5) 

Spline𝑝(𝑔) = ∑ 𝑅(𝑔)𝑞𝑗

𝑚−1

𝑗=0

 (6) 

where 𝑅(𝑑) and 𝑅(𝑔) are the rational basis function defined as follows, 

𝑅(𝑑) =
𝐵𝑗,𝑘(𝑑) ⋅ 𝑤𝑗

∑ 𝐵𝑗,𝑘(𝑑) ⋅ 𝑤𝑗
𝑛−1
𝑗=0

 (7) 

𝑅(𝑔) =
𝐵𝑗,𝑘(𝑔) ⋅ 𝑤𝑗

∑ 𝐵𝑗,𝑘(𝑔) ⋅ 𝑤𝑗
𝑚−1
𝑗=0

 (8) 

Where 𝑛 and 𝑚 are the number of control points present in the curves Spline𝑖 and 

Spline𝑝, respectively; 𝑘 represents the NURBS degree, and 𝑞𝑗 are the control points where 

each one is associated with a weight 𝑤𝑗 ⋅ 𝐵𝑗,𝑘(𝑑)and 𝐵𝑗,𝑘(𝑔) are the B-spline blending func-
tions. The computation of the two control polygons’ intersection is simple and is well ex-
plained in [21]. The intersection Algorithm 1 is shown below.  

Algorithm 1. Spline Curves Intersection Computation According to [25] 

Repeat: INPUT Spline𝑖(𝑑), Spline𝑝(𝑔) 

       OUTPUT intersections points 𝑅𝑖𝑝 

1:             If Spline𝑖(𝑑) intersect Spline𝑝(𝑔)Then 
2:                  Insert first intersection of control polygons 
3:            Follow:         If intersection is found Then 

4:            Return (the intersection coordinates 𝑅𝑖𝑝) 
5:            Stop 
6:               Else  
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7:                  Go to repeat 
8:                            End 
9:            Else 
10:                 If (two local convex hulls intersect) Then 
11:                 Insert first midpoint pair  
12:                       Go to follow 
13:                 Else 
14:                Return (Curves do not intersect) 
15:                Stop 
16:                 End 
17:            End 

 
The flowchart given in Figure 2 explains this algorithm (Algorithm 1), and summarizes 

the strategy to calculate the points 𝑅𝑖𝑝 where the trajectories of the robots intersect and the 
time corresponding to each robot to reach those points. Such that ti and tp represent the time 

when robots 𝑅𝑖 and 𝑅𝑝 reach the collision point 𝑅𝑖𝑝 respectively. In case of collision, ro-

bot 𝑅𝑖 has to stop for period 𝑇 before following its path.   

 

Figure. 2. Flowchart summarizing the technique of trajectories collision calculation. 
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4.2 Time to reach Rip by each robot 

To find the time to attend the intersection points 𝑅𝑖𝑝 by each robot, the velocities along 
the path from the starting point until those points must be known. The speeds are denoted 

by 𝑉𝑖𝑗, where 𝑖 is the index of the robot, and 𝑗 is the index of the control point, i.e., 𝑄12 is 

the second control point for the first robot (𝑅1) and 𝑉12 corresponds to the speed of the 

first robot at the second control point. Spline1 is the NURBS curve representing the trajec-

tory of the first robot (𝑅1) and Spline2 denotes the NURBS curve characterizing the trajectory 

of the second robot (𝑅2). Whereas at the intersection point (𝑅12), the speed of the robot 𝑅1 

is 𝑉𝑅12 and the speed of robot 𝑅2 is 𝑉𝑅21. Thus, the velocities at each control point previ-

ous and at 𝑅𝑖𝑝 must be calculated. 

To find the velocities 𝑉𝑖𝑝, the first derivative of Spline𝑖 and Spline𝑝 at specific con-

trol points must be calculated. Spline𝑖 and Spline𝑝, given by Equation (5) and (6), are writ-

ten as function of the basis functions 𝑅(𝑑) and 𝑅(𝑔). These basis functions, defined by 
Equation (7) and Equation (8), can then be used to calculate the derivative of the curves 

Spline𝑖 and Spline𝑝 at a given point by estimating the form: 

𝑅(𝑑) =
𝑤(𝑑)𝑅(𝑑)

𝑤(𝑑)
=

𝐴(𝑑)

𝑤(𝑑)
 (9) 

𝑅(𝑔) =
𝑤(𝑔). 𝑅(𝑔)

𝑤(𝑔)
=

𝐴(𝑔)

𝑤(𝑔)
 (10) 

Their derivatives can be written as: 

𝑅′(𝑑) =
𝐴′(𝑑) − 𝑤′(𝑑). 𝑅(𝑑)

𝑤(𝑑)
=

𝑤𝑗 . 𝐵𝑗,𝑘 ′(𝑑) − 𝑤′(𝑑). 𝑅(𝑑)

𝑤(𝑑)
 (11) 

𝑅′(𝑔) =
𝐴′(𝑔) − 𝑤′(𝑔). 𝑅(𝑔)

𝑤(𝑔)
=

𝑤𝑗 . 𝐵𝑗,𝑘′(𝑔) − 𝑤′(𝑔). 𝑅(𝑔)

𝑤(𝑔)
 (12) 

The derivative of a nonrational spline of degree 𝑘 in relevance with a knot is another 

nonrational spline of degree 2𝑘 denoted over a knot vector calculated by the repetitive prod-

uct, as the multiplication of two NURBS objects of degree 𝑘  is generally an alternative 

NURBS object of degree 2𝑘 [22]. 

Thus, the velocities of the robot 𝑅𝑖 at the control points, 𝑗 can be found by applying 
Equation (13): 

𝑉𝑖𝑗 = Spline𝑖 ′(𝑑) = 𝑅′(𝑑)𝑞𝑗 (13) 

The same thing for a robot 𝑅𝑝 at the control points 𝑗: 

𝑉𝑖𝑗 = Spline𝑖 ′(𝑑) = 𝑅′(𝑑)𝑞𝑗 (14) 

Therefore, the time 𝑡𝑖𝑗spanned by the robot 𝑅𝑖 to move from the control point 𝑄𝑖(𝑗−1) 
to the next control point 𝑄𝑖𝑗  can be calculated using Equation (15): 

𝑡𝑖𝑗 =
𝑑𝑖𝑗

𝑉𝑖𝑗

 (15) 

With 𝑑𝑖𝑗  is the distance separating two adjacent control points 𝑄𝑖(𝑗−1), 𝑄𝑖𝑗(the distance 
along a path segment). In 2D space, it can be calculated using Equation (16): 

𝑑𝑖𝑗 = √(𝑞𝑖𝑗 𝑥
− 𝑞(𝑖(𝑗−1))𝑥

)² + (𝑞𝑖𝑗 𝑦
− 𝑞(𝑖(𝑗−1))𝑦)² (16) 

By knowing the time spanned by the robot to reach each control point; thus, the total 

time to reach the intersection point by the robot 𝑅𝑖 is given by Equation (17):  
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𝑡𝑖 = ∑ 𝑡𝑖𝑗

𝑗=𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛 𝑝𝑜𝑖𝑛𝑡

𝑗=1

 (17) 

Similarly: 

𝑡𝑝 = ∑ 𝑡𝑝𝑗

𝑗=𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛 𝑝𝑜𝑖𝑛𝑡

𝑗=1

 (18) 

The time to reach the intersection point by each robot ti and tp must be corrected ac-
cording to the previous robot stops and then compared to see if the robots may collide; so 
the following algorithm (Algorithm 2) will be executed. Moreover, priority between the robots 
must be considered. Generally, robots with emergency tasks move at their maximum allowed 
speed; furthermore, the low-speed robot brakes more easily than the high-speed one. Hence, 
the robot with high speed has the priority of moving before the other robots. So, the speed 

of the two robots 𝑅𝑖  and 𝑅𝑝 , 𝑉𝑖 = ∑ 𝑉𝑖𝑗
𝑗=𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛 𝑝𝑜𝑖𝑛𝑡
𝑗=1  and 𝑉𝑝 =

∑ 𝑉𝑝𝑗
𝑗=𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛 𝑝𝑜𝑖𝑛𝑡
𝑗=1  respectively, are compared to indicate the one that has the priority 

to move and the other one has to stop (see Algorithm 2). 
 

Algorithm 2. The Previous Robot Stops Consideration 

INPUT: 𝑁𝑖 , 𝑁𝑝, Ƭ 

OUTPUT: 𝑡𝑖,  𝑡𝑝 
1: Repeat: calculate ti and tp 

2:            𝑁𝑖 : how many times the robot 𝑅𝑖 has stopped 

3:            𝑁𝑝: how many times the robot 𝑅𝑝 has stopped 

4:            Ƭ: necessary time to escape the collision point 𝑅𝑖𝑝 

5:     If (𝑅𝑖 has stopped before) Then 

6:      𝑡𝑖  =  𝑡𝑖  +  Ƭ ∗ 𝑁𝑖 
7:           Goto compare 
8:     Else 
9:      Go to compare 
10:     End if 

11:     If (𝑅𝑝 has stopped before) Then 

12:             𝑡𝑝  =  𝑡𝑝  +  Ƭ ∗ 𝑁𝑝 
13:            Goto compare 
14:     Else 
15:       Go to compare 
16:     End if 

 

17:     compare:     If  𝑡𝑖 ≈ 𝑡𝑝  ±  𝜏 Then 

18:       If 𝑉𝑝 >= 𝑉𝑖 

19:       𝑅𝑖 stops at position (𝑅𝑖𝑝−𝑏) for Ƭ time 

20:       𝑅𝑝 follows its movement  
21:         Else 

22:                    𝑅𝑝 stops at position (𝑅𝑖𝑝−𝑏) for Ƭ time 

23:       𝑅𝑖 follows its movement  
24:       Else  

25:            𝑅𝑖 and 𝑅𝑝 follow their movements 
26:       End 

 

According to Algorithm 2, the robots 𝑅𝑖 and 𝑅𝑝 have to consider the time of their 
previous rest to avoid collision with the other robots in order to be exact in the calculation 

of ti and tp. Thus, Ƭ (a fixed time enough to avoid collision between the robots; it can be 
calculated by dividing the length of the robot supposed to be in a collision over its speed (for 
our case, it was fixed to 2s)), multiplied by the number of times the robot has stopped before 
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(𝑁𝑖 or 𝑁𝑝), which must be added to the time each robot must reach the intersection point 

(𝑡𝑖  or 𝑡𝑝). Therefore, the algorithm checks if 𝑡𝑖 belongs to the interval [𝑡𝑝 −  𝜏, 𝑡𝑝 +  𝜏], 

which means that the robot 𝑅𝑖 arrives at the point 𝑅𝑖𝑝 approximately at the same time as the 

robot 𝑅𝑝; so the two robots collide with each other. Hence, one of them has to stop at point. 

𝑅𝑖𝑝−𝑏 ((−𝑏) ensures that the robot stops before entering the collision zone) and leave the 

other one to pass. Otherwise, the two robots pass the point 𝑅𝑖𝑝 at different times and do 
not collide with each other. 

5. Results and Discussion 

The proposed approach is tested in simulations run on an Intel Core i3 computer at 2.20 
GHz with 6 GB of RAM. AutoCAD is used to build the environment scripts for the approach 
coding, whereas Matlab is used for speed, distance, and time calculations. In the following, 
some validation scenarios are proposed and discussed. 

5.1 Validation Example 

In this simulation example, a multi-robot team containing five robots navigates in an 
environment of 10x10 m². The obstacles can have any shape in C-space. The path planning 
approach takes into account the width of the robot. The starting locations of the robots are 

denoted by 𝑆𝑖 and the targets by 𝑇𝑖 in Figure 3. In this case, the linear robots' velocities (𝑉𝑖 

and 𝑉𝑝) are supposed to be constant between each two consecutive control points, and they 

are 0.5m/s, 0.3 m/s, 0.6m/s, 0.4 m/s, and 0.7 m/s for robots: 𝑅1, 𝑅2, 𝑅3, 𝑅4 and 𝑅5, re-
spectively. The coordinates of the trajectories' intersection points and the intersection times 
are given in Table 1. 

 

Figure. 3. Simulation illustration for path planning of five robots.  

The robots’ velocities are small enough to maintain the robots’ stabilities during obstacle 
avoidance. The time to reach the intersection points is calculated for the robots where their 

trajectories intersect. From Table 1, the time 𝑡1 required from robot 𝑅1 to reach the colli-

sion point 𝑅12 is belongs to the interval [𝑡2, 𝑡2  +  0.5s], which means that the robot 𝑅1 
moving with the speed 𝑉1 will collide with the robot 𝑅2 moving by the speed 𝑉2 at point 

𝑅12. Thus, by executing the algorithm summarized by the flowchart given in Figure 2, the 

robot 𝑅1 has to stop for a short time Ƭ =  2s allowing 𝑅2to cross the intersection point 

without collision. Therefore, for the next computation, Ƭ must be taken into consideration in 

the estimation of 𝑡1 (𝑡1 = 𝑡1 +  2s). The same thing to the path execution of robots 𝑅1 and 

𝑅4; as 𝑡1 𝜖 [𝑡4  − 0.5s, 𝑡4], robot 𝑅1 has to stop for 2s, allowing the robot 𝑅4 to pass and 

𝑡1 will be equal to 𝑡1  +  2 ∗  Ƭ (because it has stopped two times). 

R12  

R25  

R13  

R35  

R14  

R45  

R34  
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The proposed algorithm requires 𝑁(𝑁 − 1)/2 computation times to detect the inter-

sections, with 𝑁 as the robots’ number, and it increases as the robots’ number increases. For 
our example, the algorithm needs to run ten times with five robots to find the corresponding 
collision points, as explained in Table 1. 

5.2 Local minima problem 

There are certain restrictions when using the APF approach for path planning, according 
to [20]. The main issue arises when the robot becomes stuck in nearby minima. The robot is 
stuck in this posture because there is zero potential field force acting on it. Similarly, repeat-
edly pushing the robot in the exact opposite way can result in a control deadlock [19]. Situa-
tions such as control deadlock and local minima are undesirable. 

Thus, a technique based on the non-minimum speed algorithm was put forth in [20]. 
The idea was to regulate each robot's speed at any given moment to address the issue of local 
minima as they arise. The concept was to regulate the robot's force when it is still distant from 
the objective point, beyond a positive and non-null threshold 𝐹𝑚𝑖𝑛. Consequently, when the 
robot is far away from the destination, its speed is never equal to zero. 

Table 1. The coordinates of the trajectories intersection points and the intersection times. 

Intersection 

points 𝑹𝒊𝒑 

(𝑹𝒊 with 𝑹𝒑) 

𝒙𝒊𝒑 𝒚𝒊𝒑 
𝒅𝑺𝒊𝑹𝒊𝒑 

(*10m) 

𝒅𝑺𝒑𝑹𝒊𝒑 

(*10m) 
𝑽𝒊 (m/s) 𝑽𝒑 (m/s) 𝒕𝒊 (s) 𝒕𝒑 (s) Observation 

𝑅12 13,56 84,23 12.78 6.41 0.5 0.3 2.56 2.14 Collision => 𝑅1 stops for 2s 

and 𝑅2 follows (𝑡1 = 𝑡1  + 2). 

𝑅13 78,20 58,96 84.13 76.81 0.5 0.6 19.32 12.80 No collision (𝑡1 = 𝑡1  + 2). 

𝑅14 90,95 51,39 99.03 79.49 0.5 0.4 22.31 21.87 Collision => 𝑅1 stops for 0.5s 

and 𝑅4 follows (𝑡1 = 𝑡1  + 2 ∗

2) 

𝑅15 81,44 57,87 87.55 53.51 0.5 0.7 20.51 7.64 No collision 

𝑅23 No possible intersection of the robots’ trajectories  

𝑅24 No possible intersection of the robots’ trajectories  

𝑅25 40,79 92,46 34.85 105.51 0.3 0.7 11.61 15.07 No collision 

𝑅34 93,33 57,87 90.14 86.39 0.6 0.4 15.02 21.6 No collision 

𝑅35 81,00 58,74 75.85 54.44 0.6 0.7 12.64 7.78 No collision 

𝑅45 84,68 39,50 66.16 34.86 0.4 0.7 16.54 4.98 No collision 

The local minima problem is resolved by the "non-minimum speed algorithm". How-
ever, the robot can stop anytime to avoid an unwanted obstacle or collision with other robots 
or moving objects. Whereas, in [17] a convex optimization is used to determine each robot's 
collision-free motion plans. A pre-computation of the potential field forces for a horizon are 
proposed to convexity the environment constraints and then use them as external force inputs 
in optimization criteria. Therefore, the ideas presented by [17] and [25], like the other previous 
methods, seem limited. In our work, the problem of local minima is solved successfully and 
does not require any more calculation, as explained below. 

Hence, Figure 4 shows a comparison between the trajectories of the robots obtained by 
running the method proposed in [4] (Fig. 4(a and c)) and those obtained by our approach 
(Fig. 4(b and d)). The built scenario assumes that 17 robots navigate in a space featuring a 
few cargo shelves and three sorting tables. The same experience explained in [4] is re-intro-

duced here. The initial location and the target for the robot 𝑅𝑞 are 𝑆𝑞 and 𝐺𝑞, respectively. 
Form the results obtained in [4], each cargo robot accomplishes collision-free navigation; 
however, it is clearly observed that the obtained trajectories are not optimal, and the robots’ 
movements are not smooth, which causes them to jerk. Thus, the robot's movement is not 
stable. However, our approach produced an optimal path, smooth robot movements, and no 
oscillation in the robot's speeds. Moreover, the obtained paths are more secure even if the 
robots move at optimal speed.  
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Moreover, in our proposed approach, the robots move in a straight path when there is 
no obstacle, which is not the case in [4]. The same improvement is proved when we compared 
our results with the ones obtained by the GLAS end-to-end policy approach proposed by 
[22], where the objective is to move robots from the initial location (circles) to the desired 
location (squares) as illustrated in Fig. 4(e) and Fig. 4(f). Our method achieved more optimal 
path highly smoothed trajectories. 

 
(a) 

 
(b) 

 
(c) 
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(d) 

 
(e) 

 
(f) 

Figure 4. Comparison of our results with those obtained in [4] and [26] (a) and (c) Trajectories of 
the robots obtained by the approach proposed by [4]; (b), (d) and (f) Trajectories of the robots ob-

tained by our approach; (e) Results obtained from [26]. 

Generally, while applying approaches such as DQMPC (Decentralized Quadratic Model 
Predictive Control), approach Angle Towards Target Method, and Swiveling Robot Destna-
tion Method, etc [17], [21]. When faced with a U-shaped static obstacle, the robots become 
stuck due to a control deadlock. Figure 5 illustrates local minima escaping while the robots 
face a U-shaped obstacle using our approach. In this scenario, three robots move in a complex 
environment, and their targets are reached effectively. 

 

Figure 5. Escaping local minima problem caused by U-shaped obstacle. 

T3 

S1 

S3 

T2 

T1 

S2 
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5.3 Conflict-free paths and obstacle avoidance 

The existing works in the literature proved that robots running on the same side of a 
two-way street would not obstruct each other's paths while they are headed in separate direc-
tions [22], [23]; however, no work has been planned for random robot movement direction 
in a given environment. In our work, and according to what has been proven in the previous 
sections (see section 2 and section 3), the planned path will not conflict with the other robots 
wherever it is heading. Moreover, this approach can also be applied to several target execu-
tions, where each target can be inserted as a new control point and adjust the pre-planned 
path according to its position. 

One limitation of the proposed algorithm is that one of the robots is going out of service 
when it reaches one of the intersection points. This may cause an infinite increase in the 
robot’s time stop. This situation can be solved by adding another constraint to the initial 
algorithm by considering the target reachability and limiting the maximum time for the task 
execution. So, the robot that didn’t respect the maximum time for its task execution is con-
sidered out of service, and the algorithm will be reinitialized, and the number of the robots 
will decrease by one, considering the robot out of service as an obstacle.   

Moreover, the proposed algorithm requires 𝑁(𝑁 − 1)/2  computation times to detect 
the intersections, with N is the robot’s number. To consider the algorithm limitation, the 
assumption is that 𝑁(𝑁 − 1)/2  must be less than the requested task execution time 

(𝑁(𝑁 − 1)/2 <  task execution time). 

6. Conclusions 

This paper proposed a new algorithm for multi-robots path planning in a crowded en-
vironment. A free smooth optimal path for each robot from its initial to its final position 
while avoiding collision with the existing obstacles is planned; then, the likelihood of a colli-
sion between the pre-planned paths is determined, and the amount of time it takes for each 
robot to arrive at a potential collision location based on its speed is discussed to investigate 
the likelihood of a collision. Because of this, the robots involved in the collision must decide 
how to prevent it by using the robot priority technique. Several simulation scenarios were 
tested to validate the effectiveness of our proposed approach. The results obtained, and com-
parisons with the existing approaches have proved the effectiveness of the proposed ap-
proach. It offers smoother trajectories that account for jerk movement, it satisfactorily re-
solves the local-minima problem without the need for further calculation, it avoids any kind 
of obstacle, even the U-shaped static obstacle, and it isn’t safer from any conflicts between 

the robots, whatever their heading directions. The number of algorithm steps depends on 
the number of control points. 

In future work, and in order to confirm the suggested method's efficacy, further study 
will entail physically validating it on several robot platforms with multiple real robots. Our 
perspective is to implement the proposed NURBs approach on microprocessor-embedded 
boards to enable real robots to navigate in 3D environments. Moreover, the method can be 
generalized to any crowded dynamic environment. 
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